A semidefinite approach to the K_{i}-cover problem

João Gouveia

University of Coimbra

4th of August - SIAM AG 2013
with James Pfeiffer (U.Washington)

Triangle covers and Triangle-free sets

Given a graph $G=(V, E)$ we have:

Triangle covers and Triangle-free sets

Given a graph $G=(V, E)$ we have:

A triangle cover is a set of edges including at least one from each triangle

Triangle covers and Triangle-free sets

Given a graph $G=(V, E)$ we have:

A triangle cover is a set of edges including at least one from each triangle

A triangle-free subgraph is a set of edges not containing any triangle

These sets are complementary to each other.

Triangle-Cover Problem

Consider $G=(V, E)$ and edge-weights ω.

Triangle-Cover Problem

Consider $G=(V, E)$ and edge-weights ω.
Min Triangle Cover Problem
Find a triangle cover $T \subseteq E$ for which

$$
\sum_{e \in T} \omega_{e}
$$

is minimum.

Triangle-Cover Problem

Consider $G=(V, E)$ and edge-weights ω.

Min Triangle Cover Problem
Find a triangle cover $T \subseteq E$ for which

$$
\sum_{e \in T} \omega_{e}
$$

is minimum.

Max Triangle Free Problem
Find a triangle-free set $F \subseteq E$ for which

$$
\sum_{e \in F} \omega_{e}
$$

is maximum.

Triangle-Cover Problem

Consider $G=(V, E)$ and edge-weights ω.
Min Triangle Cover Problem
Find a triangle cover $T \subseteq E$ for which

$$
\sum_{e \in T} \omega_{e}
$$

is minimum.

Remarks:

- These problems are equivalent.

Triangle-Cover Problem

Consider $G=(V, E)$ and edge-weights ω.

Min Triangle Cover Problem
Find a triangle cover $T \subseteq E$ for which

$$
\sum_{e \in T} \omega_{e}
$$

is minimum.

Max Triangle Free Problem
Find a triangle-free set $F \subseteq E$ for which

$$
\sum_{e \in F} \omega_{e}
$$

is maximum.

Remarks:

- These problems are equivalent.
- These problems are NP-complete.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.
Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.

Max Triangle Free Problem
Find a K_{i}-free set $F \subseteq \mathcal{K}_{i-1}$ for which
is maximum.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.
Remarks:

Max Triangle Free Problem
Find a K_{i}-free set $F \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k=0}=
$$

is maximum.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.

Max Triangle Free Problem
Find a K_{i}-free set $F \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{\text {mak }}
$$

is maximum.

Remarks:

- For $i=3$ is the triangle cover problem.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.

Max Triangle Free Problem

Find a K_{i}-free set $F \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k=1}^{u k}
$$

is maximum.

Remarks:

- For $i=3$ is the triangle cover problem.
- For $i=2$ is the stable set problem.

K_{i}-Cover Problem

Let G be any graph, and \mathcal{K}_{i-1} its set of cliques of size $i-1$.

Min K_{i}-Cover Problem
Find a K_{i}-cover $T \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k \in T} \omega_{k}
$$

is minimum.

Max Triangle Free Problem

Find a K_{i}-free set $F \subseteq \mathcal{K}_{i-1}$ for which

$$
\sum_{k=1}^{u k}
$$

is maximum.

Remarks:

- For $i=3$ is the triangle cover problem.
- For $i=2$ is the stable set problem.
- All are NP-complete [Comforti-Corneil-Mahjoub]

Triangle-Free Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $P_{3}(G)$, the triangle-free polytope of G, in the following way:

Triangle-Free Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $P_{3}(G)$, the triangle-free polytope of G, in the following way:

- For every triangle-free set $F \subseteq E$ consider its characteristic vector $\chi_{F} \in\{0,1\}^{E}$;

Triangle-Free Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $P_{3}(G)$, the triangle-free polytope of G, in the following way:

- For every triangle-free set $F \subseteq E$ consider its characteristic vector $\chi_{F} \in\{0,1\}^{E}$;
- let $S_{3} \subset\{0,1\}^{n}$ be the collection of all those vectors;

Triangle-Free Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $P_{3}(G)$, the triangle-free polytope of G, in the following way:

- For every triangle-free set $F \subseteq E$ consider its characteristic vector $\chi_{F} \in\{0,1\}^{E}$;
- let $S_{3} \subset\{0,1\}^{n}$ be the collection of all those vectors;
- the polytope $P_{3}(G)$ is then defined as the convex hull of the vectors in S_{3}.

