Lectures
 Conjugate harmonicity in Euclidean space

R. Delanghe
Ghent University (Belgium)

Let $\Omega \subset \mathbb{C}$ be open and simply connected and let $f=u+i v: \Omega \rightarrow \mathbb{C}$ be a C_{1}-function in Ω. As is well known, the following assertions are then equivalent:
(i) f is holomorphic in Ω, i.e. $\partial_{\bar{z}} f=0$ in Ω where $\partial_{\bar{z}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)$
(ii) The pair (u, v) is a conjugate harmonic pair in Ω, i.e. (u, v) satisfies in Ω the Cauchy-Riemann system

$$
\left\{\begin{array}{l}
\partial_{x} u-\partial_{y} v=0 \\
\partial_{y} u+\partial_{x} v=0
\end{array}\right.
$$

(iii) The 1-form $\omega=u d x+v d y$ satisfies in Ω the Hodge-de Rham system

$$
\left\{\begin{array}{l}
d \omega=0 \\
d^{*} \omega=0
\end{array}\right.
$$

(iv) There exists U, \mathbb{R}-valued and harmonic in Ω such that $f=\partial_{z} U$ where $\partial_{z}=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right)$
(v) f admits a holomorphic primitive F in Ω, i.e. $f=\frac{d F}{d z}=\partial_{z} F$

Harmonic conjugates play an important role in harmonic analysis in the plane, in particular in studying Hardy spaces for the unit circle and the upper half plane.

In higher-dimensional Euclidean space \mathbb{R}^{m+1}, Clifford analysis - a function theory for the Dirac operator ∂_{x}, or, equivalently for the Cauchy-Riemann operator D_{x} in \mathbb{R}^{m+1} - generalizes a lot of basic results of complex analysis in the plane.

Let $\mathbb{R}^{0, m+1}$ be the vector space \mathbb{R}^{m+1} provided with a quadratic form of signature $(0, \mathrm{~m}+1)$; let $e=\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ be an orthonormal basis for $\mathbb{R}^{0, m+1}$; let $\mathbb{R}_{0, m+1}$ be the
real Clifford algebra constructed over $\mathbb{R}^{0, m+1}$ and let $\left(e_{A}: A \subset\{0,1, \ldots, m\}\right)$ be the standard basis for $\mathbb{R}_{0, m+1}$. Putting for $A=\left\{i_{1}, \ldots, i_{r}\right\} \subset\{0,1, \ldots, m\}, e_{A}=e_{i_{1}} \ldots e_{i_{r}}$ with $e_{\emptyset}=1$, the identity element of $\mathbb{R}_{0, m+1}$, we then have that

$$
\mathbb{R}_{0, m+1}=\sum_{r=0}^{m+1} \oplus \mathbb{R}_{0, m+1}^{(r)}
$$

where

$$
\mathbb{R}_{0, m+1}^{(r)}=\operatorname{span}_{\mathbb{R}}\left(e_{A}:|A|=r\right)
$$

is the space of so-called r-vectors in $\mathbb{R}_{0, m+1}$.
Furthermore, let $\Omega \subset \mathbb{R}^{m+1}$ be open and let $F: \Omega \rightarrow \mathbb{R}_{0, m+1}$ be a C_{1}-function in Ω. Then F is called left (resp. right) monogenic in Ω if

$$
\begin{equation*}
\partial_{x} F=0, \text { resp. } F \partial_{x}=0 \text { in } \Omega \tag{1}
\end{equation*}
$$

Hereby $\partial_{x}=\sum_{i=0}^{m} e_{i} \partial_{x_{i}}$ is the Dirac operator in \mathbb{R}^{m+1}.
Putting $D_{x}=\bar{e}_{0} \partial_{x}=\partial_{x_{0}}+\bar{e}_{0} \partial_{\underline{x}}$ where $\bar{e}_{0}=-e_{0}$ and $\partial_{\underline{x}}=\sum_{j=1}^{m} e_{j} \partial_{x_{j}}$ is the Dirac operator in \mathbb{R}^{m}, D_{x} is then called the Cauchy-Riemann operator in \mathbb{R}^{m+1}.
Clearly

