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1. Spectrahedra and SDP

João Gouveia (UC ) Semidefinite Representations CELC 2 / 35



Semidefinite Programming

An SDP problem is an optimization problem of the form

max
x

ctx s.t. A0 + A1x1 + ...+ Anxn � 0.

Here, Ai ’s are symmetric real matrices.

These convex problems can be solved efficiently, and their geometry
very rich. Particularly, a lot of interest has been focused on their
feasible sets.
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Representability

Definition
We say a set S ⊆ Rn is a spectrahedron (or LMI-representable) if
there exist symmetric matrices A0, ...,An such that

S = {x ∈ Rn : A0 + A1x1 + ...+ Anxn � 0}.

We say that S is SDP-representable more generally if it is the
projection of some LMI-representable set.

LMI and SDP representable sets are necessarily convex and
semialgebraic, but what other conditions do they have to satisfy?
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PSD cone and spectrahedra

There is a distinct (dual) way of looking at spectrahedra.

PSDn - cone of all n × n positive semidefinite ma-
trices.

A spectrahedron is the intersection of some PSDn
with some affine plane.

Optimizing over projections of spectrahedra can
be done efficiently.
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LMI-representability

For LMI-representability, a characterization is known only for the plane.

Theorem
Helton-Vinnikov A set S ⊆ R2 is LMI-representable if and only if it is
convex and a real zero set.

x3 − x − y2 Real Zero Set x4 + y4 − 1 - Not Real Zero
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SDP-representability

For SDP-representability less is known.

Theorem
Helton-Nie If S is convex, closed, semialgebraic, and its boundary is
“convex enough” then S is SDP-representable.

The big question: Is every convex semialgebraic set
SDP-representable?
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2. Theta Bodies
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Convex Hulls of Algebraic Sets

Problem
Given an algebraic set

{x ∈ Rn : g1(x) = . . . = gm(x) = 0},

we want to find a good “convex” description for its convex hull.

Notation:
I = 〈g1, . . . ,gm〉,

VR(I) = {Real zeros of I}.
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Examples

I =
〈

x2 − y2 − xz, z − 4x3 + 3x
〉

I =
〈

25(x4 + y4 + 1)− 34(x2y2 + x2 + y2)
〉
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Theta body

Convex Hull

cl(conv(VR(I))) =
⋂

` linear ,`|VR(I)≥0

{x ∈ Rn : `(x) ≥ 0}

We can replace `|VR(I) ≥ 0 by ` being sos modulo I:

` ≡
∑

i

h2
i + I.

If deg(hi) ≤ k we say that ` is k -sos.

Definition

THk (I) :=
⋂

` linear ,` k -sos modulo I

{x ∈ Rn : `(x) ≥ 0}
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Theta body - Example

(Loading...)

TH2(I) for I =
〈
x(x2 + y2)− x4 − x2y2 − y4〉.
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Convergence

TH1(I) ⊇ TH2(I) ⊇ . . . ⊇ THk (I) ⊇ cl(conv(VR(I)))

When do we have convergence?

Putinar
If VR(I) is compact we always have convergence.

G-Netzer
If VR(I) has “bad” singularities, that convergence is not finite.

João Gouveia (UC ) Semidefinite Representations CELC 13 / 35



Convergence

TH1(I) ⊇ TH2(I) ⊇ . . . ⊇ THk (I) ⊇ cl(conv(VR(I)))

When do we have convergence?

Putinar
If VR(I) is compact we always have convergence.

G-Netzer
If VR(I) has “bad” singularities, that convergence is not finite.

João Gouveia (UC ) Semidefinite Representations CELC 13 / 35



Convergence

TH1(I) ⊇ TH2(I) ⊇ . . . ⊇ THk (I) ⊇ cl(conv(VR(I)))

When do we have convergence?

Putinar
If VR(I) is compact we always have convergence.

G-Netzer
If VR(I) has “bad” singularities, that convergence is not finite.

João Gouveia (UC ) Semidefinite Representations CELC 13 / 35



Examples

Two quartics and their theta body sequence.
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Finite sets

If the real variety is finite:

G-Thomas
If VR(I) is finite, I is THk -exact for some k .

G-Parrilo-Thomas
If S ⊆ Rn is finite, I(S) is TH1-exact if and only if S is the set of vertices
of a 2-level polytope.
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2-level polytopes
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2-level polytopes
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Combinatorial Problems
Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent
The stable set problem.