Example

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1),(1,0,1)\}
$$

Reformulation

Triangle-Free Problem Reformulated
Given a graph $G=(V, E)$ and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$
\mu(G, \omega):=\max _{x \in P_{3}(G)}\langle\omega, x\rangle .
$$

Reformulation

Triangle-Free Problem Reformulated

Given a graph $G=(V, E)$ and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$
\mu(G, \omega):=\max _{x \in P_{3}(G)}\langle\omega, x\rangle .
$$

However finding $P_{3}(G)$ is as hard as solving the original problem.

Reformulation

Triangle-Free Problem Reformulated

Given a graph $G=(V, E)$ and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$
\mu(G, \omega):=\max _{x \in P_{3}(G)}\langle\omega, x\rangle .
$$

However finding $P_{3}(G)$ is as hard as solving the original problem.

We intend to find approximations for it.

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of $G, \operatorname{FRAC}_{\Delta}(G)$, the set defined by the following inequalities.

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of $G, \operatorname{FRAC}_{\Delta}(G)$, the set defined by the following inequalities.

- $1 \geq x_{i} \geq 0$ for $i \in E(0-1$ constrains $)$;

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of G, FRAC $_{\Delta}(G)$, the set defined by the following inequalities.

- $1 \geq x_{i} \geq 0$ for $i \in E(0-1$ constrains $)$;
- $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$ (triangle constrains).

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of G, $\operatorname{FRAC}_{\Delta}(G)$, the set defined by the following inequalities.

- $1 \geq x_{i} \geq 0$ for $i \in E(0-1$ constrains $)$;
- $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of $G, \operatorname{FRAC}_{\Delta}(G)$, the set defined by the following inequalities.

- $1 \geq x_{i} \geq 0$ for $i \in E(0-1$ constrains $)$;
- $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.
Krivelevich [1995] proved for the unweighted triangle cover version an approximation factor of 2.

Fractional Triangle-Free Polytope

The simplest relaxation of $P_{3}(G)$ is the fractional triangle free polytope of $G, \operatorname{FRAC}_{\Delta}(G)$, the set defined by the following inequalities.

- $1 \geq x_{i} \geq 0$ for $i \in E(0-1$ constrains $)$;
- $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.
Krivelevich [1995] proved for the unweighted triangle cover version an approximation factor of 2.

We want to use moment matrices to approximate this problem.

Triangle Ideal and sums of squares approximations

 The polynomials vanishing on S_{3} are those in the ideal$$
I_{3}=\left\langle x_{e} x_{f} x_{g}, x_{i}^{2}-x_{i}: \forall \text { triangles }\{e, f, g\}, \forall i \in E\right\rangle
$$

Triangle Ideal and sums of squares approximations

 The polynomials vanishing on S_{3} are those in the ideal$$
I_{3}=\left\langle x_{e} x_{f} x_{g}, x_{i}^{2}-x_{i}: \forall \text { triangles }\{e, f, g\}, \forall i \in E\right\rangle .
$$

$f \in \mathbb{R}[x]$ is k-sos modulo I_{3} if and only if

$$
f \equiv\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \quad \bmod I_{3},
$$

for some polynomials h_{1}, \ldots, h_{m} with degree less or equal k.

Triangle Ideal and sums of squares approximations

 The polynomials vanishing on S_{3} are those in the ideal$$
I_{3}=\left\langle x_{e} x_{f} x_{g}, x_{i}^{2}-x_{i}: \forall \text { triangles }\{e, f, g\}, \forall i \in E\right\rangle
$$

$f \in \mathbb{R}[x]$ is k-sos modulo I_{3} if and only if

$$
f \equiv\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \quad \bmod I_{3},
$$

for some polynomials h_{1}, \ldots, h_{m} with degree less or equal k.
Theta Bodies of an ideal

$$
\mathrm{TH}_{d}(/ 3)=\bigcap_{\ell \text { linear }, \ell \text {-sos modulo /3 }}\left\{\mathbf{x} \in \mathbb{R}^{E}: \ell(\mathbf{x}) \geq 0\right\}
$$

