Semidefinite Representations

João Gouveia
CMUC - Universidade de Coimbra

19th March - Seminário - CELC - Universidade de Lisboa

1. Spectrahedra and SDP

Semidefinite Programming

An SDP problem is an optimization problem of the form

$$
\max _{x} c^{t} x \text { s.t. } A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0 .
$$

Here, A_{i} 's are symmetric real matrices.

Semidefinite Programming

An SDP problem is an optimization problem of the form

$$
\max _{x} c^{t} x \text { s.t. } A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0 .
$$

Here, A_{i} 's are symmetric real matrices.

These convex problems can be solved efficiently, and their geometry very rich. Particularly, a lot of interest has been focused on their feasible sets.

Representability

Definition

We say a set $S \subseteq \mathbb{R}^{n}$ is a spectrahedron (or LMI-representable) if there exist symmetric matrices A_{0}, \ldots, A_{n} such that

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0\right\} .
$$

We say that S is SDP-representable more generally if it is the projection of some LMI-representable set.

Representability

Definition

We say a set $S \subseteq \mathbb{R}^{n}$ is a spectrahedron (or LMI-representable) if there exist symmetric matrices A_{0}, \ldots, A_{n} such that

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: A_{0}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0\right\}
$$

We say that S is SDP-representable more generally if it is the projection of some LMI-representable set.

LMI and SDP representable sets are necessarily convex and semialgebraic, but what other conditions do they have to satisfy?

PSD cone and spectrahedra

There is a distinct (dual) way of looking at spectrahedra.

PSD cone and spectrahedra

There is a distinct (dual) way of looking at spectrahedra.
PSD_{n} - cone of all $n \times n$ positive semidefinite matrices.

PSD cone and spectrahedra

There is a distinct (dual) way of looking at spectrahedra.
PSD_{n} - cone of all $n \times n$ positive semidefinite matrices.

A spectrahedron is the intersection of some PSD_{n} with some affine plane.

PSD cone and spectrahedra

There is a distinct (dual) way of looking at spectrahedra.
PSD_{n} - cone of all $n \times n$ positive semidefinite matrices.

A spectrahedron is the intersection of some PSD_{n} with some affine plane.

Optimizing over projections of spectrahedra can be done efficiently.

LMI-representability

For LMI-representability, a characterization is known only for the plane.

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

$x^{3}-x-y^{2}$ Real Zero Set

LMI-representability

For LMI-representability, a characterization is known only for the plane.
Theorem
Helton-Vinnikov A set $S \subseteq \mathbb{R}^{2}$ is LMI-representable if and only if it is convex and a real zero set.

$x^{4}+y^{4}-1$ - Not Real Zero

SDP-representability

For SDP-representability less is known.

SDP-representability

For SDP-representability less is known.

Theorem

Helton-Nie If S is convex, closed, semialgebraic, and its boundary is "convex enough" then S is SDP-representable.

SDP-representability

For SDP-representability less is known.

Theorem

Helton-Nie If S is convex, closed, semialgebraic, and its boundary is "convex enough" then S is SDP-representable.

The big question: Is every convex semialgebraic set SDP-representable?

2. Theta Bodies

Convex Hulls of Algebraic Sets

Problem

Given an algebraic set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x})=\ldots=g_{m}(\mathbf{x})=0\right\}
$$

we want to find a good "convex" description for its convex hull.

Convex Hulls of Algebraic Sets

Problem

Given an algebraic set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x})=\ldots=g_{m}(\mathbf{x})=0\right\}
$$

we want to find a good "convex" description for its convex hull.

Notation:

$$
\text { - } I=\left\langle g_{1}, \ldots, g_{m}\right\rangle,
$$

Convex Hulls of Algebraic Sets

Problem

Given an algebraic set

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x})=\ldots=g_{m}(\mathbf{x})=0\right\}
$$

we want to find a good "convex" description for its convex hull.

Notation:

- $I=\left\langle g_{1}, \ldots, g_{m}\right\rangle$,
- $\mathcal{V}_{\mathbb{R}}(I)=\{$ Real zeros of $I\}$.

