A semidefinite approach to the K_i -cover problem

João Gouveia

University of Coimbra

4th of August - SIAM AG 2013

with James Pfeiffer (U.Washington)

Triangle covers and Triangle-free sets

Given a graph G = (V, E) we have:

A (1) > A (2) > A

Triangle covers and Triangle-free sets

Given a graph G = (V, E) we have:

A triangle cover is a set of edges including at least one from each triangle

Triangle covers and Triangle-free sets

Given a graph G = (V, E) we have:

A triangle cover is a set of edges including at least one from each triangle A triangle-free subgraph is a set of edges not containing any triangle

These sets are complementary to each other.

Consider G = (V, E) and edge-weights ω .

Consider G = (V, E) and edge-weights ω .

Min Triangle Cover Problem Find a triangle cover $T \subseteq E$ for which $\sum_{e \in T} \omega_e$ is minimum.

• • • • • • • • • • • • •

Consider G = (V, E) and edge-weights ω .

Min Triangle Cover Problem Find a triangle cover $T \subseteq E$ for which $\sum \omega_e$

$$\sum_{e \in T} \omega$$

is minimum.

Max Triangle Free ProblemFind a triangle-free set $F \subseteq E$ for which $\sum_{e \in F} \omega_e$ is maximum.

A (10) A (10)

Consider G = (V, E) and edge-weights ω .

Min Triangle Cover Problem Find a triangle cover $T \subseteq E$ for which $\sum_{e \in T} \omega_e$ is minimum. Max Triangle Free Problem Find a triangle-free set $F \subseteq E$ for which $\sum_{e \in F} \omega_e$ is maximum.

Remarks:

• These problems are equivalent.

Consider G = (V, E) and edge-weights ω .

Min Triangle Cover ProblemFind a triangle cover $T \subseteq E$ for
which $\sum_{e \in T} \omega_e$ is minimum.

Max Triangle Free Problem Find a triangle-free set $F \subseteq E$ for which $\sum_{e \in F} \omega_e$ is maximum.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Remarks:

- These problems are equivalent.
- These problems are NP-complete.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

▲ 同 ▶ → 三 ▶

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Max Triangle Free Problem Find a K_i -free set $F \subseteq \mathcal{K}_{i-1}$ for which $\sum_{k \in F} \omega_k$ is maximum.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Remarks:

Max Triangle Free Problem Find a K_i -free set $F \subseteq \mathcal{K}_{i-1}$ for which $\sum_{k \in F} \omega_k$ is maximum.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Remarks:

• For i = 3 is the triangle cover problem.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Remarks:

- For i = 3 is the triangle cover problem.
- For i = 2 is the stable set problem.

Let *G* be any graph, and \mathcal{K}_{i-1} its set of cliques of size i - 1.

Remarks:

- For i = 3 is the triangle cover problem.
- For i = 2 is the stable set problem.
- All are NP-complete [Comforti-Corneil-Mahjoub]

Given a graph $G = (\{1, ..., n\}, E)$ we define $P_3(G)$, the triangle-free polytope of *G*, in the following way:

< ロ > < 同 > < 回 > < 回 >

Given a graph $G = (\{1, ..., n\}, E)$ we define $P_3(G)$, the triangle-free polytope of *G*, in the following way:

 For every triangle-free set *F* ⊆ *E* consider its characteristic vector *χ_F* ∈ {0, 1}^{*E*};

Given a graph $G = (\{1, ..., n\}, E)$ we define $P_3(G)$, the triangle-free polytope of *G*, in the following way:

 For every triangle-free set *F* ⊆ *E* consider its characteristic vector *χ_F* ∈ {0, 1}^{*E*};

• let $S_3 \subset \{0, 1\}^n$ be the collection of all those vectors;

Given a graph $G = (\{1, ..., n\}, E)$ we define $P_3(G)$, the triangle-free polytope of *G*, in the following way:

- For every triangle-free set *F* ⊆ *E* consider its characteristic vector *χ_F* ∈ {0, 1}^{*E*};
- let $S_3 \subset \{0, 1\}^n$ be the collection of all those vectors;
- the polytope P₃(G) is then defined as the convex hull of the vectors in S₃.

