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Abstract: For square matrices A and B over an elementary divisor domain, we
study the possible invariant factors of A+B in terms of the invariant factors of A
and B. In particular, we find the exact range of det(A+B) in that situation.
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1 Introduction

In this note we work with n × n matrices over principal ideal domains or,
more generally, elementary divisor domains R, defined by the condition that every
matrix is equivalent to its Smith normal form (for a recent treatment of these
rings, see [3]). We shall be concerned with the action on Rn×n defined by A 7→
UAV , where U, V are invertible matrices over R. The orbits for this action are
characterized by n-tuples of elements forming divisibility chains, the invariant
factors.

For such an n-tuple a, we denote by Oa the corresponding orbit. A problem
that attracted attention for a long time was the description of OaOb for given a and
b. An answer in the principal ideal domain case was provided by Klein in 1968
[5], working with modules and localizing over a prime, in terms of Littlewood-
Richardson sequences. An explicit solution involving divisibility relations was
found much later (see e.g. [9] for the relation between the module and matrix
problems and [4] for an account of the solution). Recently, the same list of divis-
ibility relations was shown to be necessary for the product problem in the larger
class of elementary divisor domains [1]. In all this work, the invariant factor pro-
duct problem was seen to be a deep question, with relations to various important
areas of mathematics.
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In the 1980s, the analogous additive problem, that of describing Oa + Ob for
given chains of invariant factors a and b, also received some attention, in particu-
lar by R. C. Thompson, one of the main protagonists in the study of the product
question. After some contributions (see below), with no special structural frame-
work, the sum problem remains open. So, given three divisibility chains with the
same length, it is not known when the third chain is the invariant factor sequence
of a sum of two matrices having the elements of the other two chains as invariant
factors.

Here we make some progress on this problem, in two ways. First, we shall
be concerned with a natural function of the third sequence, namely the product
of its elements. In other words, we aim at describing the possible values of the
determinant of the sum of two matrices with given invariant factors. We present
a complete solution to this problem for matrices over elementary divisor domains.
Second, we relate this to previous work and present a new conjecture for the
solution of the sum problem.

For matrices of the form λI − A over the polynomial ring K[λ], where K is
a field, the question is known as the additive Deligne-Simpson problem and it is
considered in [2], with deep connections to representation theory.

2 Invariant factors of sums

For completeness, we briefly describe what is known about invariant factors of
sums of matrices.

Our notation is standard. Let n ≥ 2. Given n × n matrices A and B over an
elementary divisor domain R, we denote their invariant factors by a1 | · · · | an
and b1 | · · · | bn, respectively. As is well-known, we have

ak =
dk(A)

dk−1(A)
, k = 1, . . . , rank(A) , ak = 0 for k > rank(A),

where, for each k, dk(A) is the gcd of all k × k minors of A, d0 := 1. This means
that the invariant factors of a matrix are well defined apart from units in the ring.
Also, we clearly have dk(A) = a1 · · · ak, apart from unit factors, for all k.

In [10], R. C. Thompson proved that, if c1 | · · · | cn are the invariant factors
of A+B, then

gcd{ai, bj} | ci+j−1 (1)

for all indices i, j such that i + j − 1 ≤ n. His proof uses localization at a prime,
requiring R to be a principal ideal domain, but the result is valid for matrices over
an elementary divisor domain (see the argument in [7]).
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Write A+B = C. From the equalities B = −A+C and A = −B +C, we see
that we have not one but three families of relations

gcd{ai, bj} | ci+j−1 , gcd{ai, cj} | bi+j−1 and gcd{bi, cj} | ai+j−1 . (2)

Also, trivially, taking determinants (with invariant factors chosen so that their
product equals the determinant) we have

a1 · · · an ≡ c1 · · · cn (mod b1),

b1 · · · bn ≡ c1 · · · cn (mod a1),

a1 · · · an ≡ (−1)nb1 · · · bn (mod c1). (3)

In [11], Thompson conjectured that, for n ≥ 2, the six conditions (2) and
(3) are the complete solution for the invariant factor sum problem, i.e. that, if
they hold (with a1, b1, c1 relatively prime, which entails no loss of generality), then
matrices A ∈ Oa, B ∈ Ob exist such that A+B ∈ Oc .

In [8], E. Marques de Sá showed that Thompson’s conjecture is false in the
general case, by finding additional necessary conditions (see the final section).

