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Triangle covers and Triangle-free sets

Given a graph G = (V ,E) we have:

A triangle cover is a set of edges
including at least one from each
triangle

A triangle-free subgraph is a set
of edges not containing any tri-
angle

These sets are complementary to each other.
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Triangle-Cover Problem

Consider G = (V ,E) and edge-weights ω.

Min Triangle Cover Problem
Find a triangle cover T ⊆ E for
which ∑

e∈T

ωe

is minimum.

Max Triangle Free Problem
Find a triangle-free set F ⊆ E
for which ∑

e∈F

ωe

is maximum.

Remarks:

These problems are equivalent.

These problems are NP-complete.
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Ki-Cover Problem
Let G be any graph, and Ki−1 its set of cliques of size i − 1.

Min Ki-Cover Problem
Find a Ki -cover T ⊆ Ki−1 for
which ∑

k∈T

ωk

is minimum.

Max Triangle Free Problem
Find a Ki -free set F ⊆ Ki−1 for
which ∑

k∈F

ωk

is maximum.

Remarks:

For i = 3 is the triangle cover problem.

For i = 2 is the stable set problem.

All are NP-complete [Comforti-Corneil-Mahjoub]
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Triangle-Free Polytope

Given a graph G = ({1, ...,n},E) we define P3(G), the triangle-free
polytope of G, in the following way:

For every triangle-free set F ⊆ E consider its characteristic vector
χF ∈ {0,1}E ;

let S3 ⊂ {0,1}n be the collection of all those vectors;

the polytope P3(G) is then defined as the convex hull of the
vectors in S3.
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Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)}

J. Gouveia (UC) SDP for Ki -cover SIAM AG 2013 6 / 16



Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)}

J. Gouveia (UC) SDP for Ki -cover SIAM AG 2013 6 / 16



Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)}

J. Gouveia (UC) SDP for Ki -cover SIAM AG 2013 6 / 16



Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)}

J. Gouveia (UC) SDP for Ki -cover SIAM AG 2013 6 / 16



Reformulation

Triangle-Free Problem Reformulated

Given a graph G = (V ,E) and a weight vector ω ∈ RE , solve

µ(G, ω) := max
x∈P3(G)

〈ω, x〉 .

However finding P3(G) is as hard as solving the original problem.

We intend to find approximations for it.
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Fractional Triangle-Free Polytope

The simplest relaxation of P3(G) is the fractional triangle free polytope
of G, FRAC∆(G), the set defined by the following inequalities.

1 ≥ xi ≥ 0 for i ∈ E (0− 1 constrains);

xi + xj + xk ≤ 2 for all {i , j , k} ∈ K3 (triangle constrains).

It is possible to optimize over this polytope in polynomial time.

Krivelevich [1995] proved for the unweighted triangle cover version an
approximation factor of 2.

We want to use moment matrices to approximate this problem.
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Triangle Ideal and sums of squares approximations
The polynomials vanishing on S3 are those in the ideal

I3 =
〈

xexf xg , x2
i − xi : ∀ triangles {e, f ,g}, ∀i ∈ E

〉
.

f ∈ R[x ] is k -sos modulo I3 if and only if

f ≡ (h1
2 + h2

2 + ...+ hm
2) mod I3,

for some polynomials h1, ...,hm with degree less or equal k .

Theta Bodies of an ideal

THd (I3) =
⋂

` linear ,` k -sos modulo I3

{x ∈ RE : `(x) ≥ 0}

We have P3(G) ⊆ · · · ⊆ TH3(I3) ⊆ TH2(I3) ⊆ FRAC∆(G).
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Facets of P3(G)

Comforti-Corneil-Mahjoub catalogued some families of facets for the
polytope of the K3-free problem. Among them:

1. Binary inequalities: 0 ≤ xk ≤ 1, for all k ∈ E ,

2. Triangle inequalities: xi + xj + xk ≤ 2 for all {i , j , k} ∈ K3

3. ∆-p-hole inequalities: ????
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∆-p holes
A ∆-p-hole is a graph made up of p copies of K3, C1,C2, · · · ,Cp such

that Ck and Cj share an edge if and only if |k − j | ≡ 1.

In particular wheels of order ∆-p-holes.

If p odd, and H ⊆ G a ∆-p-hole, P3(G) has a facet:∑
H

xj ≤ 3(
p − 1

2
) + 1.
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Separation

Comforti-Corneil-Mahjoub give polytime separation algorithm for
several families of facets, including binary, clique and wheel
inequalities, thus providing a polytime algorithm to optimize over them.

They couldn’t give a separation algorithm for the more general
∆-p-hole inequalities.

Let Q(G) be the polytope cut out by binary, clique and ∆-p-hole
inequalities.

Containment

P3(G) ⊆ TH2(I3) ⊆ Q(G).

General Containment

Pi(G) ⊆ THdi/2e(Ii) ⊆ Q(G).
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Proof by example

Enough to give an sos certifi-
cate.

7−
∑

xi −
∑

yi = (1− y1 − x1x2)2 + (1− y2 − x2x3)2

+(1− y3 − x3x4)2 + (1− y4 − x5x5)2

+(1− y5 − x5x1)2

+(1− x1 − x2 − x3 + x1x2 + x2x3 + x1x3)2

+(1− x3 − x4 − x5 + x3x4 + x3x5 + x4x5)2

+(x3 − x3x1 − x3x5 + x1x5)2
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Proof by example

Enough to give an sos certifi-
cate.

7−
∑

xi −
∑

yi =

(1− y1 − x1x2)2 + (1− y2 − x2x3)2

+(1− y3 − x3x4)2 + (1− y4 − x5x5)2

+(1− y5 − x5x1)2

+(1− x1 − x2 − x3 + x1x2 + x2x3 + x1x3)2

+(1− x3 − x4 − x5 + x3x4 + x3x5 + x4x5)2

+(x3 − x3x1 − x3x5 + x1x5)2
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Properties of the relaxation (triangle-case)

Using the relation between triangle free graphs and cuts, and a result
by Laurent we get

Convergence limitations
P3(Kn) ( THi(I3) for all i < (n − 2)/4.

Let τ be the triangle cover number of G. We can approximate it by

τ † = |E | −maxx∈TH2(I3) 〈x ,1〉 .

Approximation ratio
For all G we have 2τ †(G) ≥ τ(G) ≥ τ †(G).
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Tuza’s Conjecture

Let G = (V ,E) be a graph and ν(G) be its triangle packing number.

ν(G) = 2 τ(G) = 3

Tuza’s Conjecture
τ(G) ≤ 2ν(G)

Note that τ(G) ≤ 3ν(G) is trivial.

τ frac(G) ≤ 2ν(G) [Krivelevich], is it true that τ †(G) ≤ 2ν(G)?
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The end

Thank You
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