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Who of us would not be glad to lift the veil behind which the future lies hidden; to cast 
a glance at the next advances of our science and at the secrets of its development during 
future centuries? What particular goals will there be toward which the leading 
mathematical spirits of coming generations will strive? What new methods and new 
facts in the wide and rich field of mathematical thought will the new centuries disclose?  

History teaches the continuity of the development of science. We know that 
every age has its own problems, which the following age either solves or casts aside as 
profitless and replaces by new ones. If we would obtain an idea of the probable 
development of mathematical knowledge in the immediate future, we must let the 
unsettled questions pass before our minds and look over the problems which the science 
of today sets and whose solution we expect from the future. To such a review of 
problems the present day, lying at the meeting of the centuries, seems to me well 
adapted. For the close of a great epoch not only invites us to look back into the past but 
also directs our thoughts to the unknown future.  

The deep significance of certain problems for the advance of mathematical 
science in general and the important role which they play in the work of the individual 
investigator are not to be denied. As long as a branch of science offers an abundance of 
problems, so long is it alive; a lack of problems foreshadows extinction or the cessation 
of independent development. Just as every human undertaking pursues certain objects, 
so also mathematical research requires its problems. It is by the solution of problems 
that the investigator tests the temper of his steel; he finds new methods and new 
outlooks, and gains a wider and freer horizon.  

It is difficult and often impossible to judge the value of a problem correctly in 
advance; for the final award depends upon the gain which science obtains from the 
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problem. Nevertheless we can ask whether there are general criteria which mark a good 
mathematical problem. An old French mathematician said: "A mathematical theory is 
not to be considered complete until you have made it so clear that you can explain it to 
the first man whom you meet on the street." This clearness and ease of comprehension, 
here insisted on for a mathematical theory, I should still more demand for a 
mathematical problem if it is to be perfect; for what is clear and easily comprehended 
attracts, the complicated repels us.  

Moreover a mathematical problem should be difficult in order to entice us, yet 
not completely inaccessible, lest it mock at our efforts. It should be to us a guide post on 
the mazy paths to hidden truths, and ultimately a reminder of our pleasure in the 
successful solution.  

The mathematicians of past centuries were accustomed to devote themselves to 
the solution of difficult particular problems with passionate zeal. They knew the value 
of difficult problems. I remind you only of the "problem of the line of quickest descent," 
proposed by John Bernoulli. Experience teaches, explains Bernoulli in the public 
announcement of this problem, that lofty minds are led to strive for the advance of 
science by nothing more than by laying before them difficult and at the same time 
useful problems, and he therefore hopes to earn the thanks of the mathematical world by 
following the example of men like Mersenne, Pascal, Fermat, Viviani and others and 
laying before the distinguished analysts of his time a problem by which, as a 
touchstone, they may test the value of their methods and measure their strength. The 
calculus of variations owes its origin to this problem of Bernoulli and to similar 
problems.  

Fermat  had asserted, as is well known, that the diophantine equation 
n n nx y z+ =  

(x, y and z integers) is unsolvable—except in certain self evident cases. The attempt to 
prove this impossibility offers a striking example of the inspiring effect which such a 
very special and apparently unimportant problem may have upon science. For Kummer, 
incited by Fermat's problem, was led to the introduction of ideal numbers and to the 
discovery of the law of the unique decomposition of the numbers of a circular field into 
ideal prime factors—a law which today, in its generalization to any algebraic field by 
Dedekind and Kronecker, stands at the center of the modern theory of numbers and 
whose significance extends far beyond the boundaries of number theory into the realm 
of algebra and the theory of functions.  

To speak of a very different region of research, I remind you of the problem of 
three bodies. The fruitful methods and the far-reaching principles which Poincaré has 
brought into celestial mechanics and which are today recognized and applied in 
practical astronomy are due to the circumstance that he undertook to treat anew that 
difficult problem and to approach nearer a solution.  

The two last mentioned problems—that of Fermat and the problem of the three 
bodies—seem to us almost like opposite poles—the former a free invention of pure 
reason, belonging to the region of abstract number theory, the latter forced upon us by 
astronomy and necessary to an understanding of the simplest fundamental phenomena 
of nature.  

But it often happens also that the same special problem finds application in the 
most unlike branches of mathematical knowledge. So, for example, the problem of the 
shortest line plays a chief and historically important part in the foundations of geometry, 
in the theory of curved lines and surfaces, in mechanics and in the calculus of 
variations. And how convincingly has F. Klein, in his work on the icosahedron, pictured 
the significance which attaches to the problem of the regular polyhedra in elementary 
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geometry, in group theory, in the theory of equations and in that of linear differential 
equations.  

In order to throw light on the importance of certain problems, I may also refer to 
Weierstrass, who spoke of it as his happy fortune that he found at the outset of his 
scientific career a problem so important as Jacobi's problem of inversion on which to 
work.  

Having now recalled to mind the general importance of problems in 
mathematics, let us turn to the question from what sources this science derives its 
problems. Surely the first and oldest problems in every branch of mathematics spring 
from experience and are suggested by the world of external phenomena. Even the rules 
of calculation with integers must have been discovered in this fashion in a lower stage 
of human civilization, just as the child of today learns the application of these laws by 
empirical methods. The same is true of the first problems of geometry, the problems 
bequeathed us by antiquity, such as the duplication of the cube, the squaring of the 
circle; also the oldest problems in the theory of the solution of numerical equations, in 
the theory of curves and the differential and integral calculus, in the calculus of 
variations, the theory of Fourier series and the theory of potential—to say nothing of the 
further abundance of problems properly belonging to mechanics, astronomy and 
physics.  

But, in the further development of a branch of mathematics, the human mind, 
encouraged by the success of its solutions, becomes conscious of its independence. It 
evolves from itself alone, often without appreciable influence from without, by means 
of logical combination, generalization, specialization, by separating and collecting ideas 
in fortunate ways, new and fruitful problems, and appears then itself as the real 
questioner. Thus arose the problem of prime numbers and the other problems of number 
theory, Galois's theory of equations, the theory of algebraic invariants, the theory of 
abelian and automorphic functions; indeed almost all the nicer questions of modern 
arithmetic and function theory arise in this way.  

In the meantime, while the creative power of pure reason is at work, the outer 
world again comes into play, forces upon us new questions from actual experience, 
opens up new branches of mathematics, and while we seek to conquer these new fields 
of knowledge for the realm of pure thought, we often find the answers to old unsolved 
problems and thus at the same time advance most successfully the old theories. And it 
seems to me that the numerous and surprising analogies and that apparently prearranged 
harmony which the mathematician so often perceives in the questions, methods and 
ideas of the various branches of his science, have their origin in this ever-recurring 
interplay between thought and experience.  

It remains to discuss briefly what general requirements may be justly laid down 
for the solution of a mathematical problem. I should say first of all, this: that it shall be 
possible to establish the correctness of the solution by means of a finite number of steps 
based upon a finite number of hypotheses which are implied in the statement of the 
problem and which must always be exactly formulated. This requirement of logical 
deduction by means of a finite number of processes is simply the requirement of rigor in 
reasoning. Indeed the requirement of rigor, which has become proverbial in 
mathematics, corresponds to a universal philosophical necessity of our understanding; 
and, on the other hand, only by satisfying this requirement do the thought content and 
the suggestiveness of the problem attain their full effect. A new problem, especially 
when it comes from the world of outer experience, is like a young twig, which thrives 
and bears fruit only when it is grafted carefully and in accordance with strict 
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horticultural rules upon the old stem, the established achievements of our mathematical 
science.  

Besides it is an error to believe that rigor in the proof is the enemy of simplicity. 
On the contrary we find it confirmed by numerous examples that the rigorous method is 
at the same time the simpler and the more easily comprehended. The very effort for 
rigor forces us to find out simpler methods of proof. It also frequently leads the way to 
methods which are more capable of development than the old methods of less rigor. 
Thus the theory of algebraic curves experienced a considerable simplification and 
attained greater unity by means of the more rigorous function-theoretical methods and 
the consistent introduction of transcendental devices. Further, the proof that the power 
series permits the application of the four elementary arithmetical operations as well as 
the term by term differentiation and integration, and the recognition of the utility of the 
power series depending upon this proof contributed materially to the simplification of 
all analysis, particularly of the theory of elimination and the theory of differential 
equations, and also of the existence proofs demanded in those theories. But the most 
striking example for my statement is the calculus of variations. The treatment of the first 
and second variations of definite integrals required in part extremely complicated 
calculations, and the processes applied by the old mathematicians had not the needful 
rigor. Weierstrass showed us the way to a new and sure foundation of the calculus of 
variations. By the examples of the simple and double integral I will show briefly, at the 
close of my lecture, how this way leads at once to a surprising simplification of the 
calculus of variations. For in the demonstration of the necessary and sufficient criteria 
for the occurrence of a maximum and minimum, the calculation of the second variation 
and in part, indeed, the wearisome reasoning connected with the first variation may be 
completely dispensed with—to say nothing of the advance which is involved in the 
removal of the restriction to variations for which the differential coefficients of the 
function vary but slightly.  