3 Determinants of sums

A source of inspiration when looking for invariant factor relations is the cor-
responding situation for singular values of complex matrices. The analogy is well-
known (see e.g. [7], [4]). So it is of interest that, in [6], the following inequality
was proved:

n∏
i=1

(αi + βn−i+1) ≥ det(A+B)

where A and B are n × n complex matrices with singular values α1 ≥ · · · ≥ αn

and β1 ≥ · · · ≥ βn.
In keeping with the analogy, we should replace sum by gcd on the left-side, as

in relation (1) above (without that, the result is easily seen to be false). Indeed,
we have:

Theorem 1. Let A and B be n × n matrices over R with invariant factors
a1 | · · · | an and b1 | · · · | bn. Then

n∏
i=1

gcd{ai, bn−i+1} | det(A+B) . (4)
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Proof. We have the well-known formula for determinants of sums:

det(A+B) =

n∑
k=0

∑
µ,ν∈Qk,n

(−1)
∑

µ+
∑

ν detA[µ|ν].detB[µ′|ν ′] (5)

where Qk,n is the set of strictly increasing sequences with k elements taken from
{1, 2, . . . , n}, A[µ|ν] is the submatrix of A with rows and columns indexed by µ
and ν, and µ′, ν ′ are the complementary sequences to µ, ν.

Apart from the sign, each summand is the product of a k×k minor of A, which
is a multiple of a1 · · · ak, by a (n− k)× (n− k) minor of B, which is a multiple of
b1 · · · bn−k. The whole sum clearly must be a multiple of

∏n
i=1 gcd{ai, bn−i+1}.

Condition (4) is simple and elegant but it is not the complete solution to the
determinant question. An example showing this is the following:

Example. Consider R = Z and n = 2. For any matrices A and B with invariant
factors 2 | 4 and 3 | 6, det(A+B) is never a multiple of 6. So, not every multiple of
gcd{2, 6} gcd{4, 3} = 2 is attainable as the determinant of the sum of two matrices
with the prescribed invariant factors.

We must take formula (5) a bit further. In the following statement, we choose
the invariant factors of a matrix so that their product equals the determinant of
the matrix.

Theorem 2. Let A and B be n×n matrices over R with invariant factors a1 |
· · · | an and b1 | · · · | bn. Put δ = gcd{a1 · · · akb1 · · · bn−k : k=1, . . . , n−1}. Then

det(A+B) ≡ a1 · · · an + b1 · · · bn (mod δ) . (6)

Proof. This is immediate from formula (5). For k ∈ {1, . . . , n−1} and µ, ν ∈ Qk,n,
we have detA[µ|ν] ≡ 0 (mod a1 · · · ak) and detB[µ′|ν ′] ≡ 0 (mod b1 · · · bn−k), so

detA[µ|ν]. detB[µ′|ν ′] ≡ 0 (mod a1 · · · akb1 · · · bn−k) .

Summing for all k, we get from (5) that

det(A+B) ≡ det(A) + det(B) (mod δ)

which is the same as

det(A+B) ≡ a1 · · · an + b1 · · · bn (mod δ),
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as required.

We proceed to show that condition (6) is also sufficient.

First, a technical lemma.

Lemma 1. For n ≥ 2 and α1, . . . , αn−1, β1, . . . , βn−1, γ1, . . . , γn ∈ R, we have

det



α1 γ1

β1 α2 0 γ2
β2 α3 γ3

. . .
. . .

...

0 βn−2 αn−1 γn−1

βn−1 γn


=

n∑
i=1

(−1)n+i γi

i−1∏
j=1

αj

n−1∏
j=i

βj .

Proof. The case n = 2 is trivial. For n ≥ 3, we get, using Laplace’s Theorem,

det



α1 γ1

β1 α2 0 γ2
. . .

. . .
...

βn−2 αn−1 γn−1

0 βn−1 γn


=

−βn−1 det



α1 γ1

β1 α2 0 γ2
. . .

. . .
...

βn−3 αn−2 γn−2

0 βn−2 γn−1


+γn det



α1

β1 α2 0
β2 α3

. . .
. . .

0 βn−2 αn−1


,

and the result follows by induction on n.

Theorem 3. Take sequences a1 | · · · | an and b1 | · · · | bn of elements of
R. Define δ as in Theorem 2. Suppose that an element x ∈ R satisfies x ≡
a1 · · · an+b1 · · · bn (mod δ). Then there exist n×n matrices A and B with invariant
factors a1 | · · · | an and b1 | · · · | bn such that det(A+B) = x.
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Proof. For n = 2, let x = a1a2 + b1b2 + qa1b1. Then the matrices A =

[
a1 0
qa1 a2

]
and B =

[
0 −b1
b2 0

]
satisfy the required.

Suppose n ≥ 3 and let x ∈ R be such that x ≡ a1 · · · an+b1 · · · bn (mod δ). Since
every elementary divisor domain is also a Bézout domain, there exist q1, . . . , qn−1 ∈
R such that x = a1 · · · an + b1 · · · bn +

∑n−1
k=1 qka1 · · · akb1 · · · bn−k.