Triangle Ideal and sums of squares approximations

 The polynomials vanishing on S_{3} are those in the ideal$$
I_{3}=\left\langle x_{e} x_{f} x_{g}, x_{i}^{2}-x_{i}: \forall \text { triangles }\{e, f, g\}, \forall i \in E\right\rangle
$$

$f \in \mathbb{R}[x]$ is k-sos modulo I_{3} if and only if

$$
f \equiv\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \quad \bmod I_{3},
$$

for some polynomials h_{1}, \ldots, h_{m} with degree less or equal k.
Theta Bodies of an ideal

$$
\mathrm{TH}_{d}(/ 3)=\bigcap_{\ell \text { linear }, \ell \text { k-sos modulo /3 }}\left\{\mathbf{x} \in \mathbb{R}^{E}: \ell(\mathbf{x}) \geq 0\right\}
$$

We have $P_{3}(G) \subseteq \cdots \subseteq \mathrm{TH}_{3}\left(/_{3}\right) \subseteq \mathrm{TH}_{2}\left(/_{3}\right) \subseteq \operatorname{FRAC}_{\Delta}(G)$.

Facets of $P_{3}(G)$

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_{3}-free problem. Among them:

1. Binary inequalities: $0 \leq x_{k} \leq 1$, for all $k \in E$,

Facets of $P_{3}(G)$

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_{3}-free problem. Among them:

1. Binary inequalities: $0 \leq x_{k} \leq 1$, for all $k \in E$,
2. Triangle inequalities: $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$

Facets of $P_{3}(G)$

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_{3}-free problem. Among them:

1. Binary inequalities: $0 \leq x_{k} \leq 1$, for all $k \in E$,
2. Triangle inequalities: $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$
3. Δ-p-hole inequalities:

Facets of $P_{3}(G)$

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_{3}-free problem. Among them:

1. Binary inequalities: $0 \leq x_{k} \leq 1$, for all $k \in E$,
2. Triangle inequalities: $x_{i}+x_{j}+x_{k} \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_{3}$
3. Δ-p-hole inequalities: ????

Δ-p holes

A Δ - p-hole is a graph made up of p copies of $K_{3}, C_{1}, C_{2}, \cdots, C_{p}$ such that C_{k} and C_{j} share an edge if and only if $|k-j| \equiv 1$.

Δ-p holes

A Δ-p-hole is a graph made up of p copies of $K_{3}, C_{1}, C_{2}, \cdots, C_{p}$ such that C_{k} and C_{j} share an edge if and only if $|k-j| \equiv 1$.

Δ-p holes

A Δ - p-hole is a graph made up of p copies of $K_{3}, C_{1}, C_{2}, \cdots, C_{p}$ such that C_{k} and C_{j} share an edge if and only if $|k-j| \equiv 1$.

In particular wheels of order Δ-p-holes.

Δ-p holes

A Δ-p-hole is a graph made up of p copies of $K_{3}, C_{1}, C_{2}, \cdots, C_{p}$ such that C_{k} and C_{j} share an edge if and only if $|k-j| \equiv 1$.

In particular wheels of order $\Delta-p$-holes.
If p odd, and $H \subseteq G$ a $\Delta-p$-hole, $P_{3}(G)$ has a facet:

$$
\sum_{H} x_{j} \leq 3\left(\frac{p-1}{2}\right)+1
$$

Separation

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including binary, clique and wheel inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ - p-hole inequalities.

Separation

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including binary, clique and wheel inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ - p-hole inequalities.
Let $Q(G)$ be the polytope cut out by binary, clique and Δ - p-hole inequalities.

Separation

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including binary, clique and wheel inequalities, thus providing a polytime algorithm to optimize over them.
They couldn't give a separation algorithm for the more general $\Delta-p$-hole inequalities.
Let $Q(G)$ be the polytope cut out by binary, clique and $\Delta-p$-hole inequalities.