While insisting on rigor in the proof as a requirement for a perfect solution of a 
problem, I should like, on the other hand, to oppose the opinion that only the concepts 
of analysis, or even those of arithmetic alone, are susceptible of a fully rigorous 
treatment. This opinion, occasionally advocated by eminent men, I consider entirely 
erroneous. Such a one-sided interpretation of the requirement of rigor would soon lead 
to the ignoring of all concepts arising from geometry, mechanics and physics, to a 
stoppage of the flow of new material from the outside world, and finally, indeed, as a 
last consequence, to the rejection of the ideas of the continuum and of the irrational 
number. But what an important nerve, vital to mathematical science, would be cut by 
the extirpation of geometry and mathematical physics! On the contrary I think that 
wherever, from the side of the theory of knowledge or in geometry, or from the theories 
of natural or physical science, mathematical ideas come up, the problem arises for 
mathematical science to investigate the principles underlying these ideas and so to 
establish them upon a simple and complete system of axioms, that the exactness of the 
new ideas and their applicability to deduction shall be in no respect inferior to those of 
the old arithmetical concepts.  

To new concepts correspond, necessarily, new signs. These we choose in such a 
way that they remind us of the phenomena which were the occasion for the formation of 
the new concepts. So the geometrical figures are signs or mnemonic symbols of space 
intuition and are used as such by all mathematicians. Who does not always use along 
with the double inequality a > b > c the picture of three points following one another on 
a straight line as the geometrical picture of the idea "between"? Who does not make use 
of drawings of segments and rectangles enclosed in one another, when it is required to 
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prove with perfect rigor a difficult theorem on the continuity of functions or the 
existence of points of condensation? Who could dispense with the figure of the triangle, 
the circle with its center, or with the cross of three perpendicular axes? Or who would 
give up the representation of the vector field, or the picture of a family of curves or 
surfaces with its envelope which plays so important a part in differential geometry, in 
the theory of differential equations, in the foundation of the calculus of variations and in 
other purely mathematical sciences?  

The arithmetical symbols are written diagrams and the geometrical figures are 
graphic formulas; and no mathematician could spare these graphic formulas, any more 
than in calculation the insertion and removal of parentheses or the use of other 
analytical signs.  

The use of geometrical signs as a means of strict proof presupposes the exact 
knowledge and complete mastery of the axioms which underlie those figures; and in 
order that these geometrical figures may be incorporated in the general treasure of 
mathematical signs, there is necessary a rigorous axiomatic investigation of their 
conceptual content. Just as in adding two numbers, one must place the digits under each 
other in the right order, so that only the rules of calculation, i. e., the axioms of 
arithmetic, determine the correct use of the digits, so the use of geometrical signs is 
determined by the axioms of geometrical concepts and their combinations.  

The agreement between geometrical and arithmetical thought is shown also in 
that we do not habitually follow the chain of reasoning back to the axioms in 
arithmetical, any more than in geometrical discussions. On the contrary we apply, 
especially in first attacking a problem, a rapid, unconscious, not absolutely sure 
combination, trusting to a certain arithmetical feeling for the behavior of the 
arithmetical symbols, which we could dispense with as little in arithmetic as with the 
geometrical imagination in geometry. As an example of an arithmetical theory operating 
rigorously with geometrical ideas and signs, I may mention Minkowski's work, Die 
Geometrie der Zahlen.2  

Some remarks upon the difficulties which mathematical problems may offer, and 
the means of surmounting them, may be in place here.  

If we do not succeed in solving a mathematical problem, the reason frequently 
consists in our failure to recognize the more general standpoint from which the problem 
before us appears only as a single link in a chain of related problems. After finding this 
standpoint, not only is this problem frequently more accessible to our investigation, but 
at the same time we come into possession of a method which is applicable also to 
related problems. The introduction of complex paths of integration by Cauchy and of 
the notion of the IDEALS in number theory by Kummer may serve as examples. This 
way for finding general methods is certainly the most practicable and the most certain; 
for he who seeks for methods without having a definite problem in mind seeks for the 
most part in vain.  

In dealing with mathematical problems, specialization plays, as I believe, a still 
more important part than generalization. Perhaps in most cases where we seek in vain 
the answer to a question, the cause of the failure lies in the fact that problems simpler 
and easier than the one in hand have been either not at all or incompletely solved. All 
depends, then, on finding out these easier problems, and on solving them by means of 
devices as perfect as possible and of concepts capable of generalization. This rule is one 
of the most important levers for overcoming mathematical difficulties and it seems to 
me that it is used almost always, though perhaps unconsciously.  

Occasionally it happens that we seek the solution under insufficient hypotheses 
or in an incorrect sense, and for this reason do not succeed. The problem then arises: to 
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show the impossibility of the solution under the given hypotheses, or in the sense 
contemplated. Such proofs of impossibility were effected by the ancients, for instance 
when they showed that the ratio of the hypotenuse to the side of an isosceles right 
triangle is irrational. In later mathematics, the question as to the impossibility of certain 
solutions plays a preeminent part, and we perceive in this way that old and difficult 
problems, such as the proof of the axiom of parallels, the squaring of the circle, or the 
solution of equations of the fifth degree by radicals have finally found fully satisfactory 
and rigorous solutions, although in another sense than that originally intended. It is 
probably this important fact along with other philosophical reasons that gives rise to the 
conviction (which every mathematician shares, but which no one has as yet supported 
by a proof) that every definite mathematical problem must necessarily be susceptible of 
an exact settlement, either in the form of an actual answer to the question asked, or by 
the proof of the impossibility of its solution and therewith the necessary failure of all 
attempts. Take any definite unsolved problem, such as the question as to the irrationality 
of the Euler-Mascheroni constant C, or the existence of an infinite number of prime 
numbers of the form 2n + 1. However unapproachable these problems may seem to us 
and however helpless we stand before them, we have, nevertheless, the firm conviction 
that their solution must follow by a finite number of purely logical processes.  

Is this axiom of the solvability of every problem a peculiarity characteristic of 
mathematical thought alone, or is it possibly a general law inherent in the nature of the 
mind, that all questions which it asks must be answerable? For in other sciences also 
one meets old problems which have been settled in a manner most satisfactory and most 
useful to science by the proof of their impossibility. I instance the problem of perpetual 
motion. After seeking in vain for the construction of a perpetual motion machine, the 
relations were investigated which must subsist between the forces of nature if such a 
machine is to be impossible;3 and this inverted question led to the discovery of the law 
of the conservation of energy, which, again, explained the impossibility of perpetual 
motion in the sense originally intended.  

This conviction of the solvability of every mathematical problem is a powerful 
incentive to the worker. We hear within us the perpetual call: There is the problem. 
Seek its solution. You can find it by pure reason, for in mathematics there is no 
ignorabimus.  

The supply of problems in mathematics is inexhaustible, and as soon as one 
problem is solved numerous others come forth in its place. Permit me in the following, 
tentatively as it were, to mention particular definite problems, drawn from various 
branches of mathematics, from the discussion of which an advancement of science may 
be expected.  

Let us look at the principles of analysis and geometry. The most suggestive and 
notable achievements of the last century in this field are, as it seems to me, the 
arithmetical formulation of the concept of the continuum in the works of Cauchy, 
Bolzano and Cantor, and the discovery of non-euclidean geometry by Gauss, Bolyai, 
and Lobachevsky. I therefore first direct your attention to some problems belonging to 
these fields.  

1. Cantor's problem of the cardinal number of the continuum 

Two systems, i. e, two assemblages of ordinary real numbers or points, are said to be 
(according to Cantor) equivalent or of equal cardinal number, if they can be brought 
into a relation to one another such that to every number of the one assemblage 
corresponds one and only one definite number of the other. The investigations of Cantor 
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on such assemblages of points suggest a very plausible theorem, which nevertheless, in 
spite of the most strenuous efforts, no one has succeeded in proving. This is the 
theorem:  

Every system of infinitely many real numbers, i. e., every assemblage of numbers 
(or points), is either equivalent to the assemblage of natural integers, 1, 2, 3,... or to the 
assemblage of all real numbers and therefore to the continuum, that is, to the points of a 
line; as regards equivalence there are, therefore, only two assemblages of numbers, the 
countable assemblage and the continuum.  

From this theorem it would follow at once that the continuum has the next 
cardinal number beyond that of the countable assemblage; the proof of this theorem 
would, therefore, form a new bridge between the countable assemblage and the 
continuum.  

Let me mention another very remarkable statement of Cantor's which stands in 
the closest connection with the theorem mentioned and which, perhaps, offers the key to 
its proof. Any system of real numbers is said to be ordered, if for every two numbers of 
the system it is determined which one is the earlier and which the later, and if at the 
same time this determination is of such a kind that, if a is before b and b is before c, 
then a always comes before c. The natural arrangement of numbers of a system is 
defined to be that in which the smaller precedes the larger. But there are, as is easily 
seen infinitely many other ways in which the numbers of a system may be arranged.  