Consider the matrices A =

[
a1 0
q1a1 a2

]
⊕ diag(a3, . . . , an) and

B =



0 (−1)n−1b1
0

(−1)n−3q2b1

diag(bn, bn−1, . . . , b2)
...

−qn−2b1
qn−1b1


.

By means of elementary row and column operations we see that A and B
are equivalent to diag(a1, a2, . . . , an) and diag(b1, b2, . . . , bn), respectively. Hence
a1 | · · · | an and b1 | · · · | bn are the invariant factors of A and B.

From the previous Lemma we have

det(A+B) = det



a1 (−1)n−1b1

q1a1 + bn a2 0 0
bn−1 a3 (−1)n−3q2b1

. . .
. . .

...

0 b3 an−1 −qn−2b1
b2 an + qn−1b1


= b1(q1a1 + bn)b2 · · · bn−1 +

n−1∑
i=3

qi−1a1 · · · ai−1b1 · · · bn−i+1 +

(an + qn−1b1)a1 · · · an−1

= x .

So condition (6) is necessary and sufficient for the existence of two matrices
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with the given invariant factors and such that the determinant of their sum has
the prescribed value.

4 Further notes on the sum problem

At first sight, Thompson’s conjecture is quite a bold one, since it simply joins, as
possible sufficient conditions for the sum problem, the divisibility relations (2) to
the trivial congruences (3). But, in fact, the relations (2) are highly restrictive on
the three n-tuples of invariant factors, so the conjecture was not unnatural. Sá
showed it is not true, but the conditions he added in [8] are just modifications of
(3).

Let’s illustrate how restrictive conditions (2) are. We might think of using
formula (5) as in Theorem 2 to obtain some additional necessary conditions. Let
m ∈ {1, 2, . . . , n}. For every ξ, ζ ∈ Qm,n we have

det(A+B)[ξ|ζ] =
m∑
k=0

∑
µ,ν∈Qk,m

(−1)
∑

µ+
∑

ν detA[ξ|ζ][µ|ν]. detB[ξ|ζ][µ′|ν ′] ,

and so every m×m minor of A+B is a multiple of

εm = gcd{ a1 · · · am , a1 · · · am−1b1 , a1 · · · am−2b1b2 , . . . , a1b1 · · · bm−1 , b1 · · · bm } .

Hence, if c1 | · · · | cn are the invariant factors of A+B, we have

c1c2 · · · cm ≡ 0 (mod εm) , m = 1, . . . , n .

But these n congruences actually are not new necessary conditions, since they are
a consequence of (2):

Theorem 4. If a1 | · · · | an , b1 | · · · | bn and c1 | · · · | cn are sequences of
elements in R that satisfy (2) then c1c2 · · · cm ≡ 0 (mod εm), for all m = 1, . . . , n.

Proof. For each m ∈ {2, . . . , n},

εm = gcd{ a1 · · · am−1 gcd{am, b1} , a1 · · · am−2b1 gcd{am−1, b2} , . . . ,

a1b1 · · · bm−2 gcd{a2, bm−1} , b1 · · · bm−1 gcd{a1, bm} } .

From (2) we have that gcd{am−k−1, bk} | cm, for k = 1, . . . ,m and so εm |
εm−1cm. Since ε1 = gcd{a1, b1} | c1 it follows that εm | c1c2 · · · cm.
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Given Theorem 2, we can add condition (6) to the list of necessary conditions
on invariant factors of sums of matrices with given invariant factors. It is natural
to ask how it relates to Thompson’s conjecture and Sá’s later work. To do this
we present all the known necessary conditions, renaming them for convenience.
For symmetry purposes we follow [8] and consider matrices A, B and C such that
A + B + C = 0. So, if A, B and C are n × n matrices with invariant factors
a1 |a2 | · · · |an, b1 | b2 | · · · | bn and c1 | c2 | · · · | cn, chosen so that the determinant
of each matrix is equal to the product of its invariant factors, and A+B+C = 0,
then the following conditions hold:

(I)


gcd{ai, bj} | ci+j−1

gcd{ai, cj} | bi+j−1

gcd{ci, bj} | ai+j−1

, 1 ≤ i, j ≤ n, i+ j − 1 ≤ n ;

(II)



n∏
i=1

ai ≡ (−1)n
n∏

i=1

bi (mod c1δ
n−1
1 )

n∏
i=1

bi ≡ (−1)n
n∏

i=1

ci (mod a1δ
n−1
1 )

n∏
i=1

ci ≡ (−1)n
n∏

i=1

ai (mod b1δ
n−1
1 )

