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Abstract. Some remarks are made concerning the problem of describing the
possible partial spectra of a sum of two Hermitian matrices with given eigen-
values.

1. Introduction

Throughout this paper, α = (α1, . . . , αn) and β = (β1, . . . , βn) denote two
n-tuples of real numbers ordered so that α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn.

The question to be addressed (suggested in [4]) is the following. Fix an
integer s ∈ {1, . . . , n}, and indices k1, . . . , ks such that 1 ≤ k1 < · · · < ks ≤ n.
Given an s-tuple γ = (γk1

, . . . , γks
), with γk1

≥ · · · ≥ γks
, when do there

exist Hermitian A and B, with spectra α and β respectively, such that γ is a
part of the spectrum of A + B? In other words, what are the possible s-tuples
γ = (γk1

, . . . , γks
) such that, for j = 1, . . . , s, the j-th coordinate of γ, γkj

, is
the kj-th eigenvalue of a sum A+B, A and B Hermitian with spectra α and β?
We will make some elementary remarks on this problem concerning particular
values of s.

2. The full spectrum case

The case where s = n, i.e. we are interested in the possible (complete)
spectra of sums A + B, A and B Hermitian with the given spectra α and β,
has a long history, with connections to different parts of Mathematics, and has
been solved a few years ago. We briefly recall this solution. (The interested
reader can find more details in the fine surveys [2, 4].)

Denote by E(α, β) the set of possible such spectra γ. This set is easily
seen to be compact and connected, as it is the image of the unitary group under
a continuous mapping. It is contained in the hyperplane defined by the trace
condition, which we abbreviate to Σγ = Σα+Σβ. In [3] it was shown that it is
convex, using the convexity properties of the moment mapping from symplectic
geometry.
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116 JOÃO FILIPE QUEIRÓ

In 1962, A. Horn conjectured that E(α, β) is completely described by a
family of inequalities of the type

γk1
+ · · · + γkr

≤ αi1 + · · · + αir
+ βj1 + · · · + βjr

where r ∈ {1, ..., n} and i1 <. . .<ir, j1 <. . .<jr, k1 <. . .<kr, or, in short,

Σ γK ≤ Σ αI + Σ βJ

where I = (i1, . . . , ir), J = (j1, . . . , jr), K = (k1, . . . , kr). A consequence of this
would be that E(α, β) is a convex polytope.

The question is to identify the right triples (I, J, K). Horn makes an elab-
orate conjecture on this, which, in sightly changed form, reads as follows:

Write λ(I) = (ir − r, . . . , i2 − 2, i1 − 1) and similarly for λ(J) and λ(K).
Then Horn’s conjecture is that γ ∈ E(α, β) if and only if

Σγ = Σα + Σβ

and

ΣγK ≤ ΣαI + ΣβJ whenever λ(K) ∈ E[λ(I), λ(J)] (for all r, 1 ≤ r < n).

This means that the set E(α, β) is described recursively from lower dimensions.
We present below the list of Horn inequalities for n = 2 and n = 3 (apart

from the trace equalities).

n = 2 :
γ1 ≤ α1 + β1 γ2 ≤ α1 + β2 γ2 ≤ α2 + β1

n = 3 : γ1 ≤ α1 + β1 γ1 + γ2 ≤ α1 + α2 + β1 + β2

γ2 ≤ α1 + β2 γ1 + γ3 ≤ α1 + α2 + β1 + β3

γ3 ≤ α1 + β3 γ2 + γ3 ≤ α1 + α2 + β2 + β3

γ2 ≤ α2 + β1 γ1 + γ3 ≤ α1 + α3 + β1 + β2

γ3 ≤ α2 + β2 γ2 + γ3 ≤ α1 + α3 + β1 + β3

γ3 ≤ α3 + β1 γ2 + γ3 ≤ α2 + α3 + β1 + β2

The conjecture was proved in the late 1990s, as a result of work of Kly-
achko in [7] and Knutson and Tao in [9]. This work involves, among other
subjects, the intersection of Schubert varieties as well the representations of
the general linear group, including the combinatorics of tableaux.