If we think of a definite arrangement of numbers and select from them a 
particular system of these numbers, a so-called partial system or assemblage, this partial 
system will also prove to be ordered. Now Cantor considers a particular kind of ordered 
assemblage which he designates as a well ordered assemblage and which is 
characterized in this way, that not only in the assemblage itself but also in every partial 
assemblage there exists a first number. The system of integers 1, 2, 3, ... in their natural 
order is evidently a well ordered assemblage. On the other hand the system of all real 
numbers, i. e., the continuum in its natural order, is evidently not well ordered. For, if 
we think of the points of a segment of a straight line, with its initial point excluded, as 
our partial assemblage, it will have no first element.  

The question now arises whether the totality of all numbers may not be arranged 
in another manner so that every partial assemblage may have a first element, i. e., 
whether the continuum cannot be considered as a well ordered assemblage—a question 
which Cantor thinks must be answered in the affirmative. It appears to me most 
desirable to obtain a direct proof of this remarkable statement of Cantor's, perhaps by 
actually giving an arrangement of numbers such that in every partial system a first 
number can be pointed out. 

2. The compatibility of the arithmetical axioms 

When we are engaged in investigating the foundations of a science, we must set up a 
system of axioms which contains an exact and complete description of the relations 
subsisting between the elementary ideas of that science. The axioms so set up are at the 
same time the definitions of those elementary ideas; and no statement within the realm 
of the science whose foundation we are testing is held to be correct unless it can be 
derived from those axioms by means of a finite number of logical steps. Upon closer 
consideration the question arises: Whether, in any way, certain statements of single 
axioms depend upon one another, and whether the axioms may not therefore contain 
certain parts in common, which must be isolated if one wishes to arrive at a system of 
axioms that shall be altogether independent of one another.  
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But above all I wish to designate the following as the most important among the 
numerous questions which can be asked with regard to the axioms: To prove that they 
are not contradictory, that is, that a definite number of logical steps based upon them 
can never lead to contradictory results.  

In geometry, the proof of the compatibility of the axioms can be effected by 
constructing a suitable field of numbers, such that analogous relations between the 
numbers of this field correspond to the geometrical axioms. Any contradiction in the 
deductions from the geometrical axioms must thereupon be recognizable in the 
arithmetic of this field of numbers. In this way the desired proof for the compatibility of 
the geometrical axioms is made to depend upon the theorem of the compatibility of the 
arithmetical axioms.  

On the other hand a direct method is needed for the proof of the compatibility of 
the arithmetical axioms. The axioms of arithmetic are essentially nothing else than the 
known rules of calculation, with the addition of the axiom of continuity. I recently 
collected them4 and in so doing replaced the axiom of continuity by two simpler 
axioms, namely, the well-known axiom of Archimedes, and a new axiom essentially as 
follows: that numbers form a system of things which is capable of no further extension, 
as long as all the other axioms hold (axiom of completeness). I am convinced that it 
must be possible to find a direct proof for the compatibility of the arithmetical axioms, 
by means of a careful study and suitable modification of the known methods of 
reasoning in the theory of irrational numbers.  

To show the significance of the problem from another point of view, I add the 
following observation: If contradictory attributes be assigned to a concept, I say, that 
mathematically the concept does not exist. So, for example, a real number whose square 
is -l does not exist mathematically. But if it can be proved that the attributes assigned to 
the concept can never lead to a contradiction by the application of a finite number of 
logical processes, I say that the mathematical existence of the concept (for example, of a 
number or a function which satisfies certain conditions) is thereby proved. In the case 
before us, where we are concerned with the axioms of real numbers in arithmetic, the 
proof of the compatibility of the axioms is at the same time the proof of the 
mathematical existence of the complete system of real numbers or of the continuum. 
Indeed, when the proof for the compatibility of the axioms shall be fully accomplished, 
the doubts which have been expressed occasionally as to the existence of the complete 
system of real numbers will become totally groundless. The totality of real numbers, i. 
e., the continuum according to the point of view just indicated, is not the totality of all 
possible series in decimal fractions, or of all possible laws according to which the 
elements of a fundamental sequence may proceed. It is rather a system of things whose 
mutual relations are governed by the axioms set up and for which all propositions, and 
only those, are true which can be derived from the axioms by a finite number of logical 
processes. In my opinion, the concept of the continuum is strictly logically tenable in 
this sense only. It seems to me, indeed, that this corresponds best also to what 
experience and intuition tell us. The concept of the continuum or even that of the system 
of all functions exists, then, in exactly the same sense as the system of integral, rational 
numbers, for example, or as Cantor's higher classes of numbers and cardinal numbers. 
For I am convinced that the existence of the latter, just as that of the continuum, can be 
proved in the sense I have described; unlike the system of all cardinal numbers or of all 
Cantor s alephs, for which, as may be shown, a system of axioms, compatible in my 
sense, cannot be set up. Either of these systems is, therefore, according to my 
terminology, mathematically non-existent.  
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From the field of the foundations of geometry I should like to mention the 
following problem: 

3. The equality of two volumes of two tetrahedra of equal bases and equal altitudes 

In two letters to Gerling, Gauss5 expresses his regret that certain theorems of solid 
geometry depend upon the method of exhaustion, i. e., in modern phraseology, upon the 
axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular 
the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as 
their bases. Now the analogous problem in the plane has been solved.6 Gerling also 
succeeded in proving the equality of volume of symmetrical polyhedra by dividing them 
into congruent parts. Nevertheless, it seems to me probable that a general proof of this 
kind for the theorem of Euclid just mentioned is impossible, and it should be our task to 
give a rigorous proof of its impossibility. This would be obtained, as soon as we 
succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in 
no way be split up into congruent tetrahedra, and which cannot be combined with 
congruent tetrahedra to form two polyhedra which themselves could be split up into 
congruent tetrahedra.7 

4. Problem of the straight line as the shortest distance between two points 

Another problem relating to the foundations of geometry is this: If from among the 
axioms necessary to establish ordinary euclidean geometry, we exclude the axiom of 
parallels, or assume it as not satisfied, but retain all other axioms, we obtain, as is well 
known, the geometry of Lobachevsky (hyperbolic geometry). We may therefore say that 
this is a geometry standing next to euclidean geometry. If we require further that that 
axiom be not satisfied whereby, of three points of a straight line, one and only one lies 
between the other two, we obtain Riemann's (elliptic) geometry, so that this geometry 
appears to be the next after Lobachevsky's. If we wish to carry out a similar 
investigation with respect to the axiom of Archimedes, we must look upon this as not 
satisfied, and we arrive thereby at the non-archimedean geometries which have been 
investigated by Veronese and myself. The more general question now arises: Whether 
from other suggestive standpoints geometries may not be devised which, with equal 
right, stand next to euclidean geometry. Here I should like to direct your attention to a 
theorem which has, indeed, been employed by many authors as a definition of a straight 
line, viz., that the straight line is the shortest distance between two points. The essential 
content of this statement reduces to the theorem of Euclid that in a triangle the sum of 
two sides is always greater than the third side—a theorem which, as is easily seen, deals 
sole]y with elementary concepts, i. e., with such as are derived directly from the axioms, 
and is therefore more accessible to logical investigation. Euclid proved this theorem, 
with the help of the theorem of the exterior angle, on the basis of the congruence 
theorems. Now it is readily shown that this theorem of Euclid cannot be proved solely 
on the basis of those congruence theorems which relate to the application of segments 
and angles, but that one of the theorems on the congruence of triangles is necessary. We 
are asking, then, for a geometry in which all the axioms of ordinary euclidean geometry 
hold, and in particular all the congruence axioms except the one of the congruence of 
triangles (or all except the theorem of the equality of the base angles in the isosceles 
triangle), and in which, besides, the proposition that in every triangle the sum of two 
sides is greater than the third is assumed as a particular axiom.  
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One finds that such a geometry really exists and is no other than that which 
Minkowski constructed in his book, Geometrie der Zahlen,8 and made the basis of his 
arithmetical investigations. Minkowski's is therefore also a geometry standing next to 
the ordinary euclidean geometry; it is essentially characterized by the following 
stipulations:  
1. The points which are at equal distances from a fixed point O lie on a convex closed 
surface of the ordinary euclidean space with O as a center.  
2. Two segments are said to be equal when one can be carried into the other by a 
translation of the ordinary euclidean space.  

In Minkowski's geometry the axiom of parallels also holds. By studying the 
theorem of the straight line as the shortest distance between two points, I arrived9 at a 
geometry in which the parallel axiom does not hold, while all other axioms of 
Minkowski's geometry are satisfied. The theorem of the straight line as the shortest 
distance between two points and the essentially equivalent theorem of Euclid about the 
sides of a triangle, play an important part not only in number theory but also in the 
theory of surfaces and in the calculus of variations. For this reason, and because I 
believe that the thorough investigation of the conditions for the validity of this theorem 
will throw a new light upon the idea of distance, as well as upon other elementary ideas, 
e. g., upon the idea of the plane, and the possibility of its definition by means of the idea 
of the straight line, the construction and systematic treatment of the geometries here 
possible seem to me desirable. 