,

where δ1 = gcd{a1, b1, c1};

(III)



n∏
i=1

ai ≡ (−1)n
n∏

i=1

bi (mod γ)

n∏
i=1

bi ≡ (−1)n
n∏

i=1

ci (modα)

n∏
i=1

ci ≡ (−1)n
n∏

i=1

ai (modβ)

,

where

α = a1

n−1∏
i=1

gcd{a1, bi}, β = b1

n−1∏
i=1

gcd{b1, ci}, γ = c1

n−1∏
i=1

gcd{c1, ai};
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and

(IV)



(−1)n
n∏

i=1

ci ≡
n∏

i=1

ai +

n∏
i=1

bi (mod δ)

(−1)n
n∏

i=1

ai ≡
n∏

i=1

bi +

n∏
i=1

ci (mod θ)

(−1)n
n∏

i=1

bi ≡
n∏

i=1

ai +
n∏

i=1

ci (mod η)

,

where
δ = gcd{a1 · · · akb1 · · · bn−k : k=1, . . . , n−1} ,
θ = gcd{c1 · · · ckb1 · · · bn−k : k=1, . . . , n−1} ,
η = gcd{a1 · · · akc1 · · · cn−k : k=1, . . . , n−1} .

(II) are Thompson’s conditions from [11], in the version where we do not assume
that a1, b1, c1 are relatively prime. (III) are Sá’s conditions from [8]. (IV) are our
new necessary conditions obtained as in Theorem 2 from C = −A−B, A = −B−C
and B = −A− C.

Concerning conditions (I) to (IV) we have the following list of remarks.

Remark 1. Conditions (I) together with (III) imply (II) but conditions (I) to-
gether with (II) do not imply (III) [8].

Remark 2. Conditions (I) together with (II) do not imply (IV). Take, for instance,
n = 3, a : 1 | 2 | 2, b : 1 | 6 | 30 and c : 8 | 16 | 96. This example also shows
that the conditions in Theorem 4 do not imply (IV).

Remark 3. For n odd, it is easy to show that (IV) are equivalent to

n∏
i=1

ai +

n∏
i=1

bi +

n∏
i=1

ci ≡ 0 (mod lcm{δ, θ, η}),

and (III) are equivalent to

n∏
i=1

ai +
n∏

i=1

bi +
n∏

i=1

ci ≡ 0 (mod lcm{α, β, γ}),

since α |
∏n

i=1 ai , β |
∏n

i=1 bi and γ |
∏n

i=1 ci .
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Remark 4. For n = 2, the three sets of conditions (I)∧(II), (I)∧(III) and (I)∧(IV)
are equivalent. This follows from elementary calculations.

Next we prove that (IV) implies (III).

Lemma 2. If a1 | · · · | an , b1 | · · · | bn and c1 | · · · | cn are sequences of elements
in R that satisfy (I) then

lcm {α, β} | δ , lcm {β, γ} | θ and lcm {α, γ} | η .

Proof. We will prove that α | δ and β | δ. The other relations are proved similarly.
For each k ∈ {1, . . . , n}, a1 · · · akb1 · · · bn−k is a multiple of ak1b1 · · · bn−k and hence
a multiple of α. So α | δ.

Let k ∈ {1, . . . , n}. From (I), gcd{b1, ci} | ai, for i = 1, . . . , k. Then

β = b1

n−1∏
i=1

gcd{b1, ci} | a1 · · · akbn−k
1 | a1 · · · akb1 · · · bn−k .

Therefore β | δ.

This arguments shows that, even for sequences that do not satisfy (I), α | δ,
β | θ and γ | η will always hold.

Theorem 5. If a1 | · · · | an , b1 | · · · | bn and c1 | · · · | cn are sequences of
elements in R that satisfy (IV) then they also satisfy (III).

Proof. The result follows promptly from α | δ , β | θ , γ | η , α |
∏n

i=1 ai ,
β |

∏n
i=1 bi and γ |

∏n
i=1 ci .

We were unable to prove that (III), even together with (I), implies (IV), or to
find sequences that satisfy (I) and (III) but do not satisfy (IV).

Question. Does (III) imply (IV)?

All of the above, together with some computational evidence, leads us to the
following conjecture on the solution to the invariant factor sum problem:

Conjecture. Given chains a, b and c, we have Oc ⊂ Oa + Ob if and only if
(I) holds and there exist units u and v such that

∏
ci ≡ u

∏
ai + v

∏
bi(mod δ),∏

ci ≡ u
∏

ai + (−1)n+1v
∏

bi(mod θ) and
∏

ci ≡ (−1)n+1u
∏

ai + v
∏

bi(mod η).
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