Other references on the problem are [3, 8, 12, 13].
The number of inequalities in Horn’s list grows very rapidly with n. In [1]

and [10], the question of the independence of these inequalities for each n was
studied.
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3. The case s = 1

Here we are interested, given k, in the possible numbers γk occurring as
the k-th eigenvalue of sums A + B, A and B Hermitian with the given spectra
α and β.

The following inequalities concerning a single eigenvalue of A + B have
been known for a long time, and associated with the name of Weyl:

γi+j−1 ≤ αi + βj , γi+j−n ≥ αi + βj

(for all admissible values of the indices). The first is easily proved from the
extremal characterizations of eigenvalues of Hermitian matrices using the as-
sociated quadratic forms, and the second follows from the first applied to −A

and −B.
We rewrite Weyl’s inequalities as follows:

αi + βk−i+n ≤ γk (i = k, . . . , n) and γk ≤ αi + βk−i+1 (i = 1, . . . , k)

or

maxk≤i≤n αi + βk−i+n ≤ γk ≤ min1≤i≤k αi + βk−i+1 .

Theorem 3.1 ([6]; see also [11, 14]). These conditions are sufficient.

Proof. The set of possible γ is an interval. By the necessity, that interval is
contained in

[ maxk≤i≤n αi + βk−i+n , min1≤i≤k αi + βk−i+1 ] .

The lower bound is attained by the k-th eigenvalue of A + B, where

A = diag(α1, . . . , αn) , B = diag(βk, βk−1, . . . , β2, β1, βk+1, βk+2, . . . , βn) .

The upper bound is attained by the k-th eigenvalue of A + B, where

A = diag(α1, . . . , αn) , B = diag(β1, β2, . . . , βk−1, βn, βn−1, . . . , βk+1, βk) . �

Two comments are in order concerning this result. First, the extreme
points of the realizable set are produced with diagonal matrices. Second, the rel-
evant inequalities are precisely those appearing in Horn’s list as explicit bounds
on a single eigenvalue: the first family of Weyl inequalities, γi+j−1≤αi+βj,
is clearly the list of 1-term inequalities appearing there; the second family,
γi+j−n ≥ αi + βj , consists exactly of the inequalities obtained from the trace
condition together with the (n−1)-term inequalities in the Horn list [4], since if
I has length n−1, the (n−1)-tuple λ(I) has only 1’s and 0’s, and in that situ-
ation it is not difficult to find all possible cases in which λ(K) ∈ E[λ(I), λ(J)].
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4. Note on other values of s

In light of the last comment in the previous section, a natural conjecture
would be that, for any s, the restrictions involving γ = (γk1

, . . . , γks
) in our

problem would be precisely those appearing in Horn’s list as explicit bounds on
sums of entries in γ (both upper and lower bounds, the latter obtained using
the trace condition).

Again as remarked in [4], this conjecture is not true. The example given
there is n = 3, s = 2, γ = (γ1, γ3). The explicit bounds from Horn’s list in this
case are:

α1 + β3 , α2 + β2 , α3 + β1 ≤ γ1 ≤ α1 + β1

α3 + β3 ≤ γ3 ≤ α1 + β3 , α2 + β2 , α3 + β1

α1+α3+β2+β3 , α2+α3+β1+β3 ≤ γ1+γ3 ≤ α1+α2+β1+β3 , α1+α3+β1+β2

But these conditions are not sufficient, as they do not force the second eigen-
value of the sum (which must be equal to α1 +α2 +α3 +β1 +β2 +β3−γ1−γ3)
to be between γ1 and γ3.

