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Sums and products of equivalence orbits  
of integral matrices

João Filipe Queiró and Cristina Caldeira1

University of Coimbra

1. INTRODUCTION

If A and B are n × n matrices over , we say they are equivalent if there exist invertible U and V such 
that B = UAV. It is well -known that A and B are equivalent if and only they have the same invariant 
factors. We briefly recall the definition of these.

Let A be n × n. Then A is equivalent to

where a1|a2|...|a
n
. This diagonal matrix is called the Smith normal form of A and a1, a2, ..., an

 are the 
invariant factors of A.

The invariant factors are (apart from units) uniquely determined by A, because

where d
k
(A) – the so -called k -th determinantal divisor of A – is the gcd of all k × k minors of A, with the 

convention that d0 = 1.
All of the above (equivalence to Smith normal form, characterization of invariant factors, criterion 

for equivalence) holds for matrices over Euclidean domains or, more generally, principal ideal 
domains.

In this note we shall also consider elementary divisor domains, defined by Kaplansky in 1949 [10] 
as domains over which every matrix is equivalent to its Smith normal form. So PIDs  EDDs and the 
inclusion is strict (the main counter -examples being rings of complex functions which are not unique 
factorization domains).
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2. ORBITS

Given an n -tuple a = (a1, a2, ..., an
) of elements of a domain R, with a1|a2|...|a

n
, denote by D

a
 the dia-

gonal matrix diag (a1, a2, ..., an 
). We shall be interested in the equivalence orbit

a
 = {UD

a
V : U, V invertible}.

That is, 
a
 is the set of all matrices with invariant factors a.

Trivially we have

Rn×n = 
a
 

a

Two fundamental questions arise: given two n -tuples a and b, what can we say about 
a
 + 

b
 and 

a b
? 

We easily see that both sets are unions of orbits, so the questions become

a
 + 

b
 = 

c ? c

a
 

b
 = 

c ? c

3. THE PRODUCT PROBLEM

We want to know which orbits 
c
 occur in 

a
 

b
. In other words, given sequences a1|a2|...|a

n
 and 

b1|b2|...|b
n
, which sequences c1|c2|...|c

n
 can occur as the invariant factors of the product of a matrix with 

invariant factors a1, a2, ..., an
 and a matrix with invariant factors b1, b2, ..., bn

?
This problem has a long history. It is related to module theory, combinatorics, group representations, 

algebraic geometry and other areas of Mathematics.
The problem was completely solved in 1968 when R is a principal ideal domain [11]. In this setting 

we can use a localization technique. Fix a prime p  R and work over the local ring

R
p
 = r

s
: p does not divide s

(i.e., essentially work only with powers of p). Then, for each i, a
i
 is replaced by p n–i+1, b

i
 is replaced by  

p n–i+1 and c
i
 is replaced by p n–i+1, where 1 ≥ ... ≥ 

n 
, 1 ≥ ... ≥ 

n 
, 1 ≥ ... ≥ 

n 
, are nonnegative integers.

Denote by IF( , ) the set of possible  in the invariant factor product problem. Then Klein’s theorem 
states that, for given n-tuples  = ( 1, ..., n

) and  = ( 1, ..., n
), one has

IF( , ) = LR( , )

where LR( , ) is the set of n -tuples  which can be obtained from  and  using the Littlewood -Richardson 
rule [4].

The Klein solution is “algorithmic” but not very explicit. It shows there is a connection of the product 
problem over a PID to the representation theory of GL

n
( ): if V  and V  are irreducible representations 

of GL
n
( ), then   IF( , ) if and only if V  occurs in the decomposition into irreducible components of 

V   V .
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Another approach to the product problem consists of searching for divisibility relations involving the 
a

i
, the b

i
 and the c

k
. Apart from the trivial equality a1a2 ... an

b1 b2... bn
 = c1c2 ... cn

, several relations were found 
in the 1970s and 80s of the form

a
i1 

a
i2
 ... a

ir 
b

j1 
b

j2
 ... a

jr
|c

k1 
c

k2
 ... c

kr

where r < n, 1 ≤ i1 < ... < i
r
 ≤ n, 1 ≤ j1 < ... < j

r
 ≤ n, 1 ≤ k1 < ... < k

r
 ≤ n.

Starting in the 1980s, this approach had, as a source of inspiration, a collection of analogies with 
another matrix problem: what are the possible eigenvalues 1 ≥ ... ≥ 

r
 of a sum A + B if A and B are n × n 

complex Hermitian matrices with eigenvalues 1 ≥ ... ≥ 
r
 and 1 ≥ ... ≥ 

r
, respectively? Here the ’s, ’s 

and ’s are real numbers.
Denote the set of possible  by E( , ). Apart from the trivial equality

1 + 2 + ... + 
n
 = 1 + 2 + ... + 

n
 + 1 + 2 + ... + 

n

many inequalities were found in the 1950s of the form

k1
 + 

k2
 + ... + 

kr
 ≤ 

i1
 + 

i2
 + ... + 

ir
 + 

j1
 + 

j2
 + ... + 

jn

for indices as before.
In 1962, an extraordinary conjecture about E( , ) was made by Alfred Horn [9]. We proceed to des-

cribe it.
For I = (i1, ..., ir

) with 1 ≤ i1 < ... < i
r
 ≤ n write

(I) = (i
r
 – r, ..., i2 – 2, i1 – 1).