5. Lie's concept of a continuous group of transformations without the assumption 
of the differentiability of the functions defining the group 

It is well known that Lie, with the aid of the concept of continuous groups of 
transformations, has set up a system of geometrical axioms and, from the standpoint of 
his theory of groups, has proved that this system of axioms suffices for geometry. But 
since Lie assumes, in the very foundation of his theory, that the functions defining his 
group can be differentiated, it remains undecided in Lie's development, whether the 
assumption of the differentiability in connection with the question as to the axioms of 
geometry is actually unavoidable, or whether it may not appear rather as a consequence 
of the group concept and the other geometrical axioms. This consideration, as well as 
certain other problems in connection with the arithmetical axioms, brings before us the 
more general question: How far Lie's concept of continuous groups of transformations 
is approachable in our investigations without the assumption of the differentiability of 
the functions.  

Lie defines a finite continuous group of transformations as a system of 
transformations 

1 1( ,... ; ,..., ) ( 1,..., )i i n rx f x x a a i n′ = =  
having the property that any two arbitrarily chosen transformations of the system, as 

1 1( ,... ; ,..., )i i n rx f x x a a′ =  

1 1( ,... ; ,..., )i i n rx f x x b b′′ ′ ′=  
applied successively result in a transformation which also belongs to the system, and 
which is therefore expressible in the form   

{ }1 1 1( , ),..., ( , ) ; ,..., ( ,..., ; ,..., )i i n r i n 1 rx f f x a f x a b b f x x c c′′ = =  
where  are certain functions of   and  .  1, ... , rc c a1, ... , ra 1, ... , rb b
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The group property thus finds its full expression in a system of functional equations and 
of itself imposes no additional restrictions upon the functions 1 1, ... , ; , ... , .n rf f c c  Yet 
Lie's further treatment of these functional equations, viz., the derivation of the well-
known fundamental differential equations, assumes necessarily the continuity and 
differentiability of the functions defining the group.  

As regards continuity: this postulate will certainly be retained for the present—if 
only with a view to the geometrical and arithmetical applications, in which the 
continuity of the functions in question appears as a consequence of the axiom of 
continuity. On the other hand the differentiability of the functions defining the group 
contains a postulate which, in the geometrical axioms, can be expressed only in a rather 
forced and complicated manner. Hence there arises the question whether, through the 
introduction of suitable new variables and parameters, the group can always be 
transformed into one whose defining functions are differentiable; or whether, at least 
with the help of certain simple assumptions, a transformation is possible into groups 
admitting Lie's methods. A reduction to analytic groups is, according to a theorem 
announced by Lie10 but first proved by Schur,11 always possible when the group is 
transitive and the existence of the first and certain second derivatives of the functions 
defining the group is assumed.  

For infinite groups the investigation of the corresponding question is, I believe, 
also of interest. Moreover we are thus led to the wide and interesting field of functional 
equations which have been heretofore investigated usually only under the assumption of 
the differentiability of the functions involved. In particular the functional equations 
treated by Abel12 with so much ingenuity, the difference equations, and other equations 
occurring in the literature of mathematics, do not directly involve anything which 
necessitates the requirement of the differentiability of the accompanying functions. In 
the search for certain existence proofs in the calculus of variations I came directly upon 
the problem: To prove the differentiability of the function under consideration from the 
existence of a difference equation. In all these cases, then, the problem arises: In how 
far are the assertions which we can make in the case of differentiable functions true 
under proper modifications without this assumption?  

It may be further remarked that H. Minkowski in his above-mentioned Geometrie 
der Zahlen starts with the functional equation 
 

1 1 1 1( ,..., ) ( ,..., ) ( ,..., )n n n nf x y x y f x x f y y+ + ≤ +  
 

and from this actually succeeds in proving the existence of certain differential quotients 
for the function in question.  

On the other hand I wish to emphasize the fact that there certainly exist analytical 
functional equations whose sole solutions are non-differentiable functions. For example 
a uniform continuous non-differentiable function ( )xϕ can be constructed which 
represents the only solution of the two functional equations 

( ) ( ) ( )
( ) ( ) 0
x x f x
x x

ϕ α ϕ
ϕ β ϕ

+ − =
+ − =

 

where α  and  β  are two real numbers, and ( )f x  denotes, for all the real values of x , a 
regular analytic uniform function. Such functions are obtained in the simplest manner 
by means of trigonometrical series by a process similar to that used by Borel (according 
to a recent announcement of Picard)13 for the construction of a doubly periodic, non-
analytic solution of a certain analytic partial differential equation. 
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6. Mathematical treatment of the axioms of physics 

The investigations on the foundations of geometry suggest the problem: To treat in the 
same manner, by means of axioms, those physical sciences in which mathematics plays 
an important part; in the first rank are the theory of probabilities and mechanics.  

As to the axioms of the theory of probabilities,14 it seems to me desirable that 
their logical investigation should be accompanied by a rigorous and satisfactory 
development of the method of mean values in mathematical physics, and in particular in 
the kinetic theory of gases.  

Important investigations by physicists on the foundations of mechanics are at 
hand; I refer to the writings of Mach,15 Hertz,16 Boltzmann17 and Volkmann. 18 It is 
therefore very desirable that the discussion of the foundations of mechanics be taken up 
by mathematicians also. Thus Boltzmann's work on the principles of mechanics 
suggests the problem of developing mathematically the limiting processes, there merely 
indicated, which lead from the atomistic view to the laws of motion of continua. 
Conversely one might try to derive the laws of the motion of rigid bodies by a limiting 
process from a system of axioms depending upon the idea of continuously varying 
conditions of a material filling all space continuously, these conditions being defined by 
parameters. For the question as to the equivalence of different systems of axioms is 
always of great theoretical interest.  

If geometry is to serve as a model for the treatment of physical axioms, we shall 
try first by a small number of axioms to include as large a class as possible of physical 
phenomena, and then by adjoining new axioms to arrive gradually at the more special 
theories. At the same time Lie's a principle of subdivision can perhaps be derived from 
profound theory of infinite transformation groups. The mathematician will have also to 
take account not only of those theories coming near to reality, but also, as in geometry, 
of all logically possible theories. He must be always alert to obtain a complete survey of 
all conclusions derivable from the system of axioms assumed.  

Further, the mathematician has the duty to test exactly in each instance whether 
the new axioms are compatible with the previous ones. The physicist, as his theories 
develop, often finds himself forced by the results of his experiments to make new 
hypotheses, while he depends, with respect to the compatibility of the new hypotheses 
with the old axioms, solely upon these experiments or upon a certain physical intuition, 
a practice which in the rigorously logical building up of a theory is not admissible. The 
desired proof of the compatibility of all assumptions seems to me also of importance, 
because the effort to obtain such proof always forces us most effectually to an exact 
formulation of the axioms. 

 
 
So far we have considered only questions concerning the foundations of the 
mathematical sciences. Indeed, the study of the foundations of a science is always 
particularly attractive, and the testing of these foundations will always be among the 
foremost problems of the investigator. Weierstrass once said, "The final object always 
to be kept in mind is to arrive at a correct understanding of the foundations of the 
science. ... But to make any progress in the sciences the study of particular problems is, 
of course, indispensable." In fact, a thorough understanding of its special theories is 
necessary to the successful treatment of the foundations of the science. Only that 
architect is in the position to lay a sure foundation for a structure who knows its purpose 
thoroughly and in detail. So we turn now to the special problems of the separate 
branches of mathematics and consider first arithmetic and algebra. 
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7. Irrationality and transcendence of certain numbers 

Hermite's arithmetical theorems on the exponential function and their extension by 
Lindemann are certain of the admiration of all generations of mathematicians. Thus the 
task at once presents itself to penetrate further along the path here entered, as A. 
Hurwitz has already done in two interesting papers,19 "Ueber arithmetische 
Eigenschaften gewisser transzendenter Funktionen." I should like, therefore, to sketch a 
class of problems which, in my opinion, should be attacked as here next in order. That 
certain special transcendental functions, important in analysis, take algebraic values for 
certain algebraic arguments, seems to us particularly remarkable and worthy of 
thorough investigation. Indeed, we expect transcendental functions to assume, in 
general, transcendental values for even algebraic arguments; and, although it is well 
known that there exist integral transcendental functions which even have rational values 
for all algebraic arguments, we shall still con sider it highly probable that the 
exponential function e i zπ , for example, which evidently has algebraic values for all 
rational arguments z, will on the other hand always take transcendental values for 
irrational algebraic values of the argument z. We can also give this statement a 
geometrical form, as follows:  

If, in an isosceles triangle, the ratio of the base angle to the angle at the vertex 
be algebraic but not rational, the ratio between base and side is always transcendental.  