It turns out that the introduction of the (obviously necessary) inequalities
needed to solve that ordering problem,

γ1 + 2γ3 ≤ α1 + α2 + α3 + β1 + β2 + β3 ≤ 2γ1 + γ3 ,

yields the complete answer in this case.
The following illustrates the polygon of realizable γ when the given spectra

are α = (6, 4, 2), β = (7, 4, 1):
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If γ = (γ1, γ2), there is only additional condition:

γ1 + 2γ2 ≥ α1 + α2 + α3 + β1 + β2 + β3 .
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If γ = (γ2, γ3), the additional condition is

2γ2 + γ3 ≤ α1 + α2 + α3 + β1 + β2 + β3 .
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These are particular instances of the case s = n− 1, to which we dedicate
the next section.
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Another comment is that in general we cannot expect the vertices of the
realizable set to be produced with diagonal matrices. This is already the case
in the n = 3 example above. The next illustration shows the polygon E(α, β)
in R

3 for the same triples α and β:
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We have marked with a black dot the six points in E(α, β) produced with
diagonal A and B. There are four vertices not obtained with diagonal matrices:
(10, 10, 4), (9, 9, 6), (10, 7, 7), (12, 6, 6).

That is why in general the partial spectrum problem does not follow
trivially from the full spectrum case: we wish to describe the projection of
E(α, β) onto the coordinate s-plane spanned by the k1, . . . , ks canonical vectors,
but we don’t know the vertices of E(α, β).

5. The case s = n − 1

Here we are interested in the possible (n − 1)-tuples

γ = (γ1, . . . , γh−1, γh+1, . . . , γn)

occurring as part of the spectra of sums A + B, A and B Hermitian with the
given spectra α and β.

This is the simplest case of all, because the missing eigenvalue is deter-
mined from the trace condition.
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Theorem 5.1. The complete restrictions in this case are those appearing in
Horn’s list as explicit bounds on sums of entries in γ (both upper and lower
bounds, the latter obtained using the trace condition), together with

(5.1) γh+1 +
∑

k 6=h

γk ≤

n
∑

i=1

αi +

n
∑

j=1

βj ≤ γh−1 +
∑

k 6=h

γk

where the first inequality is not present if h = n, and the second inequality is
not present if h = 1.

Proof. The necessity is obvious. For the sufficiency, we have to put

γh =

n
∑

i=1

αi +

n
∑

j=1

βj −
∑

k 6=h

γk .

From (5.1) it follows that γh−1 ≥ γh ≥ γh+1. All ≤ inequalities in Horn’s list
involving only the entries in γ (not involving γh) are present in the hypothesis.
The conditions in Horn’s list involving γh are precisely those coming from the
≥ inequalities in Horn’s list involving only the entries in γ (together with the
trace condition), and therefore also follow directly from the hypothesis. �

The statements for n = 3 and s = 2 in the previous section are direct
applications of this theorem.

6. The case s = n − 2

The next natural case is s = n − 2. We end this article with just a few
remarks about it, starting with a special situation.

Theorem 6.1. Let n = 4, γ = (γ2, γ3), with γ2 ≥ γ3. There exist 4 × 4
Hermitian A and B, with spectra α and β respectively, such that γ2 and γ3 are
the second and the third eigenvalues of A + B if and only if the entries in γ

satisfy the inequalities in Horn’s list involving only γ2, γ3 and γ2 + γ3 (both
upper and lower bounds, the latter obtained using the trace condition), together
with

(6.1) 2γ2 + γ3 ≤ α1 + α2 + α3 + β1 + β2 + β3 ,

(6.2) γ2 + 2γ3 ≥ α2 + α3 + α4 + β2 + β3 + β4 .

Proof. The necessity is obvious, with (6.1) coming from

γ1 + γ2 + γ3 ≤ α1 + α2 + α3 + β1 + β2 + β3
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and (6.2) coming from

γ1 ≤ α1 + β1

both in Horn’s list.
Now the sufficiency. We have to exhibit γ1 and γ4 such that γ1≥γ2≥γ3≥γ4

and these numbers satisfy Horn’s inequalities with the 4-tuples (α1, α2, α3, α4)
and (β1, β2, β3, β4).