Examples

$$
I=\left\langle x^{2}-y^{2}-x z, z-4 x^{3}+3 x\right\rangle
$$

$$
I=\left\langle 25\left(x^{4}+y^{4}+1\right)-34\left(x^{2} y^{2}+x^{2}+y^{2}\right)\right\rangle
$$

Theta body

Convex Hull

$$
\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)=\bigcap_{\ell \text { linear },\left.\ell\right|_{\mathcal{V}_{\mathbb{R}}(l)} \geq 0}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

Theta body

Convex Hull

$$
\mathrm{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)=\bigcap_{\ell \text { linear },\left.\ell\right|_{\mathcal{V}_{\mathbb{R}}(l)} \geq 0}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

We can replace $\left.\ell\right|_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0$ by ℓ being sos modulo I :

$$
\ell \equiv \sum_{i} h_{i}^{2}+l .
$$

If $\operatorname{deg}\left(h_{i}\right) \leq k$ we say that ℓ is k-sos.

Theta body

Convex Hull

$$
\mathrm{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)=\bigcap_{\ell \text { linear },\left.\ell\right|_{\mathcal{V}_{\mathbb{R}}(l)} \geq 0}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

We can replace $\left.\ell\right|_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0$ by ℓ being sos modulo I :

$$
\ell \equiv \sum_{i} h_{i}^{2}+l .
$$

If $\operatorname{deg}\left(h_{i}\right) \leq k$ we say that ℓ is k-sos.
Definition

$$
\mathrm{TH}_{k}(I):=\bigcap_{\ell \text { linear }, \ell} k \text {-sos modulo } / \text { }\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

Theta body - Example

$\mathrm{TH}_{2}(I)$ for $I=\left\langle x\left(x^{2}+y^{2}\right)-x^{4}-x^{2} y^{2}-y^{4}\right\rangle$.

Convergence

$\mathrm{TH}_{1}(I) \supseteq \mathrm{TH}_{2}(I) \supseteq \ldots \supseteq \mathrm{TH}_{k}(I) \supseteq \operatorname{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)$

When do we have convergence?

Convergence

$\mathrm{TH}_{1}(I) \supseteq \mathrm{TH}_{2}(I) \supseteq \ldots \supseteq \mathrm{TH}_{k}(I) \supseteq \operatorname{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)$

When do we have convergence?

Putinar

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact we always have convergence.

Convergence

$\mathrm{TH}_{1}(I) \supseteq \mathrm{TH}_{2}(I) \supseteq \ldots \supseteq \mathrm{TH}_{k}(I) \supseteq \operatorname{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)$

When do we have convergence?

Putinar

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact we always have convergence.

G-Netzer

If $\mathcal{V}_{\mathbb{R}}(I)$ has "bad" singularities, that convergence is not finite.

Examples

Two quartics and their theta body sequence.

Finite sets

If the real variety is finite:

Finite sets

If the real variety is finite:

G-Thomas
If $\mathcal{V}_{\mathbb{R}}(I)$ is finite, I is TH_{k}-exact for some k.

Finite sets

If the real variety is finite:

G-Thomas

If $\mathcal{V}_{\mathbb{R}}(I)$ is finite, I is TH_{k}-exact for some k.

G-Parrilo-Thomas

If $S \subseteq \mathbb{R}^{n}$ is finite, $I(S)$ is TH_{1}-exact if and only if S is the set of vertices of a 2-level polytope.

2-level polytopes

2-level polytopes

Combinatorial Problems

Theta bodies applied to combinatorial problems:

Combinatorial Problems

Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

The stable set problem.

Combinatorial Problems

Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

The stable set problem.

G-Laurent-Parrilo-Thomas

The max-cut problem.

Combinatorial Problems

Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

The stable set problem.

G-Laurent-Parrilo-Thomas

The max-cut problem.

G-Thomas

The max triangle-free subgraph / min K_{3}-cover problem.

Stable Set Problem

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

Find the largest (weighted) stable set of G.

Stable Set Problem

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

Find the largest (weighted) stable set of G.

Equivalent to optimize over the convex hull of the characteristic vectors of all stable sets.

Stable Set Problem

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

Find the largest (weighted) stable set of G.

Equivalent to optimize over the convex hull of the characteristic vectors of all stable sets.
$\operatorname{STAB}(G)$ - stable set polytope of G.

Example

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Theta body for stable set

Given a graph G with n nodes, TH_{1} is the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all edges (i, j).

Theta body for stable set

Given a graph G with n nodes, TH_{1} is the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all edges (i, j).

It is a projected spectrahedron.

Theta body for stable set

Given a graph G with n nodes, TH_{1} is the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all edges (i, j).

It is a projected spectrahedron.

Theorem (Lovász)
$\mathrm{TH}_{1}=\operatorname{STAB}(G)$ if and only if G is perfect.