In spite of the simplicity of this statement and of its similarity to the problems 
solved by Hermite and Lindemann, I consider the proof of this theorem very difficult; as 
also the proof that  

The expression βα for an algebraic base α  and an irrational algebraic 

exponent β , e.g., the number 22  or 2 ie iπ −= , always represents a transcendental or 
at least an irrational number.  

It is certain that the solution of these and similar problems must lead us to 
entirely new methods and to a new insight into the nature of special irrational and 
transcendental numbers. 

8. Problems of prime numbers 

Essential progress in the theory of the distribution of prime numbers has lately been 
made by Hadamard, de la Vallée-Poussin, Von Mangoldt and others. For the complete 
solution, however, of the problems set us by Riemann's paper "Ueber die Anzahl der 
Primzahlen unter einer gegebenen Grösse," it still remains to prove the correctness of an 
exceedingly important statement of Riemann, viz., that the zero points of the function  

( )sζ  defined by the series 
 

1 1 1( ) 1 ...
2 3 4

sζ = + + + +s s s  

 
all have the real part 1/2, except the well-known negative integral real zeros. As soon 
as this proof has been successfully established, the next problem would consist in 
testing more exactly Riemann's infinite series for the number of primes below a given 
number and, especially, to decide whether the difference between the number of primes 
below a number x and the integral logarithm of x does in fact become infinite of an 
order not greater than 1/2 in x.20 Further, we should determine whether the occasional 
condensation of prime numbers which has been noticed in counting primes is really due 
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to those terms of Riemann's formula which depend upon the first complex zeros of the 
function (s).  

After an exhaustive discussion of Riemann's prime number formula, perhaps we 
may sometime be in a position to attempt the rigorous solution of Goldbach's problem,21 
viz., whether every integer is expressible as the sum of two positive prime numbers; and 
further to attack the well-known question, whether there are an infinite number of pairs 
of prime numbers with the difference 2, or even the more general problem, whether the 
linear diophantine equation 

0ax by c+ + =  
 (with given integral coefficients each prime to the others) is always solvable in prime 
numbers x and y.  

But the following problem seems to me of no less interest and perhaps of still 
wider range: To apply the results obtained for the distribution of rational prime 
numbers to the theory of the distribution of ideal primes in a given number-field k—a 
problem which looks toward the study of the function ( )k sζ  belonging to the field and 
defined by the series 

1( )
( )k ss

n j
ζ =∑  

where the sum extends over all ideals j of the given realm k, and   denotes the norm 
of the ideal  j .  

( )jn

I may mention three more special problems in number theory: one on the laws of 
reciprocity, one on diophantine equations, and a third from the realm of quadratic forms.  

9. Proof of the most general law of reciprocity in any number field 

For any field of numbers the law of reciprocity is to be proved for the residues of the  
  power, when l denotes an odd prime, and further when l  is a power of 2 or a 

power of an odd prime.  
l th−

The law, as well as the means essential to its proof, will, I believe, result by 
suitably generalizing the theory of the field of the l th−  roots of unity,22 developed by 
me, and my theory of relative quadratic fields.23 

10. Determination of the solvability of a diophantine equation 

Given a diophantine equation with any number of unknown quantities and with rational 
integral numerical coefficients: to devise a process according to which it can be 
determined by a finite number of operations whether the equation is solvable in rational 
integers. 

11. Quadratic forms with any algebraic numerical coefficients 

Our present knowledge of the theory of quadratic number fields24 puts us in a position 
to attack successfully the theory of quadratic forms with any number of variables and 
with any algebraic numerical coefficients. This leads in particular to the interesting 
problem: to solve a given quadratic equation with algebraic numerical coefficients in 
any number of variables by integral or fractional numbers belonging to the algebraic 
realm of rationality determined by the coefficients.  

The following important problem may form a transition to algebra and the theory 
of functions: 
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12. Extension of Kroneker's theorem on abelian fields to any algebraic realm of 
rationality 

The theorem that every abelian number field arises from the realm of rational numbers 
by the composition of fields of roots of unity is due to Kronecker. This fundamental 
theorem in the theory of integral equations contains two statements, namely:  

First. It answers the question as to the number and existence of those equations 
which have a given degree, a given abelian group and a given discriminant with respect 
to the realm of rational numbers.  

Second. It states that the roots of such equations form a realm of algebraic 
numbers which coincides with the realm obtained by assigning to the argument z  in the 
exponential function e i zπ  all rational numerical values in succession.  

The first statement is concerned with the question of the determination of certain 
algebraic numbers by their groups and their branching. This question corresponds, 
therefore, to the known problem of the determination of algebraic functions 
corresponding to given Riemann surfaces. The second statement furnishes the required 
numbers by transcendental means, namely, by the exponential function i ze π .  

Since the realm of the imaginary quadratic number fields is the simplest after the 
realm of rational numbers, the problem arises, to extend Kronecker's theorem to this 
case. Kronecker himself has made the assertion that the abelian equations in the realm 
of a quadratic field are given by the equations of transformation of elliptic functions 
with singular moduli, so that the elliptic function assumes here the same role as the 
exponential function in the former case. The proof of Kronecker's conjecture has not yet 
been furnished; but I believe that it must be obtainable without very great difficulty on 
the basis of the theory of complex multiplication developed by H. Weber25 with the help 
of the purely arithmetical theorems on class fields which I have established.  

Finally, the extension of Kronecker's theorem to the case that, in place of the 
realm of rational numbers or of the imaginary quadratic field, any algebraic field 
whatever is laid down as realm of rationality, seems to me of the greatest importance. I 
regard this problem as one of the most profound and far reaching in the theory of 
numbers and of functions.  

The problem is found to be accessible from many standpoints. I regard as the 
most important key to the arithmetical part of this problem the general law of 
reciprocity for residues of I-th powers within any given number field.  

As to the function-theoretical part of the problem, the investigator in this 
attractive region will be guided by the remarkable analogies which are noticeable 
between the theory of algebraic functions of one variable and the theory of algebraic 
numbers. Hensel26 has proposed and investigated the analogue in the theory of algebraic 
numbers to the development in power series of an algebraic function; and Landsberg27 
has treated the analogue of the Riemann-Roch theorem. The analogy between the 
deficiency of a Riemann surface and that of the class number of a field of numbers is 
also evident. Consider a Riemann surface of deficiency p = 1 (to touch on the simplest 
case only) and on the other hand a number field of class h = 2. To the proof of the 
existence of an integral everywhere finite on the Riemann surface, corresponds the 
proof of the existence of an integer a  in the number field such that the number  a  
represents a quadratic field, relatively unbranched with respect to the fundamental field. 
In the theory of algebraic functions, the method of boundary values 
(Randwerthaufgabe) serves, as is well known, for the proof of Riemann's existence 
theorem. In the theory of number fields also, the proof of the existence of just this 
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number a offers the greatest difficulty. This proof succeeds with indispensable 
assistance from the theorem that in the number field there are always prime ideals 
corresponding to given residual properties. This latter fact is therefore the analogue in 
number theory to the problem of boundary values.  

The equation of Abel's theorem in the theory of algebraic functions expresses, as 
is well known, the necessary and sufficient condition that the points in question on the 
Riemann surface are the zero points of an algebraic function belonging to the surface. 
The exact analogue of Abel's theorem, in the theory of the number field of class h = 2, is 
the equation of the law of quadratic reciprocity28 

( ) 1= +a
j  

which declares that the ideal j is then and only then a principal ideal of the number field 
when the quadratic residue of the number a with respect to the ideal j is positive.  

It will be seen that in the problem just sketched the three fundamental branches 
of mathematics, number theory, algebra and function theory, come into closest touch 
with one another, and I am certain that the theory of analytical functions of several 
variables in particular would be notably enriched if one should succeed in finding and 
discussing those functions which play the part for any algebraic number field 
corresponding to that of the exponential function in the field of rational numbers and of 
the elliptic modular functions in the imaginary quadratic number field.  

Passing to algebra, I shall mention a problem from the theory of equations and 
one to which the theory of algebraic invariants has led me. 

13. Impossibility of the solution of the general equation of the 7-th degree by means 
of functions of only two arguments 

Nomography29 deals with the problem: to solve equations by means of drawings of 
families of curves depending on an arbitrary parameter. It is seen at once that every root 
of an equation whose coefficients depend upon only two parameters, that is, every 
function of two independent variables, can be represented in manifold ways according 
to the principle lying at the foundation of nomography. Further, a large class of 
functions of three or more variables can evidently be represented by this principle alone 
without the use of variable elements, namely all those which can be generated by 
forming first a function of two arguments, then equating each of these arguments to a 
function of two arguments, next replacing each of those arguments in their turn by a 
function of two arguments, and so on, regarding as admissible any finite number of 
insertions of functions of two arguments. So, for example, every rational function of 
any number of arguments belongs to this class of functions constructed by nomographic 
tables; for it can be generated by the processes of addition, subtraction, multiplication 
and division and each of these processes produces a function of only two arguments. 
One sees easily that the roots of all equations which are solvable by radicals in the 
natural realm of rationality belong to this class of functions; for here the extraction of 
roots is adjoined to the four arithmetical operations and this, indeed, presents a function 
of one argument only. Likewise the general equations of the 5-th and 6-th degrees are 
solvable by suitable nomographic tables; for, by means of Tschirnhausen 
transformations, which require only extraction of roots, they can be reduced to a form 
where the coefficients depend upon two parameters only.  