Containment

$$
P_{3}(G) \subseteq \mathrm{TH}_{2}\left(I_{3}\right) \subseteq Q(G) .
$$

Separation

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including binary, clique and wheel inequalities, thus providing a polytime algorithm to optimize over them.
They couldn't give a separation algorithm for the more general $\Delta-p$-hole inequalities.
Let $Q(G)$ be the polytope cut out by binary, clique and $\Delta-p$-hole inequalities.

Containment

$$
P_{3}(G) \subseteq \mathrm{TH}_{2}\left(I_{3}\right) \subseteq Q(G) .
$$

General Containment

$$
P_{i}(G) \subseteq \mathrm{TH}_{[i / 2]}\left(I_{i}\right) \subseteq Q(G) .
$$

Proof by example

Enough to give an sos certificate.

Proof by example

Enough to give an sos certificate.

Proof by example

Enough to give an sos certificate.

$$
7-\sum x_{i}-\sum y_{i}=
$$

Proof by example

Enough to give an sos certificate.

$$
\begin{aligned}
7-\sum x_{i}-\sum y_{i}= & \left(1-y_{1}-x_{1} x_{2}\right)^{2}+\left(1-y_{2}-x_{2} x_{3}\right)^{2} \\
& +\left(1-y_{3}-x_{3} x_{4}\right)^{2}+\left(1-y_{4}-x_{5} x_{5}\right)^{2} \\
& +\left(1-y_{5}-x_{5} x_{1}\right)^{2} \\
& +\left(1-x_{1}-x_{2}-x_{3}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)^{2}{ }^{2} \\
& +\left(1-x_{3}-x_{4}-x_{5}+x_{3} x_{4}+x_{3} x_{5}+x_{4} x_{5}\right)^{2} \\
& +\left(x_{3}-x_{3} x_{1}-x_{3} x_{5}+x_{1} x_{5}\right)^{2}
\end{aligned}
$$

Properties of the relaxation (triangle-case)

Using the relation between triangle free graphs and cuts, and a result by Laurent we get

Convergence limitations
$P_{3}\left(K_{n}\right) \subsetneq \mathrm{TH}_{i}\left(l_{3}\right)$ for all $i<(n-2) / 4$.

Properties of the relaxation (triangle-case)

Using the relation between triangle free graphs and cuts, and a result by Laurent we get

Convergence limitations
$P_{3}\left(K_{n}\right) \subsetneq \mathrm{TH}_{i}\left(I_{3}\right)$ for all $i<(n-2) / 4$.

Let τ be the triangle cover number of G. We can approximate it by

$$
\tau^{\dagger}=|E|-\max _{x \in \operatorname{TH}_{2}\left(I_{3}\right)}\langle x, \mathbb{1}\rangle .
$$

Approximation ratio
For all G we have $2 \tau^{\dagger}(G) \geq \tau(G) \geq \tau^{\dagger}(G)$.

Tuza's Conjecture

Let $G=(V, E)$ be a graph and $\nu(G)$ be its triangle packing number.

Tuza's Conjecture

Let $G=(V, E)$ be a graph and $\nu(G)$ be its triangle packing number.

$$
\nu(G)=2
$$

Tuza's Conjecture

Let $G=(V, E)$ be a graph and $\nu(G)$ be its triangle packing number.

$\nu(G)=2$

$$
\tau(G)=3
$$

Tuza's Conjecture

Let $G=(V, E)$ be a graph and $\nu(G)$ be its triangle packing number.

$$
\nu(G)=2
$$

$$
\tau(G)=3
$$

Tuza's Conjecture
$\tau(G) \leq 2 \nu(G)$

Note that $\tau(G) \leq 3 \nu(G)$ is trivial.

Tuza's Conjecture

Let $G=(V, E)$ be a graph and $\nu(G)$ be its triangle packing number.

$$
\nu(G)=2
$$

$$
\tau(G)=3
$$

Tuza's Conjecture

$\tau(G) \leq 2 \nu(G)$

Note that $\tau(G) \leq 3 \nu(G)$ is trivial.
$\tau^{\text {frac }}(G) \leq 2 \nu(G)$ [Krivelevich], is it true that $\tau^{\dagger}(G) \leq 2 \nu(G)$?

The end

Thank You

