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TueoreMm 3.2. Assume that the Hamiltonian matrix H has no eigenvectors of the
form (07, yT)" with associated eigenvalue A, Re A = 0. Then:

(i) A strong solution exists if and only if the Hamiltonian mairix H has no
eigenvectors of the form (0T, y")T with associated eigenvalue A, Re A <0 ((A,B) is
stabilizable).

(ii) The strong solution is unique, maximal, and nonnegative definite.

(iii) The strong solution is stabilizing (or positive definite) if and only if H has no
eigenvalues with real part equal to zero.

(iv) The strong solution is the unique nonnegative definite solution of the ARE if
and only if H has no eigenvectors of the form (x7,07)T with associated eigenvalue A,
Re A > 0 ((A,C) is detectable).

Tueorem 3.3 [4, 2]  The strong solution of the ARE exists and is unique if and
only if H has no eigenvectors of the form (07, yT)T with associated eigenvalue A,
Re A <0 ((A, B) is stabilizable).
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SOME RESULTS AND PROBLEMS ON s-NUMBERS

by JOAO FILIPE QUEIRO® LAN Ao (Aqaz), 253-262

Introduction

The study of s-numbers (generalized singular values) leads to numerous interest-
ing problems. In general, these arise when we try to extend to s-numbers results
which are known and well understood for ordinary singular values.
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This talk is meant as a quick survey of a few such problems. We shall work with
matrices over F (=R or C). As in [7], ¢, ¢, v will denote norms, or families of norms,
on the columns over F, such as the Holder norms Xp= (Zjlx}.l” /P 1< p<oe, and
S,.(A) is the operator norm sup, .o (Ax)/e(x).

s-Number Functions

If in several classical characterizations of singular values we replace the usual
Euclidean norm y = y, with other norms, we obtain families of numbers associated
with matrices (or operators) which are generically called s-number functions. In [4],
A. Pietsch has given an axiomatic definition of these functions for operators between
Banach spaces. I refer the reader to [7], where the finite-dimensional matrix version
of this axiomatic definition is presented.

Examples of s-number functions are the approximation numbers a{*(A):=

inf(S,, (A — X):rank(X) < k}, the Gelfand numbers

¥ ( Ax)
P(A) = inf —_—
g (4) dmezlr:wkHO::g_E e(x)

and the Bernstein numbers

Ax
b{*(A):= sup inf ¥ (4x)

dmE=k0*xsE @(x)

Using the concept of dual norm we can define thel Kolmogorov numbers hio(A) =
gf ¥ (A*) and the Mitiagin numbers m{*(A) = b¢ ¥ (A*),
General properties of s-number functions include:

(1) For any s and all k, the mapping (, @, A) > s{*(A) is continuous.

(2) If A is n X n, then for any s, s¥?(A)=inf__ , ¢(Ax)/o(x).

(3) If P and Q are isometries of ¥ and ¢, respectively, then s{*(PAQ) = s{*(A).

(4) If & and ¢ are absolute, then the y, p-s-numbers of a matrix do not change
when we augment it with rows and columns of zeros.

(5) The interlacing or separation theorem: Let B (m — r)X(n — t) be a submatrix
of AmXn. If ¢ is absolute and ¢ is arbitrary, then s{*(A)= s{®(B). If ¢ is
absolute, W is arbitrary, and s satisfies a certain technical condition (all the examples
do), then s{¢(B) > s{'¢, . (A).

Relations between Some s-Numbers
As pointed out in [4], we have the following relations, for all ¢, ¢, A:

(1) af*(A)= gf*(A) = bI*(A), af*(A) > h{?(A) > m{*(A).
(2) g?%(A)> m¥?(A), h{*(A) > b{*(A).

) bf‘“’(A)r—[g;{'fk_l(A'l)]—l if A n X n is invertible.

(4) af=*(A)= g{~*(A) (and, by duality, a}*'(A) = h{*1(A)).
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Computing s-Numbers
Evaluating s-numbers is usually a very difficult task. There are few general

results. For the Euclidean norm, not unexpectedly, we have:
For any s, the s{*(A) are the ordinary singular values of A [4].

For arbitrary ¢ and ¢, almost nothing is known. A nice result (for the first
s-number) is:

845 (A) = maximum of the y-norms of the columns of A {2, 3].
We turn to diagonal matrices. For the case ¢ = ¢ we have:

If ¢ is absolute and A =diag(a,,....a,), with la,)l2 - 2la,q,, then
sf(A) =la,ul for any s.

(If ¢ is not absolute this is false.)

For ¢ # ¢ the situation is wild. We tum to the Hélder norms x,,, 1 < p <«, and
we use the lighter notation s”¢ instead of sX»Xs, The matrix A is still diagonal,
A =diagla,,...,a ), now with o, 2 -+ 2 a,> 0.

Ifp <q, thenaf(A) = gf(A) = h}(A)=(L]_,aD)'/", where 1} /r=1/p~1/q
{4].

For p> g less is known. One small trick, using the previous result:

If p>q, then bPU(A)=[gt,, (A™D) ' =(Tf_1a))'/", where 1/r=1/p—
1/q (now <0).

Little else is known (see [5] for a detailed account and references). Let us be even
more particular. Take A=1I,, p=ow, g=1, F =R, and consider the problem of
evaluating a3(1.), k=1,...,n.

By previous remarks, a}' = gi =h7'. Also, by the result in [2, 3] already
mentioned, S,,,(M) = maximum of the c-norms of the columns of M = max, ; Im, | for
any M, whence trivially a7'(1,) = 1.

Since here we have 1/p—1/qg=—1, the Bernstein numbers are trivial:
be'(1,)=1/k. Therefore, a'(I,)>1/k, k=2,...,n. For k =n there is equality,
since a7'(1,)=inf, ;o x.{x)/x (x)=1/n (take all coordinates of x equal to 1).

