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Introduction

In the last 10-12 years, a lot of work has been done concerning invariant
factors of matrices, mainly by R. C. Thompson (Santa Barbara, U.S.A.) and
E. Marques de S4 (Coimbra, Portugal). Many things are now known about
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invariant factors of matrices and submatrices, sums of matrices, products of
matrices, etc., the results often taking the form of divisibility relations. (See
below for details and references.)

The purpose of this talk is simply to call attention to the fact that many of
these results, usually presented for matrices over principal-ideal domains,
actually hold for larger classes of rings.

Elementary-Divisor Domains and Beyond

We look first at elementary-divisor domains, a class introduced by
Kaplansky in [2]. By definition, these are domains where Smith’s diagonaliza-
tion theorem holds for every matrix. An example of an elementary-divisor
domain which is not a principal-ideal domain is the ring of analytic functions
H(€)), Q an open connected subset of the complex plane. Elementary-divisor
domains are not necessarily unique-factorization domains, so proofs that use
localization at a prime do not carry over from principal-ideal domains.

Extension of results to elementary-divisor domains is doubly interesting
in that, using a device due to Krull, it often allows extension to even larger
classes of rings. We give a brief description of this technique.

An integral domain V is a valuation domain (in its field of quotients) if,
for all a,beV, either alb or bja.

Let R be an integral domain, K its field of quotients. The integral closure
of R (in K) is

R={qe€K:f(g)=0 for some monic f(x) € R[x]}

R is integrally closed if R = R. Example: Z.

Tueorem [3]. R equals the intersection of all valuation domains that
contain R.

Therefore, if R is integrally closed, a divisibility relation involving
elements of R holds in R if it holds in every valuation domain V contain-
ing R.

Now it is trivial that every valuation domain is an elementary-divisor
domain (diagonalization is easy, since—up to associates—divisibility is a
total order). Hence divisibility relations proved for arbitrary elementary-
divisor domains (or for arbitrary valuation domains) may be used to obtain
statements valid for integrally closed domains. This technique was used in (2]
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to prove some simple divisibility relations for invariant factors of matrices
over integrally closed domains. Here we merely remark that the same trick
works for many relations discovered recently.

Invariant Factors

If a matrix A over an integral domain is equivalent to a diagonal matrix
where each diagonal entry divides the following, these entries are, by
definition, the invariant factors of A. The invariant factors of a matrix A will
be denoted by s,(A)|s,(A)] -+ (we add an infinite tail of zeros). Their
uniqueness is guaranteed by their expressions as quotients of determinantal
divisors. These expressions can in turn be used to define the invariant factors
for matrices not equivalent to a diagonal. For this to work, we must require
that in the underlying domain any finite set of elements have a greatest
common divisor (not necessarily expressible as a linear combination of the
elements). Rings with this property are usually called ged domains. (Bourbaki
calls them pseudo-Bézoutian.) They are easily seen to be integrally closed.
Elementary-divisor domains and unique-factorization domains all are ged
domains.

Results

We list some divisibility relations concerning invariant factors of matrices
which are true over elementary-divisor domains. Most of these can be shown,
with simple proofs that use the argument described above, to hold for
invariant factors of matrices over ged domains.

(1) The very fact that, for all A and k, s.(A) divides s;,,(A) is an
example of a divisibility relation which extends to matrices over arbitrary ged
domains after its usual proof employing the reduction to Smith normal form
of matrices over elementary-divisor domains.

(2) If A (m'X n') is a submatrix of A (m X n), then, for all i,

S:’(A) I Si(A,) t Si+(m—m')+(n—n')(A)

(the so-called interlacing “inequalities” [6, 7]). This can be proved in several
ways using only the existence of the Smith normal form, so it holds for
matrices over elementary-divisor domains {(and it extends to matrices over
ged domains). One of the simplest proofs uses the following characterization
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of invariant factors:
s;(A) = lem{ged(a,;; — x,;) :rank( X) < k}

([4); there the result was stated for principal-ideal domains, but the same
proof works for elementary-divisor domains).