Example

<ロ> (日) (日) (日) (日) (日)

$\boldsymbol{S}_{\boldsymbol{G}} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)\}$

э

< ロ > < 同 > < 回 > < 回 >

$\boldsymbol{S}_{\boldsymbol{G}} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)\}$

J.	Gοι	iveia ((UC)

SDP for K_i-cover

э

< 17 ▶

$\boldsymbol{S}_{\boldsymbol{G}} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)\}$

0		
 GOL	iveia i	

SDP for K_i-cover

Reformulation

Triangle-Free Problem Reformulated

Given a graph G = (V, E) and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$\mu(G,\omega) := \max_{x \in P_3(G)} \langle \omega, x \rangle.$$

A (10) > A (10) > A (10)

Reformulation

Triangle-Free Problem Reformulated

Given a graph G = (V, E) and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$\mu(G,\omega):=\max_{x\in P_3(G)}\langle \omega,x\rangle.$$

However finding $P_3(G)$ is as hard as solving the original problem.

< ロ > < 同 > < 回 > < 回 >

Reformulation

Triangle-Free Problem Reformulated

Given a graph G = (V, E) and a weight vector $\omega \in \mathbb{R}^{E}$, solve

$$\mu(G,\omega) := \max_{x \in P_3(G)} \langle \omega, x \rangle.$$

However finding $P_3(G)$ is as hard as solving the original problem.

We intend to find approximations for it.

A (10) A (10) A (10)

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of G, $FRAC_{\Delta}(G)$, the set defined by the following inequalities.

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of *G*, FRAC_{Δ}(*G*), the set defined by the following inequalities.

• $1 \ge x_i \ge 0$ for $i \in E$ (0 – 1 constrains);

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of *G*, FRAC_{Δ}(*G*), the set defined by the following inequalities.

• $1 \ge x_i \ge 0$ for $i \in E$ (0 – 1 constrains);

• $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$ (triangle constrains).

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of *G*, FRAC_{Δ}(*G*), the set defined by the following inequalities.

• $1 \ge x_i \ge 0$ for $i \in E$ (0 – 1 constrains);

• $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of *G*, FRAC_{Δ}(*G*), the set defined by the following inequalities.

- $1 \ge x_i \ge 0$ for $i \in E$ (0 1 constrains);
- $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.

Krivelevich [1995] proved for the unweighted triangle cover version an approximation factor of 2.

The simplest relaxation of $P_3(G)$ is the fractional triangle free polytope of *G*, FRAC_{Δ}(*G*), the set defined by the following inequalities.

• $1 \ge x_i \ge 0$ for $i \in E$ (0 – 1 constrains);

• $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$ (triangle constrains).

It is possible to optimize over this polytope in polynomial time.

Krivelevich [1995] proved for the unweighted triangle cover version an approximation factor of 2.

We want to use moment matrices to approximate this problem.

Triangle Ideal and sums of squares approximations

The polynomials vanishing on S_3 are those in the ideal

$$l_{3} = \left\langle x_{e} x_{f} x_{g}, x_{i}^{2} - x_{i} : \forall \text{ triangles } \{e, f, g\}, \forall i \in E \right\rangle.$$

< ロ > < 同 > < 回 > < 回 >

Triangle Ideal and sums of squares approximations The polynomials vanishing on S_3 are those in the ideal

$$I_{3} = \left\langle x_{e}x_{f}x_{g}, x_{i}^{2} - x_{i} : \forall \text{ triangles } \{e, f, g\}, \forall i \in E \right\rangle.$$

 $f \in \mathbb{R}[x]$ is *k*-sos modulo I_3 if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod I_3,$$

for some polynomials $h_1, ..., h_m$ with degree less or equal k.

Triangle Ideal and sums of squares approximations The polynomials vanishing on S_3 are those in the ideal

$$I_{3} = \left\langle x_{e}x_{f}x_{g}, x_{i}^{2} - x_{i} : \forall \text{ triangles } \{e, f, g\}, \forall i \in E \right\rangle.$$

 $f \in \mathbb{R}[x]$ is *k*-sos modulo I_3 if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod I_3,$$

for some polynomials $h_1, ..., h_m$ with degree less or equal k.