Abbreviate 
i1
 + 

i2
 + ... + 

ir
 to 

I
 and the same in similar situations.

Then Horn’s conjecture is:

So the set E should be described by a recursion on itself.
The first condition is the trace equality. The others are a collection of inequalities whose number grows 

rapidly with n, the “Horn inequalities”.
A general approach to obtain inequalities of the type

k1
 + 

k2
 + ... + 

kr
 ≤ 

i1
 + 

i2
 + ... + 

ir
 + 

j1
 + 

j2
 + ... + 

jn

uses a 1962 theorem by Hersch and Zwahlen [8], which states that

i1
 + ... + 

ir
 =   min   tr(A

|L
) =   max   tr(A

|L
)

 L
I
(E) L

I’
(E’)

where tr(A
|L

) is the Rayleigh trace of A with respect to the subspace L and 
I
(E) is the Schubert variety 

associated to I = (i1, ..., ir
) and the sequence E = (E1, ..., En

) of subspaces E
i
 = span {v1, ..., vi

) built from the 
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eigenvectors of A associated to the ’s. (I' and E' are “complements” to these: I' = (n – ir + 1, ..., n – i1 + 1), 
E' = (E'

n
, ..., E'1) with E'

n–i+1 = span {v
i
, ..., v

n
}.)

The so -called “Schubert calculus” describes conditions under which three Schubert varieties intersect 
non -trivially (see e.g. [4]) and using it we get that

(K)  LR[ (I), (J)]  
k1

 + ... + 
kr
 ≤ 

i1
 + ... + 

ir
 + 

j1
 + ... 

jr
.

In other words, we have

In a deep 1998 paper [12], Klyachko proved that the reverse implication is also true, so all the admis-
sible inequalities describing E ( , ) come from the intersection geometry of Schubert varieties.

The above -mentioned analogies between the invariant factor product problem and the Hermitian 
sum eigenvalue problem manifest themselves in the indices of valid relations for the two problems:

a
i1
 a

i2
 ... a

ir 
b

j1 
b

j2
 ... b

jr
|c

k1 
c

k2
 ... c

kr

in the first, and

k1
 + 

k2
 + ... + 

kr
 ≤ 

i1
 + 

i2
 + ... + 

ir
 + 

j1
 + 

j2
 + ... + 

jr

in the second. The natural guess is that there should be a connection between the sets LR( , ) and E( , ).
In [16] it was shown that, for integral nonnegative ordered n -tuples  and , one has E( , )  Zn  LR( , ). 

The proof uses a 1982 result by Heckman [6] stated in the spirit of Kirillov’s method of orbits.
Using results of [12], Knutson and Tao [13] proved that one actually has E( , )  Zn = LR( , ).
So Horn’s conjecture follows, as we can replace LR[ (I), (J)] by E[ (I), (J)] in Klyachko’s result above. 

A good survey on all of this is [5]. A very readable account of the Hermitian problem is [1].
As a consequence, we see that the invariant factor product problem (local version) has a recursive 

solution in terms of inequalities. Therefore, the global version of the invariant factor product problem 
(over a principal ideal domain) has a solution in terms of divisibility relations of the type

a
i1
 a

i2
 ... a

ir 
b

j1 
b

j2
 ... b

jr
|c

k1 
c

k2
 ... c

kr
.

But the proof is critically dependent on localization at primes.
What if R is an elementary divisor domain? In this case, the problem is open, as we no longer have 

the localization technique at our disposal. So, we have a new problem: describe invariant factors of 
products of matrices over an elementary divisor domain.

A different approach is needed. An idea is to try to replicate the Hersch -Zwahlen and Schubert cal-
culus argument.

We shall omit a lot of details. Suppose that A  Rn×n has invariant factors a1|...|a
n
, UAV = diag (a1, ..., an

) 
and 1, ..., n

 are the columns of V. Introduce the notations

V
i
 = span 

R
{ 1, ..., i

}, V = (V1, ..., Vn
)
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and

I = (i1, ..., ir
) with 1 ≤ 1 < i1 < ... < i

r
 ≤ n, I' and V' as before.

