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s-NUMBERS OF MATRICES AND THE SEPARATION THEOREM
by JOAO FILIPE QUEIRO™ LAA A24 (Aa89), €S3-653

Introduction '

Throughout, F will denote either the field R of real numbers or the field
C of complex numbers. Given A € F™", its singular values are denoted by
0 (A)> 0 (A)> -+ 2 Opinom,ny(A)-

The well-known separation (or interlacing) theorem for singular values [7]
states that if B€ F™ ?"79 j5s s submatrix of A€ F™", then

0, (A) = 0,(B), k=1,2,....min{m—p,n—q},
oul(B) 20, ,,,(A), k=1,2,....min{m—-p—gq,n-—p—q}

(the interlacing inequalities). Reciprocally, given a2 a2 -+ > «
= 0 and Bl b= Bg =22 Bmin(m—p,nfq) = O, lf

min{m, n)

o = B, k=1,2,...,min{m—-p,n—gq},
B> apipiyg k=1,2,....min{m-p-—q,n-p-gq},

then there exists A€ F™" with singular values {«;} and containing a
submatrix B€ F™7? "9 with singular values {f;} [7]. Equivalently, any
(m — p)X(n — q) matrix with singular values { 8;} can be augmented to a
m X n matrix with singular values { a;}.

The problem that interests us is: How much of this remains true for
various generalizations of the singular values?

The singular values are intimately connected with the Euclidean norm in
the spaces ", x(x):=(Z;|x,|*)'/% The generalizations involve taking other
norms.

We need some notation. ¥, ¢, » will denote norms (or families of norms)
in U, F", such as the Holder norms x (x)=(Z;|x;/)"/", L <t <o (note
that x, = x). Analogously, yu will denote a norminU,, ,F™", §, (A)is the
norm of A€ F™" as an operator between the normed spaces (F", ¢) and
(F™", ¢), ie. S, (A)=sup,,o¥(Ax)/p(x). It A ,,..., A, are the columns of
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A€ F™" and if ¢ is absolute, we define [A] , = @(Y(A }),...,¥(A.,)
(these are the composite norms of Maitre [3]).
The following definition was given by Pietsch for operators between

Banach spaces.

DerFiNiTION [4]. A mapping s:U,, , F™" — RN is an s-number function
if, for each pair of norms ¢, ¢, it associates with every matrix A a sequence
(s¥%(A)), en such that

(1) S, (A)=s{%A)>s§%(A)> - >0,
(2) s{(A+ B)<s{?(A)+S,(B),
(3) sP(BAC) < S,(B)s{¥(B)S,,(C),
(4) rank(A) <k = s}®(A)=0,
(5) k<n=st¥(l,)=1
(for any A, B,C, ¢, @, v, ¢, k).

ExaMpLES

The approximation numbers:
al®(A) = inf{SW(A — X):rank(X) < k}.

The Gelfand numbers:

Ax
gr¥(A) = inf sup v(4x)
dmE=n—k+! 0%xeE ‘P(x)

The Bernstein numbers:

Ax
b{®(A):= sup inf d )
dmE=k O#x€E ‘P(x)

The Kolmogorov numbers:

h{¥(A) = g,‘fd‘Pd(A*) = inf sup inf Y(Ax —y).
dimE=k -1 p(x)<l yecE
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The Mitiagin numbers:

mi%(A) = b V(A").

SOME PROPERTIES.

(1) For any s, the mapping (¢, ¢, A) = s{¥(A), ey is continuous.

(2) If A is n X n, then for any s, s®(A) = inf, , o[ ¥(Ax)/p(x)].

(3) If A = diag(ay,...,a,) and  is absolute, then for any s, s{¥(A)=
lot, b k=1,...,n (where 7 is such that |a ;)| > -+ = |a, ).

TueoreM [4]. If s is any s-number function, then sfX(-)=o,(-) for
all k.

THE SEPARATION THEQREM.

(i) Let s be any s-number function, B a submatrix of A. If { is absolute
and @ is arbitrary, then s{%(A) > s{%B) for all k.

(ii) Let s be an additive s-number function, B F™ """ 9 g submatrix
of AEF™". If @ is absolute and  is arbitrary, then s}%(B) > s{?,. (A)
for all k.

REMARKS.

(1) Absolute ( < monotone) can be relaxed to orthant-monotonic (see [2]
for the definition in the real case).

(2) s additive [4] means s{¥;_,(A+ B) < s{¥(A)+ s}Y¥*(B). Examples:
a;, &, hy. This condition can be relaxed to a weaker one, satisfied, for
example, by the b, and the m, (it is not known whether they are additive).