Theta Bodies of an ideal

$$\mathsf{TH}_d(I_3) = \bigcap_{\substack{\ell \text{ linear }, \ell \text{ k-sos modulo } I_3}} \{ \mathbf{x} \in \mathbb{R}^E : \ell(\mathbf{x}) \ge 0 \}$$

л.	Gou	veia ((LIC)	
υ.	auu	i u ciu	00,	

Triangle Ideal and sums of squares approximations The polynomials vanishing on S_3 are those in the ideal

$$I_{3} = \left\langle x_{e}x_{f}x_{g}, x_{i}^{2} - x_{i} : \forall \text{ triangles } \{e, f, g\}, \forall i \in E \right\rangle.$$

 $f \in \mathbb{R}[x]$ is *k*-sos modulo I_3 if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod l_3,$$

for some polynomials $h_1, ..., h_m$ with degree less or equal k.

Theta Bodies of an ideal

$$\mathsf{TH}_d(I_3) = \bigcap \{ \mathbf{x} \in \mathbb{R}^E : \ell(\mathbf{x}) \ge \mathbf{0} \}$$

 ℓ linear , ℓ k-sos modulo l_3

We have $P_3(G) \subseteq \cdots \subseteq \mathsf{TH}_3(I_3) \subseteq \mathsf{TH}_2(I_3) \subseteq \mathrm{FRAC}_{\Delta}(G)$.

イロト イポト イラト イラ

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_3 -free problem. Among them:

1. Binary inequalities: $0 \le x_k \le 1$, for all $k \in E$,

3

イロト イポト イラト イラト

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_3 -free problem. Among them:

- **1.** Binary inequalities: $0 \le x_k \le 1$, for all $k \in E$,
- **2.** Triangle inequalities: $x_i + x_j + x_k \leq 2$ for all $\{i, j, k\} \in \mathcal{K}_3$

イロト イポト イラト イラト

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_3 -free problem. Among them:

- **1.** Binary inequalities: $0 \le x_k \le 1$, for all $k \in E$,
- **2.** Triangle inequalities: $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$
- **3.** Δ -*p*-hole inequalities:

3

イロト イポト イラト イラト

Comforti-Corneil-Mahjoub catalogued some families of facets for the polytope of the K_3 -free problem. Among them:

- **1.** Binary inequalities: $0 \le x_k \le 1$, for all $k \in E$,
- **2.** Triangle inequalities: $x_i + x_j + x_k \le 2$ for all $\{i, j, k\} \in \mathcal{K}_3$
- **3.** Δ -*p*-hole inequalities: **????**

A Δ -*p*-hole is a graph made up of *p* copies of K_3 , C_1, C_2, \dots, C_p such that C_k and C_j share an edge if and only if $|k - j| \equiv 1$.

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

A Δ -*p*-hole is a graph made up of *p* copies of K_3 , C_1, C_2, \dots, C_p such that C_k and C_j share an edge if and only if $|k - j| \equiv 1$.

< 回 > < 三 > < 三 >

A Δ -*p*-hole is a graph made up of *p* copies of K_3 , C_1, C_2, \dots, C_p such that C_k and C_j share an edge if and only if $|k - j| \equiv 1$.

In particular wheels of order Δ -*p*-holes.

一日

A Δ -*p*-hole is a graph made up of *p* copies of K_3 , C_1, C_2, \dots, C_p such that C_k and C_j share an edge if and only if $|k - j| \equiv 1$.

In particular wheels of order \triangle -*p*-holes.

If *p* odd, and $H \subseteq G$ a Δ -*p*-hole, $P_3(G)$ has a facet:

$$\sum_{H} x_j \leq 3(\frac{p-1}{2})+1.$$

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including **binary**, **clique** and **wheel** inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ -*p*-hole inequalities.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including **binary**, **clique** and **wheel** inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ -*p*-hole inequalities.

Let Q(G) be the polytope cut out by **binary**, **clique** and Δ -*p*-hole inequalities.