G-Laurent-Parrilo-Thomas
The max-cut problem.

G-Thomas
The max triangle-free subgraph / min
K3-cover problem.
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Stable Set Problem

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem
Find the largest (weighted) stable set of G.

Equivalent to optimize over the convex hull of the characteristic vectors
of all stable sets.

STAB(G) - stable set polytope of G.
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Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)}
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Theta body for stable set

Given a graph G with n nodes, TH1 is the set of all vectors x ∈ Rn such
that [

1 x t

x U

]
� 0

for some symmetric U ∈ Rn×n with diag(U) = x and U ij = 0 for all
edges (i , j).

It is a projected spectrahedron.

Theorem (Lovász)
TH1 = STAB(G) if and only if G is perfect.
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Lifts of stable sets

If G is perfect STAB(G) is a projection of a slice of the cone PSDn+1.(n+1
2

)
variables

STAB(G) can have exponentially many vertices and facets.

The idea of adding variables to get simpler descriptions (LP and SDP)
is old, and many hierarchies of approximation explore this: Ballas,
Sherali-Adams, Lovász-Schrijver, Lasserre, Bienstock-Zuckerberg,
theta bodies...

We want to frame all these approaches and their limits in one single
theory
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3. Lifts of Convex Sets
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Lifts of Polytopes

Polytopes with many facets can be projections of much simpler
polytopes.

An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

The polytope Pn has 2n−1 vertices (one per odd set) and 2n−1 facets
(one per even set).
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Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd 1 ≤ k ≤ n
a vector zk ∈ Rn and a real number αk such that∑

k zk = x;∑
k αk = 1;

‖ zk ‖1 = k αk ;
0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.
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Complexity of a Polytope

This suggests that number of facets is not a good measure of
complexity for a polytope.

Canonical LP Lift
Given a polytope P, a canonical LP lift is a description

P = Φ(Rk
+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk
+-lift.

We are interested in the smallest k such that P has a Rk
+-lift, a much

better measure of “LP-complexity” .
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Two definitions
Let P be a polytope with facets defined by h1(x) ≥ 0, . . . ,hf (x) ≥ 0,
and vertices p1, . . . ,pv .

Slack Matrix
The slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative Factorization

Given a nonnegative matrix M ∈ Rn×m
+ we say that it has a

k -nonnegative factorization, or a Rk
+-factorization if there exist

matrices A ∈ Rn×k
+ and B ∈ Rk×m

+ such that

M = A · B.
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Yannakakis’ Theorem

Theorem (Yannakakis 1991)

A polytope P has a Rk
+-lift if and only if SP has a Rk

+-factorization.

Does it work for other types of lifts?

Does it work for other types of convex sets?

Can we compare the power of different lifts?

Does LP solve all polynomial combinatorial problems?
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The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .


0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0





0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1
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Hexagon - continued

It is the projection of the slice of R5
+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6
+-lift is the only we can have.
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Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -Lift
Given a polytope P, and a closed convex cone K , a K -lift of P is a
description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn
+, PSDn, SOCPn, CPn, CoPn,. . .

Note that if the theta body is exact, it is a PSD-lift.
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K -factorizations

We also need to generalize the nonnegative factorizations.

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is its dual cone,
defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -Factorization
Given a nonnegative matrix M ∈ Rn×m

+ we say that it has a
K -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗ such
that

Mi,j =
〈
ai ,bj

〉
.

We can now generalize Yannakakis.
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Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K -lift if and only if SP has a K -factorization.

If G is perfect STAB(G) has a PSDn+1-lift (theta body).

That is actually the best possible PSD-lift.

[Burer] In general STAB(G) has a CPn+1-lift.

We can generalize Yannakakis further to other convex sets by
introducing a slack operator.
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Open questions - further directions

The role of symmetry.

Are there polynomial sized [symmetric] SDP-lifts for the matching
polytope? What about LP?

Are there polynomial sized LP-lifts for the stable set polytope of a
perfect graph?

Which sets are SDP-representable, i.e., which sets have
SDP-lifts?
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The end

Thank You

João Gouveia (UC ) Semidefinite Representations CELC 35 / 35


	SDP Representability
	Theta Bodies
	Combinatorial Optimization
	Lifts of Convex Sets

