Lectures Conjugate harmonicity in Euclidean space

R. Delanghe

Ghent University (Belgium)

Let $\Omega \subset \mathbb{C}$ be open and simply connected and let $f = u + i v : \Omega \to \mathbb{C}$ be a C_1 -function in Ω . As is well known, the following assertions are then equivalent:

- (i) f is holomorphic in Ω , i.e. $\partial_{\overline{z}}f = 0$ in Ω where $\partial_{\overline{z}} = \frac{1}{2}(\partial_x + i\partial_y)$
- (ii) The pair (u, v) is a conjugate harmonic pair in Ω , i.e. (u, v) satisfies in Ω the Cauchy-Riemann system

$$\begin{cases} \partial_x u - \partial_y v = 0\\ \partial_y u + \partial_x v = 0 \end{cases}$$

(iii) The 1-form $\omega = udx + vdy$ satisfies in Ω the Hodge-de Rham system

$$\begin{cases} d\omega &= 0\\ d^*\omega &= 0 \end{cases}$$

- (iv) There exists U, \mathbb{R} -valued and harmonic in Ω such that $f = \partial_z U$ where $\partial_z = \frac{1}{2}(\partial_x i\partial_y)$
- (v) f admits a holomorphic primitive F in Ω , i.e. $f = \frac{dF}{dz} = \partial_z F$

Harmonic conjugates play an important role in harmonic analysis in the plane, in particular in studying Hardy spaces for the unit circle and the upper half plane.

In higher-dimensional Euclidean space \mathbb{R}^{m+1} , Clifford analysis - a function theory for the Dirac operator ∂_x , or, equivalently for the Cauchy-Riemann operator D_x in \mathbb{R}^{m+1} - generalizes a lot of basic results of complex analysis in the plane.

Let $\mathbb{R}^{0,m+1}$ be the vector space \mathbb{R}^{m+1} provided with a quadratic form of signature (0,m+1); let $e = (e_0, e_1, ..., e_m)$ be an orthonormal basis for $\mathbb{R}^{0,m+1}$; let $\mathbb{R}_{0,m+1}$ be the

real Clifford algebra constructed over $\mathbb{R}^{0,m+1}$ and let $(e_A : A \subset \{0, 1, ..., m\})$ be the standard basis for $\mathbb{R}_{0,m+1}$. Putting for $A = \{i_1, ..., i_r\} \subset \{0, 1, ..., m\}, e_A = e_{i_1}...e_{i_r}$ with $e_{\emptyset} = 1$, the identity element of $\mathbb{R}_{0,m+1}$, we then have that

$$\mathbb{R}_{0,m+1} = \sum_{r=0}^{m+1} \oplus \mathbb{R}_{0,m+1}^{(r)},$$

where

$$\mathbb{R}_{0,m+1}^{(r)} = span_{\mathbb{R}}(e_A : |A| = r)$$

is the space of so-called *r*-vectors in $\mathbb{R}_{0,m+1}$.

Furthermore, let $\Omega \subset \mathbb{R}^{m+1}$ be open and let $F : \Omega \to \mathbb{R}_{0,m+1}$ be a C_1 -function in Ω . Then F is called left (resp. right) monogenic in Ω if

$$\partial_x F = 0$$
, resp. $F \partial_x = 0$ in Ω (1)

Hereby $\partial_x = \sum_{i=0}^m e_i \partial_{x_i}$ is the Dirac operator in \mathbb{R}^{m+1} . Putting $D_x = \overline{e}_0 \ \partial_x = \partial_{x_0} + \overline{e}_0 \ \partial_{\underline{x}}$ where $\overline{e}_0 = -e_0$ and $\partial_{\underline{x}} = \sum_{j=1}^m e_j \partial_{x_j}$ is the Dirac operator in \mathbb{R}^m , D_x is then called the Cauchy-Riemann operator in \mathbb{R}^{m+1} . Clearly