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including **binary**, **clique** and **wheel** inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ -*p*-hole inequalities.

Let Q(G) be the polytope cut out by **binary**, **clique** and Δ -*p*-hole inequalities.

Containment

$P_3(G) \subseteq \mathsf{TH}_2(I_3) \subseteq Q(G).$

Comforti-Corneil-Mahjoub give polytime separation algorithm for several families of facets, including **binary**, **clique** and **wheel** inequalities, thus providing a polytime algorithm to optimize over them.

They couldn't give a separation algorithm for the more general Δ -*p*-hole inequalities.

Let Q(G) be the polytope cut out by **binary**, **clique** and Δ -*p*-hole inequalities.

Containment

$$P_3(G) \subseteq \mathsf{TH}_2(I_3) \subseteq Q(G).$$

General Containment

$$P_i(G) \subseteq \mathsf{TH}_{\lceil i/2 \rceil}(I_i) \subseteq Q(G).$$

J. Gouveia (UC)

э

Enough to give an sos certificate.

2

イロト イポト イヨト イヨト

Enough to give an sos certificate.

イロト イヨト イヨト イヨト

Э.

Enough to give an sos certificate.

イロト イポト イヨト イヨト

$$7 - \sum x_i - \sum y_i =$$

Э.

Enough to give an sos certificate.

イロト イポト イヨト イヨト

$$7 - \sum x_i - \sum y_i = (1 - y_1 - x_1 x_2)^2 + (1 - y_2 - x_2 x_3)^2 + (1 - y_3 - x_3 x_4)^2 + (1 - y_4 - x_5 x_5)^2 + (1 - y_5 - x_5 x_1)^2 + (1 - x_1 - x_2 - x_3 + x_1 x_2 + x_2 x_3 + x_1 x_3)^2 + (1 - x_3 - x_4 - x_5 + x_3 x_4 + x_3 x_5 + x_4 x_5)^2 + (x_3 - x_3 x_1 - x_3 x_5 + x_1 x_5)^2$$

J. Gouveia (UC)

SIAM AG 2013 13 / 16

э

Properties of the relaxation (triangle-case)

Using the relation between triangle free graphs and cuts, and a result by Laurent we get

Convergence limitations

 $P_3(K_n) \subsetneq \mathsf{TH}_i(I_3)$ for all i < (n-2)/4.

3

Properties of the relaxation (triangle-case)

Using the relation between triangle free graphs and cuts, and a result by Laurent we get

Convergence limitations

 $P_3(K_n) \subsetneq TH_i(I_3)$ for all i < (n-2)/4.

Let τ be the triangle cover number of G. We can approximate it by

$$au^{\dagger} = |\mathbf{E}| - \max_{\mathbf{x} \in \mathsf{TH}_2(I_3)} \langle \mathbf{x}, \mathbb{1}
angle.$$

Approximation ratio

For all *G* we have $2\tau^{\dagger}(G) \ge \tau(G) \ge \tau^{\dagger}(G)$.

J.	Gou	veia ((UC)

Let G = (V, E) be a graph and $\nu(G)$ be its triangle packing number.

< 6 b

Let G = (V, E) be a graph and $\nu(G)$ be its triangle packing number.

э

< 6 b

H N

Let G = (V, E) be a graph and $\nu(G)$ be its triangle packing number.

4 6 1 1 4

J. Gouveia (UC)

SDP for K_i-cover

SIAM AG 2013 15 / 16

э

ъ

Let G = (V, E) be a graph and $\nu(G)$ be its triangle packing number.

Note that $\tau(G) \leq 3\nu(G)$ is trivial.

3

3 + 4 = +

4 6 1 1 4

Let G = (V, E) be a graph and $\nu(G)$ be its triangle packing number.

Note that $\tau(G) \leq 3\nu(G)$ is trivial.

 $\tau^{\text{frac}}(G) \leq 2\nu(G)$ [Krivelevich], is it true that $\tau^{\dagger}(G) \leq 2\nu(G)$?

Thank You

J. Gouveia (UC)

SDP for K_i -cover

SIAM AG 2013 16 / 16

æ

イロト イヨト イヨト イヨト