Now it is probable that the root of the equation of the seventh degree is a 
function of its coefficients which does not belong to this class of functions capable of 
nomographic construction, i. e., that it cannot be constructed by a finite number of 
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insertions of functions of two arguments. In order to prove this, the proof would be 
necessary that the equation of the seventh degree 

 
 

 

7 3 2 1 0f x f y f z f+ + + + =

is not solvable with the help of any continuous functions of only two arguments. I may 
be allowed to add that I have satisfied myself by a rigorous process that there exist 
analytical functions of three arguments x, y, z which cannot be obtained by a finite chain 
of functions of only two arguments.  

By employing auxiliary movable elements, nomography succeeds in constructing 
functions of more than two arguments, as d'Ocagne has recently proved in the case of 
the equation of the 7-th degree.30 

14. Proof of the finiteness of certain complete systems of functions 

In the theory of algebraic invariants, questions as to the finiteness of complete systems 
of forms deserve, as it seems to me, particular interest. L. Maurer31 has lately succeeded 
in extending the theorems on finiteness in invariant theory proved by P. Gordan and 
myself, to the case where, instead of the general projective group, any subgroup is 
chosen as the basis for the definition of invariants.  

An important step in this direction had been taken al ready by A. Hurwitz,32 who, 
by an ingenious process, succeeded in effecting the proof, in its entire generality, of the 
finiteness of the system of orthogonal invariants of an arbitrary ground form.  

The study of the question as to the finiteness of invariants has led me to a simple 
problem which includes that question as a particular case and whose solution probably 
requires a decidedly more minutely detailed study of the theory of elimination and of 
Kronecker's algebraic modular systems than has yet been made.  

Let a number m of integral rational functions 1 2, , ... , mX X X  of the n variables 

1 2, , ... , nx x x   be given, 

1 1 1

2 2 1

1

( , ... , )
( , ... , )( ) .......
( , ... , )

n

n

m m n

X
X

X

f x x
f x xS

f x x

=
=

=

 

 
Every rational integral combination of 1, ... , mX X  must evidently always become, after 

substitution of the above expressions, a rational integral function of 1 , ... , nx x

m

. 
Nevertheless, there may well be rational fractional functions of 1, ... ,X X

1 , ... , n

 which, by 

the operation of the substitution S, become integral functions in x x .  
Every such rational function of 1, ... , mX X , which becomes integral in 1 ,..., nx x  after 
the application of the substitution S, I propose to call a relatively integral function of 

1, ... , mX X . Every integral function of 1, ... , mX X  is evidently also relatively integral; 
further the sum, difference and product of relative integral functions are themselves 
relatively integral.  
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The resulting problem is now to decide whether it is always possible to find a 
finite system of relatively integral function 1, ... , mX X  by which every other relatively 

integral function of 1, ... , mX X  may be expressed rationally and integrally.  
We can formulate the problem still more simply if we introduce the idea of a 

finite field of integrality. By a finite field of integrality I mean a system of functions 
from which a finite number of functions can be chosen, in terms of which all other 
functions of the system are rationally and integrally expressible. Our problem amounts, 
then, to this: to show that all relatively integral functions of any given domain of 
rationality always constitute a finite field of integrality.  

It naturally occurs to us also to refine the problem by restrictions drawn from 
number theory, by assuming the coefficients of the given functions 1, ... , mf f

, m

 to be 
integers and including among the relatively integral functions of 1, ...X X  only such 
rational functions of these arguments as become, by the application of the substitutions 
S, rational integral functions of  n1x , ... ,x   with rational integral coefficients.  

The following is a simple particular case of this refined problem: Let m integral 
rational functions 1, ... , mX X  of one variable x with integral rational coefficients, and a 
prime number p be given. Consider the system of those integral rational functions of x 
which can be expressed in the form 

1( , ... , ) ,h
mG X X

p
 

where G is a rational integral function of the arguments 1, ... , mX X  and hp  is any 
power of the prime number p. Earlier investigations of mine33 show immediately that all 
such expressions for a fixed exponent h form a finite domain of integrality. But the 
question here is whether the same is true for all exponents h, i. e., whether a finite 
number of such expressions can be chosen by means of which for every exponent h 
every other expression of that form is integrally and rationally expressible.  

From the boundary region between algebra and geometry, I will mention two 
problems. The one concerns enumerative geometry and the other the topology of 
algebraic curves and surfaces. 

15. Rigorous foundation of Schubert's enumerative calculus 

The problem consists in this: To establish rigorously and with an exact determination of 
the limits of their validity those geometrical numbers which Schubert34 especially has 
determined on the basis of the so-called principle of special position, or conservation of 
number, by means of the enumerative calculus developed by him.  

Although the algebra of today guarantees, in principle, the possibility of carrying 
out the processes of elimination, yet for the proof of the theorems of enumerative 
geometry decidedly more is requisite, namely, the actual carrying out of the process of 
elimination in the case of equations of special form in such a way that the degree of the 
final equations and the multiplicity of their solutions may be foreseen. 

16. Problem of the topology of algebraic curves and surfaces 

The maximum number of closed and separate branches which a plane algebraic curve of 
the n-th order can have has been determined by Harnack.35 There arises the further 
question as to the relative position of the branches in the plane. As to curves of the 6-th 
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order, I have satisfied myself—by a complicated process, it is true—that of the eleven 
branches which they can have according to Harnack, by no means all can lie external to 
one another, but that one branch must exist in whose interior one branch and in whose 
exterior nine branches lie, or inversely. A thorough investigation of the relative position 
of the separate branches when their number is the maximum seems to me to be of very 
great interest, and not less so the corresponding investigation as to the number, form, 
and position of the sheets of an algebraic surface in space. Till now, indeed, it is not 
even known what is the maxi mum number of sheets which a surface of the 4-th order in 
three dimensional space can really have.36  

In connection with this purely algebraic problem, I wish to bring forward a 
question which, it seems to me, may be attacked by the same method of continuous 
variation of coefficients, and whose answer is of corresponding value for the topology 
of families of curves defined by differential equations. This is the question as to the 
maximum number and position of Poincaré's boundary cycles (cycles limites) for a 
differential equation of the first order and degree of the form 

 
dy
dx

=
Y
X

, 

where X and Y are rational integral functions of the n-th degree in x and y. Written 
homogeneously, this is  

 

0dz dy dx dz dz dxX y z Y z x Z x z
dt dt dt dt dt dt

     − + − + − =     
     

 

 
where X, Y, and Z are rational integral homogeneous functions of the n-th degree in x, 
y, z, and the latter are to be determined as functions of the parameter t.  

17. Expression of definite forms by squares 

A rational integral function or form in any number of variables with real coefficient 
such that it becomes negative for no real values of these variables, is said to be definite. 
The system of all definite forms is invariant with respect to the operations of addition 
and multiplication, but the quotient of two definite forms—in case it should be an 
integral function of the variables—is also a definite form. The square of any form is 
evidently always a definite form. But since, as I have shown,37 not every definite form 
can be compounded by addition from squares of forms, the question arises—which I 
have answered affirmatively for ternary forms38—whether every definite form may not 
be expressed as a quotient of sums of squares of forms. At the same time it is desirable, 
for certain questions as to the possibility of certain geometrical constructions, to know 
whether the coefficients of the forms to be used in the expression may always be taken 
from the realm of rationality given by the coefficients of the form represented.39  

I mention one more geometrical problem: 

18. Building up of space from congruent polyhedra 

If we enquire for those groups of motions in the plane for which a fundamental region 
exists, we obtain various answers, according as the plane considered is Riemann's 
(elliptic), Euclid's, or Lobachevsky's (hyperbolic). In the case of the elliptic plane there 
is a finite number of essentially different kinds of fundamental regions, and a finite 
number of congruent regions suffices for a complete covering of the whole plane; the 
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group consists indeed of a finite number of motions only. In the case of the hyperbolic 
plane there is an infinite number of essentially different kinds of fundamental regions, 
namely, the well-known Poincaré polygons. For the complete covering of the plane an 
infinite number of congruent regions is necessary. The case of Euclid's plane stands 
between these; for in this case there is only a finite number of essentially different kinds 
of groups of motions with fundamental regions, but for a complete covering of the 
whole plane an infinite number of congruent regions is necessary.  