The case k = 2 is also easy, because, taking all elements of X equal to % we get
S.(I, = X) =3, whence a3X(I,) <3, and there must be equality.

To summarize, we have ai}(I,)=1, a5'(I)=1%, a*I,)=1/n, and a3'(1,)>
1k k=3,....n—1.

Recently, E. Marques de Sa [8] has found the value of @3'(1,). The numbers
a(1,),...,a% (I,) remain unknown.

S&’s result is

a5 (1) = 1+sec(m/n)’
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This was already conjectured in [5]. The proof is a very long geometrical argument,
beginning with the consideration of the symmetric case: evaluate the S, -distance
from I, to the rank-2 symmetric matrices. This distance is precisely the number
written above, and its determination reduces to finding the greatest minimum angle
between n vectors pointing to the upper half plane in R2. The rest of the proof shows
that the nonsymmetric matrices do not decrease the distance.

s-Numbers of Direct Sums

The problem to be addressed here is: what are the relations between the
s-numbers of C=A + B and those of A and B? For ordinary singular values, of
course, the matter is trivial.

From now on we take ¢ = ¢, ¢ absolute (otherwise, as suggested by what we said
before, the problems become intractable).

We note the following: If a, > a,> --- and b, > b, > - - - are two sequences of
real numbers and if ¢, > ¢, > --- is the sequence obtained from them by joining
their elements, then ¢, ; ; <max{a; b;} and ¢,,; > min{a, b;}. With this in mind,
the following results have some interest. Assume ¢ has the property that ¢(u,v) <
(v, v") whenever ¢(u) < ¢(u') and ¢(v) < ¥(v’), where u and o' (v and ¢’) belong
to the domain of A (B). Then:

(1) s?,,_ (A + B) < max{s{(A), s¥(B)} for the approximation, Gelfand, and Kol-
mogorov numbers.

(@) ¥, (A + B) > min{s{(A), sY(B)} for the Bernstein and Mitiagin numbers.

Our interest in s-numbers of direct sums comes from the following. The converse
of the interlacing theorem is in general false (see [7]). But something can be done in a
particular situation: given ay =2 B, 2 a, 28,2 - 2> a, > B, = 0, we want to prove
that there exist x,,...,x, such that the matrix

B, 0 0 %
0 B 0 x
0 0 B. %,

(or the transpose of this) has s-numbers «,,...,a,. The argument is by induction on

n. The case n =1 is trivial. In the induction, we take in succession, in the matrix
above, x, =0, x,=0,...,x, = 0. To use the induction hypothesis, which will ensure
that all the boundary of the set [B;, +®)X[Bg, B;IX -~ X[B,,B,_,] will be at-
tained by s-numbers of matrices of the form above, we need the s-numbers of a
matrix of the form [B]+ B to be B together with those of B. (For the interior,
topological arguments are used, mainly the Brouwer degree.)

So we are interested in this particular problem: Let A =[8]+ B. When are the
- s-numbers of A precisely 8 together with those of B?
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The situation concerning this problem is rather strange. Let us look, for example,
at the Gelfand numbers (there are similar results for other s-number functions).

Suppose gf_ (B) = B = g{(B). Then:

() Forj=1,...k—1, gf(A)=g/(B).
(i) gf(A)<B.
(i) Forj=k+1,...,n, g¥(A)< gl (B).

In view of (ii) and (iii), we have:

(i) If gf_(B)=b{_(B) then gf(A)=B.
Gii') Forj=k+1,...n, if g% (B)=b¥_ (B) then g¥(A)= g¥_ (B).

These strange conditions involving the Bernstein numbers lead us to still another
question: For which norms ¢ does the equality gf(A) = b{(A) hold for all A and k?

Recall that gf(*)> b{(-) always. This inequality can be strict. I am indebted to
C. R. Johnson and Peter Nylen for the following example: Take ¢ = x,, and

63 20 8
A=|61 2 69;.

75 94 T3

Then g§~(A) =51, bf<(A) = 46.3.

Differentiability of the norm seems to play a role, but it cannot be a sufficient
condition for the equality, since by continuity the above matrix also serves as a
counterexample for y,, p near  (recall the first property we listed for s-number
functions).

An intriguing possibility would be that the Gelfand and the Bernstein numbers
coincide for all matrices (or operators) only in the Euclidean case. If this were so, the
Courant-Fischer theorem would characterize the Euclidean norm among all norms.
For related results, see [1], especially §§12-14.

Some of the topics treated here were studied at length in [6]. I thank the organizers
for inviting me to give a talk at this meeting.
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HANKEL MATRICES FOR
DISCRETE-TIME LINEAR PERIODIC SYSTEMS

by E. SANCHEZ,*” V. HERNANDEZ® and R. BRU?’

1. Introduction
Consider the discrete-time linear N-periodic system defined by the state-space

model
x(k+1)=A(k)x(k)+ B(k)u(k),

y(k)=C(k)x(k),

(1)

where A(k + N)=A(k)eR"**", B(k+N)=BkyeR**", Clk+N)=Clk)e
RP*" ke Z, NeZ*. The N-periodic system (1) is denoted by (B(-), A(-),C(-)),.

If we consider the initial state x(s) =0, s € Z, the input-output application of the
system (1), at time s, is given by

k-1
y(k+s)= 3 W(kk—ju(i+s), k=1, (@)
ji=0
where
Wk, j)=C(k+s)Puk+s,k+s—j+1)B(k+s—j)eR™,
seZ, k=1, j=1,.., k. 3)

and ®,(-, +) is the transition matrix: ®,(k,k,) = A(k — DAk —2) - - - Alkg) if k >k,
and D (kg ko) =1.
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