$$
\partial_{x} F=0 \Longleftrightarrow D_{x} F=0
$$

Moreover, by means of the decomposition

$$
\mathbb{R}_{0, m+1}=\mathbb{R}_{0, m} \oplus \bar{e}_{0} \mathbb{R}_{0, m}
$$

where $\mathbb{R}_{0, m}$ is the Clifford algebra generated inside $\mathbb{R}_{0, m+1}$ by the orthonormal basis $\underline{e}=\left(e_{1}, \ldots, e_{m}\right)$ of the quadractic space $\mathbb{R}^{0, m}$, we have that $F: \Omega \rightarrow \mathbb{R}_{0, m+1}$ may thus be composed as

$$
F=U+\bar{e}_{0} V
$$

where U and V are $\mathbb{R}_{0, m}$-valued.
We then have in Ω :

$$
D_{x} F=0 \Longleftrightarrow\left\{\begin{array}{l}
\partial_{x_{0}} U+\partial_{\underline{x}} V=0 \tag{2}\\
\partial_{\underline{x}} U+\partial_{x_{0}} V=0
\end{array}\right.
$$

A pair (U, V) of $\mathbb{R}_{0, m}$-valued functions in Ω satisfying (2) is called conjugate harmonic in Ω.
Important examples of left monogenic functions in Ω are given by 1-vector valued
functions $F=\sum_{i=0}^{m} e_{i} F_{i}$ satisfying in Ω

$$
\partial_{x} F=0 \Longleftrightarrow\left\{\begin{array}{l}
\sum_{i=0}^{m} \frac{\partial F_{i}}{\partial x_{i}}=0 \tag{3}\\
\frac{\partial F_{i}}{\partial x_{j}}-\frac{\partial F_{j}}{\partial x_{i}}=0 \quad i \neq j, i, j=0,1, \ldots, m
\end{array}\right.
$$

Putting $\vec{F}=\left(F_{0}, F_{1}, \ldots, F_{m}\right)$ then the system (3) is clearly equivalent to the Rieszsystem

$$
\left\{\begin{array}{l}
\operatorname{div} \vec{F}=0 \tag{4}\\
\operatorname{curl} \vec{F}=0
\end{array}\right.
$$

A set $\vec{F}=\left(F_{0}, F_{1}, \ldots, F_{m}\right)$ satisfying (4) was called by Stein-Weiss a system of conjugate harmonic functions in Ω. This is equivalent to saying that the $\mathbb{R} \oplus \bar{e}_{0} \mathbb{R}^{0, m_{-}}$ valued function

$$
\begin{aligned}
F^{*} & =F_{0}+\bar{e}_{0} \sum_{j=1}^{m} e_{j}\left(-F_{j}\right) \\
& =U+\bar{e}_{0} V
\end{aligned}
$$

satisfies $D_{x} F^{*}=0$ in Ω, i.e. (U, V) is a conjugate harmonic pair.
Considering the smooth 1 -form

$$
\omega=\sum_{i=0}^{m} \omega_{i} d x^{i}
$$

where $\omega_{i}=F_{i}, i=0,1, \ldots, m$, then (4) is equivalent to saying that ω satisfies the Hodge-de Rham system

$$
\left\{\begin{array}{l}
d \omega=0 \\
d^{*} \omega=0
\end{array}\right.
$$

i.e. ω is a harmonic vector field in Ω.

The aim of this series of lectures is to discuss the relationship between monogenic functions, conjugate harmonicity and its applications, a.o. to the construction of primitives of monogenic functions; to the construction of bases for the space of homogeneous monogenic $\mathbb{R} \oplus \bar{e}_{0} \mathbb{R}^{0, m}$-valued polynomials; to the structure of the Hardy space $H^{2}\left(\mathbb{R}_{+}^{m+1}\right)$, where $\mathbb{R}_{+}^{m+1}=\left\{x=\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m+1}: x_{0}>0\right\}$.

Contents

1. The real Clifford algebra $\mathbb{R}_{0, m+1}$
2. Monogenic functions versus self-conjugate differential forms
3. Conjugate harmonicity, harmonic primitives and monogenic primitives of monogenic functions.
4. Monogenic r-forms versus harmonic r-forms
5. Bases for the space of monogenic homogeneous vector-(or para-)vector valued polynomials
6. Cauchy transforms and conjugate harmonicity
R. Delanghe