Exactly the corresponding facts are found in space of three dimensions. The fact 
of the finiteness of the groups of motions in elliptic space is an immediate consequence 
of a fundamental theorem of C. Jordan,40 whereby the number of essentially different 
kinds of finite groups of linear substitutions in n variables does not surpass a certain 
finite limit dependent upon n. The groups of motions with fundamental regions in 
hyperbolic space have been investigated by Fricke and Klein in the lectures on the 
theory of automorphic functions,41 and finally Fedorov,42 Schoenflies43 and lately 
Rohn44 have given the proof that there are, in euclidean space, only a finite number of 
essentially different kinds of groups of motions with a fundamental region. Now, while 
the results and methods of proof applicable to elliptic and hyperbolic space hold directly 
for n-dimensional space also, the generalization of the theorem for euclidean space 
seems to offer decided difficulties. The investigation of the following question is 
therefore desirable: Is there in n-dimensional euclidean space also only a finite number 
of essentially different kinds of groups of motions with a fundamental region?  

A fundamental region of each group of motions, together with the congruent 
regions arising from the group, evidently fills up space completely. The question arises: 
whether polyhedra also exist which do not appear as fundamental regions of groups of 
motions, by means of which nevertheless by a suitable juxtaposition of congruent copies 
a complete filling up of all space is possible. I point out the following question, related 
to the preceding one, and important to number theory and perhaps sometimes useful to 
physics and chemistry: How can one arrange most densely in space an infinite number 
of equal solids of given form, e. g., spheres with given radii or regular tetrahedra with 
given edges (or in prescribed position), that is, how can one so fit them together that the 
ratio of the filled to the unfilled space may be as great as possible? 

 
If we look over the development of the theory of functions in the last century, we notice 
above all the fundamental importance of that class of functions which we now designate 
as analytic functions—a class of functions which will probably stand permanently in the 
center of mathematical interest.  

There are many different standpoints from which we might choose, out of the 
totality of all conceivable functions, extensive classes worthy of a particularly thorough 
investigation. Consider, for example, the class of functions characterized by ordinary or 
partial algebraic differential equations. It should be observed that this class does not 
contain the functions that arise in number theory and whose investigation is of the 
greatest importance. For example, the before-mentioned function ( )sζ  satisfies no 
algebraic differential equation, as is easily seen with the help of the well-known relation 
between ( )sζ  and (1 )sζ − , if one refers to the theorem proved by Hölder,45 that the 
function ( )xΓ  satisfies no algebraic differential equation. Again, the function of the two 
variables s and l defined by the infinite series  

 
2 3 4

( , ) . . . ,
2 3 4
x x xs x xζ = + + + +s s s  
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which stands in close relation with the function ( )sζ , probably satisfies no algebraic 
partial differential equation. In the investigation of this question the functional equation  

( , ) ( 1, )s xx s x
x

ζ ζ∂ = −
∂

 

will have to be used.  
If, on the other hand, we are lead by arithmetical or geometrical reasons to 

consider the class of all those functions which are continuous and indefinitely 
differentiable, we should be obliged in its investigation to dispense with that pliant 
instrument, the power series, and with the circumstance that the function is fully 
determined by the assignment of values in any region, however small. While, therefore, 
the former limitation of the field of functions was too narrow, the latter seems to me too 
wide. The idea of the analytic function on the other hand includes the whole wealth of 
functions most important to science whether they have their origin in number theory, in 
the theory of differential equations or of algebraic functional equations, whether they 
arise in geometry or in mathematical physics; and, therefore, in the entire realm of 
functions, the analytic function justly holds undisputed supremacy. 

19. Are the solutions of regular problems in the calculus of variations always 
necessarily analytic? 

One of the most remarkable facts in the elements of the theory of analytic functions 
appears to me to be this: That there exist partial differential equations whose integrals 
are all of necessity analytic functions of the independent variables, that is, in short, 
equations susceptible of none but analytic solutions. The best known partial differential 
equations of this kind are the potential equation 
 

2 2

2 2 0f f
x y
∂ ∂

+ =
∂ ∂

 

and certain linear differential equations investigated by Picard;46 also the equation 
 

2 2

2 2
ff f e

x y
∂ ∂

+ =
∂ ∂

 

the partial differential equation of minimal surfaces, and others. Most of these partial 
differential equations have the common characteristic of being the lagrangian 
differential equations of certain problems of variation, viz., of such problems of 
variation 
 

minimum( , , ; , )F p q z x y dx dy =∫∫  

,z zp q
x y

 ∂ ∂
= = ∂ ∂ 

, 

 
as satisfy, for all values of the arguments which fall within the range of discussion, the 
inequality 
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F itself being an analytic function. We shall call this sort of problem a regular variation 
problem. It is chiefly the regular variation problems that play a role in geometry, in 
mechanics, and in mathematical physics; and the question naturally arises, whether all 
solutions of regular variation problems must necessarily be analytic functions. In other 
words, does every lagrangian partial differential equation of a regular variation 
problem have the property of admitting analytic integrals exclusively? And is this the 
case even when the function is constrained to assume, as, e. g., in Dirichlet's problem on 
the potential function, boundary values which are continuous, but not analytic?  

I may add that there exist surfaces of constant negative gaussian curvature which 
are representable by functions that are continuous and possess indeed all the derivatives, 
and yet are not analytic; while on the other hand it is probable that every surface whose 
gaussian curvature is constant and positive is necessarily an analytic surface. And we 
know that the surfaces of positive constant curvature are most closely related to this 
regular variation problem: To pass through a closed curve in space a surface of minimal 
area which shall inclose, in connection with a fixed surface through the same closed 
curve, a volume of given magnitude. 

20. The general problem of boundary values 

An important problem closely connected with the foregoing is the question concerning 
the existence of solutions of partial differential equations when the values on the 
boundary of the region are prescribed. This problem is solved in the main by the keen 
methods of H. A. Schwarz, C. Neumann, and Poincaré for the differential equation of 
the potential. These methods, however, seem to be generally not capable of direct 
extension to the case where along the boundary there are prescribed either the 
differential coefficients or any relations between these and the values of the function. 
Nor can they be extended immediately to the case where the inquiry is not for potential 
surfaces but, say, for surfaces of least area, or surfaces of constant positive gaussian 
curvature, which are to pass through a prescribed twisted curve or to stretch over a 
given ring surface. It is my conviction that it will be possible to prove these existence 
theorems by means of a general principle whose nature is indicated by Dirichlet's 
principle. This general principle will then perhaps enable us to approach the question: 
Has not every regular variation problem a solution, provided certain assumptions 
regarding the given boundary conditions are satisfied (say that the functions concerned 
in these boundary conditions are continuous and have in sections one or more 
derivatives), and provided also if need be that the notion of a solution shall be suitably 
extended?47 

 

 

 

 

21. Proof of the existence of linear differential equations having a prescribed 
monodromic group 

In the theory of linear differential equations with one independent variable z, I wish to 
indicate an important problem one which very likely Riemann himself may have had in 
mind. This problem is as follows: To show that there always exists a linear differential 
equation of the Fuchsian class, with given singular points and monodromic group. The 
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problem requires the production of n functions of the variable z, regular throughout the 
complex z-plane except at the given singular points; at these points the functions may 
become infinite of only finite order, and when z describes circuits about these points the 
functions shall undergo the prescribed linear substitutions. The existence of such 
differential equations has been shown to be probable by counting the constants, but the 
rigorous proof has been obtained up to this time only in the particular case where the 
fundamental equations of the given substitutions have roots all of absolute magnitude 
unity. L. Schlesinger has given this proof,48 based upon Poincaré's theory of the 
Fuchsian ζ - functions. The theory of linear differential equations would evidently have 
a more finished appearance if the problem here sketched could be disposed of by some 
perfectly general method. 
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22. Uniformization of analytic relations by means of automorphic functions 

As Poincaré was the first to prove, it is always possible to reduce any algebraic relation 
between two variables to uniformity by the use of automorphic functions of one 
variable. That is, if any algebraic equation in two variables be given, there can always 
be found for these variables two such single valued automorphic functions of a single 
variable that their substitution renders the given algebraic equation an identity. The 
generalization of this fundamental theorem to any analytic non-algebraic relations 
whatever between two variables has likewise been attempted with success by 
Poincaré,49 though by a way entirely different from that which served him in the special 
problem first mentioned. From Poincaré's proof of the possibility of reducing to 
uniformity an arbitrary analytic relation between two variables, however, it does not 
become apparent whether the resolving functions can be determined to meet certain 
additional conditions. Namely, it is not shown whether the two single valued functions 
of the one new variable can be so chosen that, while this variable traverses the regular 
domain of those functions, the totality of all regular points of the given analytic field are 
actually reached and represented. On the contrary it seems to be the case, from 
Poincaré's investigations, that there are beside the branch points certain others, in 
general infinitely many other discrete exceptional points of the analytic field, that can be 
reached only by making the new variable approach certain limiting points of the 
functions. In view of the fundamental importance of Poincaré's formulation of the 
question it seems to me that an elucidation and resolution of this difficulty is extremely 
desirable.  