$$\partial_x F = 0 \iff D_x F = 0$$

Moreover, by means of the decomposition

$$\mathbb{R}_{0,m+1} = \mathbb{R}_{0,m} \oplus \overline{e}_0 \ \mathbb{R}_{0,m}$$

where $\mathbb{R}_{0,m}$ is the Clifford algebra generated inside $\mathbb{R}_{0,m+1}$ by the orthonormal basis $\underline{e} = (e_1, ..., e_m)$ of the quadractic space $\mathbb{R}^{0,m}$, we have that $F : \Omega \to \mathbb{R}_{0,m+1}$ may thus be composed as

$$F = U + \overline{e}_0 V$$

where U and V are $\mathbb{R}_{0,m}$ -valued. We then have in Ω :

$$D_x F = 0 \iff \begin{cases} \partial_{x_0} U + \partial_{\underline{x}} V &= 0\\ \partial_{\underline{x}} U &+ \partial_{x_0} V &= 0 \end{cases}$$
(2)

A pair (U, V) of $\mathbb{R}_{0,m}$ -valued functions in Ω satisfying (2) is called conjugate harmonic in Ω .

Important examples of left monogenic functions in Ω are given by 1-vector valued

functions $F = \sum_{i=0}^{m} e_i F_i$ satisfying in Ω

$$\partial_x F = 0 \iff \begin{cases} \sum_{i=0}^m \frac{\partial F_i}{\partial x_i} &= 0\\ \frac{\partial F_i}{\partial x_j} - \frac{\partial F_j}{\partial x_i} &= 0 \quad i \neq j, \ i, j = 0, 1, ..., m \end{cases}$$
(3)

Putting $\overrightarrow{F} = (F_0, F_1, ..., F_m)$ then the system (3) is clearly equivalent to the Rieszsystem

$$\begin{cases} \operatorname{div} \vec{F} &= 0\\ \operatorname{curl} \vec{F} &= 0 \end{cases}$$
(4)

A set $\overrightarrow{F} = (F_0, F_1, ..., F_m)$ satisfying (4) was called by Stein-Weiss a system of conjugate harmonic functions in Ω . This is equivalent to saying that the $\mathbb{R} \oplus \overline{e}_0 \mathbb{R}^{0,m}$ -valued function

$$F^* = F_0 + \overline{e}_0 \sum_{j=1}^m e_j (-F_j)$$
$$= U + \overline{e}_0 V$$

satisfies $D_x F^* = 0$ in Ω , i.e. (U, V) is a conjugate harmonic pair. Considering the smooth 1-form

$$\omega = \sum_{i=0}^{m} \omega_i \ dx^i$$

where $\omega_i = F_i$, i = 0, 1, ..., m, then (4) is equivalent to saying that ω satisfies the Hodge-de Rham system

$$\begin{cases} d\omega &= 0\\ d^*\omega &= 0 \end{cases},$$

i.e. ω is a harmonic vector field in Ω .

The aim of this series of lectures is to discuss the relationship between monogenic functions, conjugate harmonicity and its applications, a.o. to the construction of primitives of monogenic functions; to the construction of bases for the space of homogeneous monogenic $\mathbb{R} \oplus \overline{e}_0 \mathbb{R}^{0,m}$ -valued polynomials; to the structure of the Hardy space $H^2(\mathbb{R}^{m+1}_+)$, where $\mathbb{R}^{m+1}_+ = \{x = (x_0, x_1, ..., x_m) \in \mathbb{R}^{m+1} : x_0 > 0\}$.

Contents

- 1. The real Clifford algebra $\mathbb{R}_{0,m+1}$
- 2. Monogenic functions versus self-conjugate differential forms
- 3. Conjugate harmonicity, harmonic primitives and monogenic primitives of monogenic functions.
- 4. Monogenic r-forms versus harmonic r-forms
- 5. Bases for the space of monogenic homogeneous vector-(or para-)vector valued polynomials
- 6. Cauchy transforms and conjugate harmonicity

R. Delanghe