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Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. A0 +

∑
Aix i +

∑
Biy i � 0

}
where Ai and Bi are k × k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The Square

The 0/1 square is the
projection onto x1 and
x2 of 1 x1 x2

x1 x1 y
x2 y x2

 � 0.
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Definitions

Let P be a polytope with facets given by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack Matrix
The slack matrix of P is the matrix SP ∈ Rf×v given by

SP(i , j) = hi(pj).

Let M be a m by n nonnegative matrix.

Semidefinite Factorizations
A PSDk -factorization of M is a set of k × k positive semidefinite
matrices A1, · · · ,Am and B1, · · ·Bn such that Mi,j =

〈
Ai ,Bj

〉
.
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSDk -factorization.

The psd rank of M, rankpsd(M) is the smallest k for which M
has a PSDk -factorization.

The psd rank of a polytope P is defined as

rankpsd(P) := rankpsd(SP).
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The Hexagon

Consider the regular
hexagon.

It has a 6×6 slack matrix.

 0 0 2 4 4 2
2 0 0 2 4 4
4 2 0 0 2 4
4 4 2 0 0 2
2 4 4 2 0 0
0 2 4 4 2 0


[ 1 −1 0 1

−1 1 0 −1
0 0 1 0
1 −1 0 1

]
,

[ 1 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

]
,

[ 1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

]
,

[ 1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

]
,

[ 1 0 0 0
0 1 −1 1
0 −1 1 −1
0 1 −1 1

]
,

[ 1 −1 1 0
−1 1 −1 0
1 −1 1 0
0 0 0 1

]
,

[ 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

]
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]
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely equiva-
lent hexagon H with vertices
(±1,0), (0,±1), (1,−1) and (−1,1).

H =

(x1, x2) :


1 x1 x2 x1 + x2
x1 1 y1 y2
x2 y1 1 y3

x1 + x2 y2 y3 1

 � 0


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Bounds

Proposition (G.-Robinson-Thomas 2012)
All hexagons have psd rank 4, hence any m-gon has rank at
most 4dm

6 e.

But how close to that can we get?

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in Rn has m vertices (or facets), then it has psd
rank at least O

(√
log(m)

n log(log(m))

)
.

Theorem (G.-Robinson-Thomas 2012)
Let P be a generic polytope with m vertices, then
rankpsd(P) ≥ 4

√
m
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Embarrassing state-of-art in R2

min rankpsd max rankpsd

3 3

3 3

4 4

4 4

4 or 5 4 or 5

4 4 or 5 or 6



A Simpler Problem

We want to study which polytopes have “small” semidefinite
representations.

What do we want “small” to mean?

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

We want to make “small” = d + 1.
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Characterization

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d . Then rankpsd(P) = d + 1 if and only if
there exists an Hadamard square root matrix M of SP such that
rank(M) = d + 1.

On the plane this is enough:

R2 characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a
quadrilateral.
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A more interesting case

R3 characterization
A 3-dimensional polytope is sdp-minimal iff it is a simplex, a
bisimplex, a quadrilateral pyramid, a combinatorial
triangular prism, a biplanar octahedra or a biplanar cuboid.



How hard can it be? - Nonnegative matrices

Given some linear inequalities hi(x) ≥ 0

and some points pj
verifying them, one can always define the nonnegative matrix
Sij = hi(pj).

SP,Q =

 1 3 4 2
7 9 4 3
5 1 5 9



All nonnegative matrices are of this type
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How hard can it be? - Rank 3

Geometric Problem
Let M = SP,Q be a rank 3 nonnegative matrix. rankpsd(M) = 2
if and only if we can fit a (half)-conic between Q and P.

Example:

Mε = SC,(1−ε)C =

[ 2 − ε 2 − ε ε ε
ε 2 − ε 2 − ε ε
ε ε 2 − ε 2 − ε

2 − ε ε ε 2 − ε

]

rankpsdMε =


1 if ε = 1;
2 if ε ∈ [1−

√
2/2,1);

3 if ε ∈ [0,1−
√

2/2).
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How hard can it be? - General

MIN PSD RANK
Given a nonnegative matrix M of rank

(k+1
2

)
, is rankpsd(M) = k?

Theorem - G.-Robinson-Thomas 2013
MIN PSD RANK can be solved in time (pq)O(d2.5) for M ∈ Rp×q

+

and rank(M) = d =
(k+1

2

)
.

In particular, for fixed rank, MIN PSD RANK can be solved in
polynomial time.
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Conclusion

PSD Factorization/rank is an exciting area of research with
many recent breakthroughs and many open questions.

To read more on this:

Worst-case Results for Positive Semidefinite Rank - G.,
Robinson and Thomas - arXiv:1305.4600

Polytopes of Minimum Positive Semidefinite Rank - G.,
Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - G. , Parrilo and
Thomas - Math of OR

Thank you
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