In conjunction with this problem comes up the problem of reducing to uniformity 
an algebraic or any other analytic relation among three or more complex variables—a 
problem which is known to be solvable in many particular cases. Toward the solution of 
this the recent investigations of Picard on algebraic functions of two variables are to be 
regarded as welcome and important preliminary studies. 

23. Further development of the methods of the calculus of variations 

So far, I have generally mentioned problems as definite and special as possible, in the 
opinion that it is just such definite and special problems that attract us the most and 
from which the most lasting influence is often exerted upon science. Nevertheless, I 
should like to close with a general problem, namely with the indication of a branch of 
mathematics repeatedly mentioned in this lecture—which, in spite of the considerable 
advancement lately given it by Weierstrass, does not receive the general appreciation 
which, in my opinion, is its due—I mean the calculus of variations.50  

The lack of interest in this is perhaps due in part to the need of reliable modern 
text books. So much the more praiseworthy is it that A. Kneser in a very recently 
published work has treated the calculus of variations from the modern points of view 
and with regard to the modern demand for rigor.51  

The calculus of variations is, in the widest sense, the theory of the variation of 
functions, and as such appears as a necessary extension of the differential and integral 
calculus. In this sense, Poincaré's investigations on the problem of three bodies, for 
example, form a chapter in the calculus of variations, in so far as Poincaré derives from 
known orbits by the principle of variation new orbits of similar character.  
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I add here a short justification of the general remarks upon the calculus of 
variations made at the beginning of my lecture.  

The simplest problem in the calculus of variations proper is known to consist in 
finding a function y of a variable x such that the definite integral 
 

( , ; ) , x

b
xa

dyy
dx

J F y y x dx  =  
= ∫  

 
assumes a minimum value as compared with the values it takes when y is replaced by 
other functions of x with the same initial and final values.  

The vanishing of the first variation in the usual sense 
0Jδ =  

gives for the desired function y the well-known differential equation 
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In order to investigate more closely the necessary and sufficient criteria for the 
occurrence of the required minimum, we consider the integral 
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Now we inquire how p is to be chosen as function of x, y in order that the value of this 
integral J* shall be independent of the path of integration, i. e., of the choice of the 
function y of the variable x. The integral J*  has the form 

{ }* ,x
b

a
J dAy B= −∫ x  

where A and B do not contain xy , and the vanishing of the first variation 
* 0Jδ =  

in the sense which the new question requires gives the equation 

 

 

e., we obtain for the function p of the two variables x, y the partial differential equation 
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he ordinary differential equation of the second order (l) and the partial differential 

equation (1*) stand in the closest relation to each other. This relation becomes 
immediately clear to us by the following simple transformation 

T
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We derive from this, namely, the following facts: If we construct any simple family of 
integral curves of the ordinary differential equation (l) of the second order and then 

rm an ordinary differential equation of the first order fo
(2) ( , )xy p x y=  
 which also admits these integral curves as solutions, then the function p(x, y) is always 
an integral of the partial differential equation (1*) of the first order; and conversely, if 
p(x, y) denotes any solution of the partial differential equation (1*) of the first order, all 
the non-singular integrals of the ordinary differential equation (2) of the first order are at 
the same time integrals of the differential equation (l) of the second order, or in short if 

( , )xy p x y= is an integral equation of the first order of the differential equation (l) of 
the second order, ( , )p x y represents an integral of the partial differential equation (1*) 
and conversely; the integral curves of the ordinary differential equation of the second 

erefore, at the same time, the characteristics of the partial differential 
equation (1*) of the first order.  

In the present case we may find the same result by means of a simple calculation; 
for this gives us the differential equations (1) and (1*) in question in the form 
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where the lower indices indicate the partial derivatives with respect to x, y, p, xy . The 
correctness of the affirmed relation is clear from this.  

The close relation derived before and just proved between the ordinary 

 significance for the calculus of 
variati

differential equation (1) of the second order and the partial differential equation (1*) of 
the first order, is, as it seems to me, of fundamental

ons. For, from the fact that the integral *J  is independent of the path of 
integration it follows that 
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if we think of the left hand integral as taken along any path y and the right hand integral 
along an integral curve y
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With the help of equation (3) we arrive at Weierstrass's form

 of the differential equation 
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(4) ( ) ( ) ( , )
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where E designates Weierstrass's expression, depending upon xy , p, y, x, 

)p

hich is single 
alued and continuous in a certain neighborhood of the integral curve
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Since, therefore, the solution depends only on finding an integral p(x, y) w
v  y , which we are 
considering, the developments just indicated lead immediately—without the 
introduction of the second variation, but only by the application of the polar process to 
the differential equation (1)—to the expression of Jacobi's condition and to the answer 
to the question: How far this condition of Jacobi's in conjunction with Weierstrass's 
condition E > 0 is necessary and sufficient for the occurrence of a minimum.  

The developments indicated may be transferred without necessitating further 
calculation to the case of two or more required functions, and also to the case of a 
double or a multiple integral. So, for example, in the case of a double integral 
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gives the well-known differential equation of the second order 
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for the required function z  of x and y.  
 
On the other hand we consider the integral 
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and inquire, how p and q are to be taken as functions of  x, y and z in order that the 
value of this integral may be independent of the choice of the surface passing through 
the given closed twisted curve, i.e., of the choice of the function z of the variables x and 
.  y

 
The integral *J  has the form 
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and the vanishing of the first variation 
 

* 0Jδ =  
in the sense which the new formulation of the question demands, gives the equation 
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i. e., we find for the functions p and q of the three variables x, y and z  the differential
equation of the first order 
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If we add to this differentia
 

l equation the partial differential equation 
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)
the partial differential equation (I) for the function z of the two variables x and y and the 
simultaneous system of the two partial differential equations of the first order (I*) for 
the two functions p and q of the three variables x, y, nd z stand toward one another in a 
relation exactly analogous to that in which the differential equations (1) and (1*) stood 
in the case of the simple integral.  

It follows from the fact that the integral J* is independent of the choice of the 
surface of integration z that 
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nd with the help of this formula we arrive at once at the formula a
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which plays the same role for the variation of double integrals as the previously given 

rmula (4) for simple integrals. With the help of this formula we can now answer the 
question how far Jacobi's condition in conjunction with Weierstrass's condition E > 0 is 
necessary and sufficient for the occurrence of a minimum.  

Connected with these developments is the modified form in which A. Kneser,52 
beginning from other points of view, has presented Weierstrass's theory. While 
Weierstrass employed integral curves of equation (1) which pass through a fixed point 
in order to derive sufficient conditions for the extreme values, Kneser on the other hand 
makes use of any simple family of such curves and constructs for every such family a 
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solution, characteristic for that family, of that partial differential equation which is to be 
considered as a generalization of the Jacobi-Hamilton equation. 

 
The problems mentioned are merely samples of problems, yet they will suffice to show 
how rich, how manifold and how extensive the mathematical science of today is, and 
the question is urged upon us whether mathematics is doomed to the fate of those other

 in mathematical 
scienc

high mission, may the new century bring it gifted masters and 
many z

 
sciences that have split up into separate branches, whose representatives scarcely 
understand one another and whose connection becomes ever more loose. I do not 
believe this nor wish it. Mathematical science is in my opinion an indivisible whole, an 
organism whose vitality is conditioned upon the connection of its parts. For with all the 
variety of mathematical knowledge, we are still clearly conscious of the similarity of the 
logical devices, the relationship of the ideas in mathematics as a whole and the 
numerous analogies in its different departments. We also notice that, the farther a 
mathematical theory is developed, the more harmoniously and uniformly does its 
construction proceed, and unsuspected relations are disclosed between hitherto separate 
branches of the science. So it happens that, with the extension of mathematics, its 
organic character is not lost but only manifests itself the more clearly.  

But, we ask, with the extension of mathematical knowledge will it not finally 
become impossible for the single investigator to embrace all departments of this 
knowledge? In answer let me point out how thoroughly it is ingrained

e that every real advance goes hand in hand with the invention of sharper tools 
and simpler methods which at the same time assist in understanding earlier theories and 
cast aside older more complicated developments. It is therefore possible for the 
individual investigator, when he makes these sharper tools and simpler methods his 
own, to find his way more easily in the various branches of mathematics than is possible 
in any other science.  

The organic unity of mathematics is inherent in the nature of this science, for 
mathematics is the foundation of all exact knowledge of natural phenomena. That it may 
completely fulfil this 

ealous and enthusiastic disciples! 
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satisfying the differential equations of the problem to prove the necessity of Jacobi's 
conditions of the extreme. Moreover, it should be noticed that Kneser applies 
Weierstrass's theory also to the inquiry for the extreme of such quantities as are defined 
by differential equations.  

52 Cf. Kneser's above-mentioned textbook, §§ 14, 16, 19 and 20.  
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