For the record, the inequalities in Horn’s list involving only γ2, γ3 and
γ2 + γ3 are the following:

α2 + β4 , α3 + β3 , α4 + β2 ≤ γ2 ≤ α1 + β2 , α2 + β1

α3 + β4 , α4 + β3 ≤ γ3 ≤ α1 + β3 , α2 + β2 , α3 + β1

α2 + α3 + β3 + β4

α2 + α4 + β2 + β4

α3 + α4 + β2 + β3







≤ γ2 + γ3 ≤







α1 + α2 + β2 + β3

α1 + α3 + β1 + β3

α2 + α3 + β1 + β2

We first define γ1 as the minimum of the following five numbers:

α1 + β1

α1 + α2 + β1 + β2 − γ2

α1 + α2 + β1 + β3 − γ3

α1 + α3 + β1 + β2 − γ3

α1 + α2 + α3 + β1 + β2 + β3 − γ2 − γ3

This ensures two things: that γ1 ≥ γ2, as γ2 is easily seen, using the
hypothesis, to be less than or equal to all five numbers, and that γ1 satisfies all
inequalities in Horn’s list that give upper bounds for it or for sums of it with
the given γ2 and γ3.

Next, of course, we put

γ4 = α1 + α2 + α3 + α4 + β1 + β2 + β3 + β4 − γ1 − γ2 − γ3 .

The rest of the proof consists of a tedious checking that γ4 ≤ γ3 and that
γ4 satisfies all remaining relevant conditions in Horn’s list: upper bounds for
γ4, γ2 + γ4, γ3 + γ4, and γ2 + γ3 + γ4.

The others (upper bounds for γ1 +γ4, γ1+γ2 +γ4, and γ1 +γ3 +γ4) follow
directly from the hypothesis (lower bounds for γ2+γ3, γ3, and γ2, respectively).

It is worth remarking, although not unexpected, that (6.1) is only used in
proving that γ1 ≥ γ2, and (6.2) is only used in proving that γ4 ≤ γ3. �

The following illustrates the polygon of realizable γ when the given spec-
tra are α = (6, 4, 3, 2), β = (7, 5, 4, 1). We have marked the side coming from
inequality (6.1). Condition (6.2) does not restrict the set in this example.
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Conditions (6.1) and (6.2) can be found by scanning Horn’s list for in-
equalities that, together with the ordering of the γ’s, imply extra restrictions
involving the partial spectrum γ = (γ2, γ3). (That they are exactly what is
needed requires a separate proof.)

This suggests a way to identify the extra conditions in other cases.

For example, again for n = 4, if γ = (γ1, γ2) we should add to the explicit
upper and lower bounds for γ1, γ2 and γ1 + γ2 coming from Horn’s list the
following conditions:

γ1 + 2γ2 ≥















α1 + α2 + α3 + β2 + β3 + β4

α1 + α2 + α4 + β1 + β3 + β4

α1 + α3 + α4 + β1 + β2 + β4

α2 + α3 + α4 + β1 + β2 + β3

γ1 + 3γ2 ≥ α1 + α2 + α3 + α4 + β1 + β2 + β3 + β4

For γ = (γ1, γ3) the extra conditions are:

α1 + α3 + α4 + β2 + β3 + β4

α2 + α3 + α4 + β1 + β3 + β4

}

≤ γ1 + 2γ3 ≤ α1 + α2 + α3 + β1 + β2 + β3

2γ1 + γ3 ≥















α1 + α2 + α3 + β2 + β3 + β4

α1 + α2 + α4 + β1 + β3 + β4

α1 + α3 + α4 + β1 + β2 + β4

α2 + α3 + α4 + β1 + β2 + β3
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And so on. This gives an idea of how to find the extra restrictions for all
values of n and s. It is not clear to me at the moment how to go about proving
the sufficiency part in the resulting statements. It seems natural to try to take
advantage of the recursive description of Horn’s inequality list.
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