Generalized Approximation Numbers

Another possible generalization is the following: As mentioned before,
o0 {A)=af¥*(A)=inf{S (A — X):rank(X) <k}. Now take p as any norm
( = family of norms) in U,, ,F™", and define

af(A)=inf{p(A — X):rank(X) <k}.
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Then [5]

(i) a(B)za}, (A)if BEF" ™" 7isa submatrix of A € F™",
(i) a’(A)> a¥(B) if p(matrix) is always > p(submatrix).

The Reciprocal of Interlacing .
Given the 8’s denote by A the subset of R™™™ ™) whose elements are the

sequences of a’s which interlace with the 8’s. Our strategy to find examples
in which the reciprocal of interlacing fails is to choose the 8's so that A will
have some points with all coordinates equal, and see what happens.

Consider first the p-approximation numbers just defined. For example, if
@ is unitarily invariant, the situation is radical:

THEOREM. Let p be unitarily invariant. If A is square n X n and + 0,
and if af(A)=al(A), then p=S§,_ (=o0,).

Another example which shows that the condition is highly restrictive may
be obtained considering Maitre’s norms:

Tueorem. Let p={-]_, (¢ absolute). The nonzero matrix A€ ¥F™" has
all its p-approximation numbers equal, say to c, if and only if there exists
D = diag(d,,...,d ) € F™" nonsingular such that ¢(x) = x (Dx) and y(x)
= ex (D 'A ).

EXAMPLES WITH $-NUMBER FUNCTIONS. Let § = ¢@. Let s be an s-num-

ber function. Let m=n, p=gq. Let p>n/2. Choose 8,=--- =8,_,=p
(= 0). Then
A={(ay,e..,a)iay> - 20,20, 28, k=1,..,n—p}.

Note that A contains the half line {(,...,£):£=8}.

Suppose that, for every (ay,...,a,)€ A, there exists A nXn with
Y, y-s-numbers «a,,...,«, and containing an (n —p)X(n —p) submatrix
with ¢, Y-s-numbers B,..., 8. For the points on the half line, this would mean
sup, . ol ¥(Ax)/Y(x)] = inf, , o[¥(Ax)/Y(x))=§, and A/£ would be an
isometry of . Hence for all 8§ € [ —1,1] there would exist an isometry of
containing an (n — p)X(n — p) submatrix with all i, Y-s-numbers equal to
8. This is a very strong condition on ¢. For example, it already leaves out the
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Hélder norms, since, for 1 <t < o0, t # 2, the isometries of X, are just the
“generalized permutations” (modulus-1 elements instead of 1’s only) [1].

QuestioN. If ¢ is a symmetric norm, does the condition imply that
¢ = x? (For n = 2 the answer is yes.)

Question. If interlacing is not enough, what other conditions are there?

An example, among a few others, where the answer can be found exactly
is the following: Let m=n=2, p=g=1, ¢y =x,. When x,y,z vary in F
(R or C), the x,, x;-s-numbers of the 2X2 matrix

4]

describe the following region:

32+(u—£)“"}_

([»3,+00)><[0,B])U{(u,v):u>B,0<v<

(Note the nonconvexity.)

A “posITIVE’ EXAMPLE. Interestingly enough, there are cases in which
the interlacing inequalities are the only relations between the smumbers of
the matrices and submatrices involved.

Let m=n+1, p=g=n(n=m+1, p=g=m would also do). Let v
be absolute. Let s be an s-number function for which the separation theorem
holds (see above). Then, if ¢, 28,2 20,282 - 2a,26,20, it is
possible to show that there exist x,,x,,...,x, such that the (n+1)Xn
matrix

B, l
By O

O 8.
xl x2 . e ® xn

has ¢, y-s-numbers ay, a,,...,a,. For ¢ =, ie. for the ordinary singular
values, see [6] (in fact, in that case this particular situation is enough to yield
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the full converse of interlacing). For arbitrary ¢, a homotopy argument is
used to reduce the question to the ordinary (Euclidean) case. The only
problem (as the reader of [6] will notice) is the fulfillment of a technical
condition involving the s-numbers of a direct sum. For ¢ = x the condition is
automatic. For general ¢ its study leads to a new set of problems.

Details will appear elsewhere.
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OBSERVABILITY OF LINEAR POSITIVE DYNAMIC SYSTEMS
by M. D. SOTO TORRES and R. FERNANDEZ LECHON*

1. Introduction

The input and output structure of a system can significantly influence the
available means for control. Two fundamental concepts characterizing the
dynamic implications of input and output structure are the dual concepts of
controllability and observability. Controllability concemns the possibility of
steering the state from the input, while observability analyzes the possibility
of estimating the state from the output.

Various authors [for example, Kalman (1960, 1963), Silverman (1971)]
have found necessary and sufficient conditions for controllability and observ-
ability of dynamic systems without constraints, that is, neither the variables
nor the parameters of the system have to satisfy conditions. Also, various
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