Then we have

Theorem. [2]

i1
 

i2
 ... 

ir
 =   lcm    d

r
(AX)

d
r
(X)

 = gcd    d
r
(AX)

d
r
(X) L

I
(V)   L

I’
(V’)

where L denotes a pure submodule of Rn, x1, ..., xr 
 L are linearly independent such that L is the 

pure closure of span 
R
{x1, ..., xr

}, X = [x1, ..., xr
] and the d

r
 are the determinantal divisors defined 

before.
Again omitting details, from this theorem we get exactly the divisibility relations with indices as in 

Horn’s conjecture (as in the PID case):

Theorem. [2] Let r < n. If (K)  LR [ (I), (J)], then

a
i1 ai2

 ... a
ir 

b
j1 

b
i2
 ... b

jr
|c

k1 ck2
 ... c

kr
.

The conclusion is that, over a PID, the families of indices appearing in the description of 
a b

 are 
exactly the same as those appearing in the Horn equalities, say

a
 

b
 = 

c
 

c

Over an EDD, we proved that

a
 

b
  

c
 

c

It is natural to ask if the last theorem (plus the determinant equality) is the complete solution for the 
product problem over EDDs.

4. THE SUM PROBLEM

Here we want to know which orbits 
c
 occur in 

a
 + 

b
. In other words, given sequences a1|a2|...|a

n
 

and b1|b2|...|b
n
, which sequences c1|c2|...|c

n
 can occur as the invariant factors of the sum of a matrix 

with invariant factors a1, a2, ..., an
 with a matrix with invariant factors b1, b2, ..., bn

?
This problem is open, even over the integers. What do we know about it?

The first result is classical:

Theorem. [17] Let R be a PID. If 
c
  

a
 + 

b
 then

gcd{a
i
, b

j
}|c

i+j–1

for all indices i, j such that i + j – 1 ≤ n.

This is still true if R is an EDD (see the proof in [14]).
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Since, if C = A + B, we have  B = – A + C and A = –B + C, we see that there are actually three families 
of relations:

gcd{a
i
, b

j
}|c

i+j–1, gcd{a
i
, c

j
}|b

i+j–1 and gcd{b
i
, c

j
}|a

i+j–1 

These relations are highly restrictive on the sequences a, b, c.

Let A  
a
, B  

b
 and C  

c
 such that C = A + B. Taking determinants (choosing, from this point on, 

the invariant factors of each matrix so that their product equals the determinant), we have

a1 ... an
  c1 ... cn

 (mod b1),

b1 ... bn
  c1 ... cn

 (mod a1),

a1 ... an
  (–1)nb1 ... bn

 (mod c1).

Together with the three families of divisibility relations above, we have collected a set of necessary 
conditions for 

c
  

a
 + 

b
.

Em 1986, R. C. Thompson [18] conjectured that this set of conditions is the exact solution for the 
problem of describing 

a
 + 

b
.

In 1990, E. Marques de Sá [15] showed that the conjecture is false, by finding additional necessary 
conditions about det(A + B).

This led us to the idea of trying to find the exact restrictions on det(A + B) for A  
a
 and B  

b
.

Theorem. [3] Let A  
a
 and B  

b
. Write

 = gcd{a1 b1 ... bn–1, a1 a2 b1 ... bn–2, ..., a1 ... an–1 b1}.

Then

det(A + B)  a1 ... an
 + b1 ... bn

 (mod ).

Conversely, given sequences a and b and defining  as above, if x  a1 ... an
 + b1 ... bn

 (mod ) then there 
exist A  

a
 and B  

b
 such that det(A + B) = x.

The necessity part of this statement follows from the explicit formula for the determinant of the sum 
of two matrices:

det(A + B) = 
k
n

= 0 
 

,  Qk,n
 (–1) + detA [ | ]. detB [ '| ']

where Q
k,n

 is the set of strictly increasing sequences with k elements taken from {1, 2, ..., n}, A[ | ] is the 
submatrix of A with rows and columns indexed by  and , and ', ' are the complementary sequences 
to , . For the converse, we construct by induction, under the hypothesis, matrices A and B satisfying 
the required conditions. The statement is valid for matrices over an elementary divisor domain.
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So we have found the exact range of det(A + B) when A and B have the prescribed invariant factors. 
Is is natural to add the corresponding restrictions (together with the analogous ones coming from B = 

–A + C and A = –B + C) to the three families of divisibility relations described before and conjecture that 
we then obtain the full solution of the invariant factor sum problem. We have substantial computational 
evidence to support this.

We have proved the conjecture in some particular cases, like n = 3 for a = (1,1, a3) and b = (1,1, b3) 
(the case n = 2 was covered by Thompson’s work). An interesting additional situation is n arbitrary, 
a = b = (1,1, ..., 1). In this case, the conjecture reduces to the statement that any  n × n matrix C over R 
is the sum of two invertible matrices. This is known [7]. For C  = diag (c1, ..., cn

), take

For general C, first diagonalize it by equivalence and then apply the diagonal case.
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