Semidefinite lifts of polytopes

João Gouveia
University of Coimbra
2nd of August - SIAM 2013

with Richard Z. Robinson and Rekha Thomas (U.Washington)

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

This tells us how hard it is to optimize over P using semidefinite programming.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of
$\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & x_{1} & y \\ x_{2} & y & x_{2}\end{array}\right] \succeq 0$.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Definitions

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Definitions

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Definitions

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Let M be a m by n nonnegative matrix.

Definitions

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Let M be a m by n nonnegative matrix.

Semidefinite Factorizations

A PSD_{k}-factorization of M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

The psd rank of a polytope P is defined as

$$
\operatorname{rank}_{p s d}(P):=\operatorname{rank}_{p s d}\left(S_{P}\right)
$$

The Hexagon

Consider the regular hexagon.

The Hexagon

Consider the regular hexagon.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

The Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0 \\
1
\end{array}\right],\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],}
\end{aligned}
$$

The Hexagon

Consider the regular hexagon.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

It has a 6×6 slack matrix.

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
0 \\
1 & 1 & 0
\end{array} 1\right.}
\end{array}\right],
$$

The Hexagon - continued

The regular hexagon must have a size 4 representation.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices
$(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

Bounds

Proposition (G.-Robinson-Thomas 2012)

All hexagons have psd rank 4, hence any m-gon has rank at most $4\left\lceil\frac{m}{6}\right\rceil$.

Bounds

Proposition (G.-Robinson-Thomas 2012)

All hexagons have psd rank 4, hence any m-gon has rank at most $4\left\lceil\frac{m}{6}\right\rceil$.

But how close to that can we get?

Bounds

Proposition (G.-Robinson-Thomas 2012)
All hexagons have psd rank 4, hence any m-gon has rank at most $4\left\lceil\frac{m}{6}\right\rceil$.

But how close to that can we get?
Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in \mathbb{R}^{n} has m vertices (or facets), then it has psd rank at least $O\left(\sqrt{\frac{\log (m)}{n \log (\log (m))}}\right)$.

Bounds

Proposition (G.-Robinson-Thomas 2012)
All hexagons have psd rank 4, hence any m-gon has rank at most $4\left\lceil\frac{m}{6}\right\rceil$.

But how close to that can we get?
Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in \mathbb{R}^{n} has m vertices (or facets), then it has psd rank at least $O\left(\sqrt{\frac{\log (m)}{\operatorname{nog}(\log (m))}}\right)$.

Theorem (G.-Robinson-Thomas 2012)
Let P be a generic polytope with m vertices, then rank $_{\text {psd }}(P) \geq \sqrt[4]{m}$

Embarrassing state-of-art in \mathbb{R}^{2}

	min rank $_{p s d}$	max rank $_{\text {psd }}$
3	3	3
4	3	3
5	4	4
6	4	4
7	4 or 5	4 or 5
8	4	4 or 5 or 6

A Simpler Problem

We want to study which polytopes have "small" semidefinite representations.

A Simpler Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

A Simpler Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

A Simpler Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

We want to make "small" $=d+1$.

Characterization

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d. Then $\operatorname{rank}_{\text {psd }}(P)=d+1$ if and only if there exists an Hadamard square root matrix M of S_{P} such that $\operatorname{rank}(M)=d+1$.

Characterization

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d. Then $\operatorname{rank}_{\text {psd }}(P)=d+1$ if and only if there exists an Hadamard square root matrix M of S_{P} such that $\operatorname{rank}(M)=d+1$.

On the plane this is enough:
\mathbb{R}^{2} characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a quadrilateral.

A more interesting case

\mathbb{R}^{3} characterization
A 3-dimensional polytope is sdp-minimal iff it is a simplex, a bisimplex, a quadrilateral pyramid, a combinatorial triangular prism, a biplanar octahedra or a biplanar cuboid.