(3) Concerning invariant factors of sums of matrices, we have the follow-
ing relation:

ng(Si(A):Sj(B)) | Si+)—l(A + B)

for all i,j. The proof of this is trivial using the above characterization of
invariant factors, so this relation extends to matrices over arbitrary elemen-
tary-divisor domains. (The original proof [8] uses localization at a prime.)

(4) Invariant factors of products of matrices have been extensively stud-
ied. For n X n A and B, known relations have the form

si(A) - 5,(A)s;(B) ~~s;(B) s, (AB) -+ 5 (AB), (P)

where 1<t<n, 1<i;< - <i,<n, 1<), < <j,<n, 1<k, <
- € k, < n. The problem is to find all the “right” sequences i, j, k.

A very general description of allowed sequences (suspected to be the
complete answer) is in [9], using the language of Young tableaux and
Littlewood-Richardson sequences. For the (very intricate) proof to work, the
ring must be a principal-ideal domain.

An important corollary of that work is that (P) holds when k, =i, +
Ju—u, 1<u<t (the “standard” inequalities). For t =1, this gives the
well-known relation

Se(A)Sj(B) l Si+_j-—](AB)'

Some results on this problem that hold for arbitrary elementary-divisor
domains (although stated for principal-ideal domains) are contained in a 1978
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unpublished manuscript by E. Marques de S4 [5]. The main theorem is:

Suppose (P) holds for all nXn A and B, and let u,v€{1,...,t +1},
well,...,th Ifi,+j, =2k, tk,+2, then

Sil(A) R Si,,_;(A)Si,,+1(A) e Siﬁl(A)Sjl(B) .
XSjU—I(B)SjG'Fl(B) o8, 4(B)

lSkl(AB) T Skwﬂ(AB)Ska(AB) T Sk,+1(AB)

holds for all (n+1)X(n+1) A and B (with ky=0, i, = j,.,=k,+1 by
definition).

The reader should note how this can be used to obtain new relations from
known ones. (Compare with [1]) Example: Starting with n=1¢ and the
sequences i=j=k =(1,...,t) (obviously right) and applying the result
several times, we obtain the standard inequalities, which therefore hold for
arbitrary elementary-divisor domains, and also for arbitrary ged domains.

Open Problems

It is natural to ask for other instances of divisibility relations whose proofs
can be changed so that they work for matrices over arbitrary elementary-
divisor domains. An obvious (but presumably intractable} candidate is
Thompson’s result on the invariant factors of a product [9, p. 431].

Different questions arise when we consider “inverse” problems. For
example, it is well known that the interlacing inequalities are the only
general relations connecting the invariant factors of matrices and submatri-
ces, in the sense that, given elements satisfying those relations, there exist a
matrix and a submatrix with those elements as invariant factors. This last
assertion is easily proved by induction when the ring in question is an
elementary-divisor domain. Over a ged domain the same problem is, to my
knowledge, open.

Let us see an example of an inverse statement for which the extension
from principal-ideal domains to elementary-divisor domains already presents
a challenge. If A and B are n X n, it follows from the standard inequalities
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that

lem{s,(A)s,_,,1(B):1<i<k}|s(AB)lged{s,(A)s, ;.1 (B):k <i<n}.

If the ring is a principal-ideal domain, the converse is true: given a,| - - - |la,,

b,l---1b,, and ¢, if

lem{aby_; . :1<i<k}lclged{a;b,_,,;:k <i<n},

then there exist A and B n X n with invariant factors a,,...,a, and by,...,b,,
respectively, and such that s,(AB) = ¢ (J. F. Queiré and E. Marques de S4,
to be submitted). Question: can this be proved for elementary-divisor do-
mains or, harder still, for ged domains?
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