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$ and some points p_{j} verifying them,

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$ and some points p_{j} verifying them,

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$ and some points p_{j} verifying them, one can always define the nonnegative matrix $S_{i j}=h_{i}\left(p_{j}\right)$.

$$
S_{P, Q}=\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
7 & 9 & 4 & 3 \\
5 & 1 & 5 & 9
\end{array}\right]
$$

How hard can it be? - Nonnegative matrices

Given some linear inequalities $h_{i}(x) \geq 0$ and some points p_{j} verifying them, one can always define the nonnegative matrix $S_{i j}=h_{i}\left(p_{j}\right)$.

$$
S_{P, Q}=\left[\begin{array}{llll}
1 & 3 & 4 & 2 \\
7 & 9 & 4 & 3 \\
5 & 1 & 5 & 9
\end{array}\right]
$$

All nonnegative matrices are of this type

How hard can it be? - Rank 3

Geometric Problem
Let $M=S_{P, Q}$ be a rank 3 nonnegative matrix. $\operatorname{rank}_{p s d}(M)=2$ if and only if we can fit a (half)-conic between Q and P.

How hard can it be? - Rank 3

Geometric Problem
Let $M=S_{P, Q}$ be a rank 3 nonnegative matrix. $\operatorname{rank}_{p s d}(M)=2$ if and only if we can fit a (half)-conic between Q and P.
Example:

$$
M_{\varepsilon}=S_{C,(1-\varepsilon) C}=\left[\begin{array}{cccc}
2-\varepsilon & 2-\varepsilon & \varepsilon & \varepsilon \\
\varepsilon & 2-\varepsilon & 2-\varepsilon & \varepsilon \\
2-\varepsilon & \varepsilon & 2-\varepsilon & 2-\varepsilon \\
2-\varepsilon & 2-\varepsilon
\end{array}\right]
$$

How hard can it be? - Rank 3

Geometric Problem
Let $M=S_{P, Q}$ be a rank 3 nonnegative matrix. rank $_{p s d}(M)=2$ if and only if we can fit a (half)-conic between Q and P.
Example:

$$
M_{\varepsilon}=S_{C,(1-\varepsilon) C}=\left[\begin{array}{cccc}
2-\varepsilon & 2-\varepsilon & \varepsilon & \varepsilon \\
\varepsilon & 2-\varepsilon & 2-\varepsilon & \varepsilon \\
2-\varepsilon & \varepsilon & 2-\varepsilon & 2-\varepsilon \\
2-\varepsilon & 2-\varepsilon \\
\varepsilon & 2-\varepsilon
\end{array}\right]
$$

$$
\operatorname{rank}_{\mathrm{psd}} M_{\varepsilon}= \begin{cases}1 & \text { if } \varepsilon=1 ; \\ 2 & \text { if } \varepsilon \in[1-\sqrt{2} / 2,1) \\ 3 & \text { if } \varepsilon \in[0,1-\sqrt{2} / 2)\end{cases}
$$

How hard can it be? - General

MIN PSD RANK
Given a nonnegative matrix M of rank $\binom{k+1}{2}$, is $\operatorname{rank}_{\mathrm{psd}}(M)=k$?

How hard can it be? - General

MIN PSD RANK
Given a nonnegative matrix M of rank $\binom{k+1}{2}$, is $\operatorname{rank}_{\text {psd }}(M)=k$?

Theorem - G.-Robinson-Thomas 2013
MIN PSD RANK can be solved in time $(p q)^{O\left(d^{2.5}\right)}$ for $M \in \mathbb{R}_{+}^{p \times q}$ and $\operatorname{rank}(M)=d=\binom{k+1}{2}$.

How hard can it be? - General

MIN PSD RANK
Given a nonnegative matrix M of rank $\binom{k+1}{2}$, is $\operatorname{rank}_{\text {psd }}(M)=k$?

Theorem - G.-Robinson-Thomas 2013
MIN PSD RANK can be solved in time $(p q)^{O\left(d^{2.5}\right)}$ for $M \in \mathbb{R}_{+}^{p \times q}$ and $\operatorname{rank}(M)=d=\binom{k+1}{2}$.
In particular, for fixed rank, MIN PSD RANK can be solved in polynomial time.

Conclusion

PSD Factorization/rank is an exciting area of research with many recent breakthroughs and many open questions.

Conclusion

PSD Factorization/rank is an exciting area of research with many recent breakthroughs and many open questions.

To read more on this:
Worst-case Results for Positive Semidefinite Rank - G., Robinson and Thomas - arXiv:1305.4600

Polytopes of Minimum Positive Semidefinite Rank - G., Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - G. , Parrilo and Thomas - Math of OR

Thank you