Lifts of stable sets

If G is perfect $\operatorname{STAB}(G)$ is a projection of a slice of the cone P_{n+1}. $\binom{n+1}{2}$ variables

Lifts of stable sets

If G is perfect $\operatorname{STAB}(G)$ is a projection of a slice of the cone $P S D_{n+1}$. $\binom{n+1}{2}$ variables
$\operatorname{STAB}(G)$ can have exponentially many vertices and facets.

Lifts of stable sets

If G is perfect $\operatorname{STAB}(G)$ is a projection of a slice of the cone P_{n+1}. $\binom{n+1}{2}$ variables
$\operatorname{STAB}(G)$ can have exponentially many vertices and facets.

The idea of adding variables to get simpler descriptions (LP and SDP) is old, and many hierarchies of approximation explore this: Ballas, Sherali-Adams, Lovász-Schrijver, Lasserre, Bienstock-Zuckerberg, theta bodies...

Lifts of stable sets

If G is perfect $\operatorname{STAB}(G)$ is a projection of a slice of the cone P_{n+1}.
$\binom{n+1}{2}$ variables
$\operatorname{STAB}(G)$ can have exponentially many vertices and facets.

The idea of adding variables to get simpler descriptions (LP and SDP) is old, and many hierarchies of approximation explore this: Ballas, Sherali-Adams, Lovász-Schrijver, Lasserre, Bienstock-Zuckerberg, theta bodies...

We want to frame all these approaches and their limits in one single theory

3. Lifts of Convex Sets

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes.

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the Parity Polytope:

$$
\operatorname{PP}_{n}=\operatorname{conv}\left(\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{x} \text { has odd number of } 1\right\}\right)
$$

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the Parity Polytope:

$$
\operatorname{PP}_{n}=\operatorname{conv}\left(\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{x} \text { has odd number of } 1\right\}\right)
$$

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the Parity Polytope:

$$
\operatorname{PP}_{n}=\operatorname{conv}\left(\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{x} \text { has odd number of } 1\right\}\right)
$$

The polytope P_{n} has 2^{n-1} vertices (one per odd set) and 2^{n-1} facets (one per even set).

Parity Polytope

There is a much shorter description.
PP_{n} is the set of $\mathbf{x} \in \mathbb{R}^{n}$ such that there exists for every odd $1 \leq k \leq n$ a vector $\mathbf{z}_{k} \in \mathbb{R}^{n}$ and a real number α_{k} such that

- $\sum_{k} \mathbf{z}_{k}=\mathbf{x}$;
- $\sum_{k} \alpha_{k}=1$;
- $\left\|\mathbf{z}_{k}\right\|_{1}=k \alpha_{k}$;
- $0 \leq\left(\mathbf{z}_{k}\right)_{i} \leq \alpha_{k}$.

Parity Polytope

There is a much shorter description.
PP_{n} is the set of $\mathbf{x} \in \mathbb{R}^{n}$ such that there exists for every odd $1 \leq k \leq n$ a vector $\mathbf{z}_{k} \in \mathbb{R}^{n}$ and a real number α_{k} such that

- $\sum_{k} \mathbf{z}_{k}=\mathbf{x}$;
- $\sum_{k} \alpha_{k}=1$;
- $\left\|\mathbf{z}_{k}\right\|_{1}=k \alpha_{k}$;
- $0 \leq\left(\mathbf{z}_{k}\right)_{i} \leq \alpha_{k}$.
$O\left(n^{2}\right)$ variables and $O\left(n^{2}\right)$ constraints.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Canonical LP Lift

Given a polytope P, a canonical LP lift is a description

$$
P=\Phi\left(\mathbb{R}_{+}^{k} \cap L\right)
$$

for some affine space L and affine map Φ. We say it is a \mathbb{R}_{+}^{k}-lift.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Canonical LP Lift

Given a polytope P, a canonical LP lift is a description

$$
P=\Phi\left(\mathbb{R}_{+}^{k} \cap L\right)
$$

for some affine space L and affine map Φ. We say it is a \mathbb{R}_{+}^{k}-lift.

We are interested in the smallest k such that P has a \mathbb{R}_{+}^{k}-lift, a much better measure of "LP-complexity".

Two definitions

Let P be a polytope with facets defined by $h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Two definitions

Let P be a polytope with facets defined by $h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{v \times f}$ defined by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

Two definitions

Let P be a polytope with facets defined by $h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ defined by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ we say that it has a k-nonnegative factorization, or a \mathbb{R}_{+}^{k}-factorization if there exist matrices $A \in \mathbb{R}_{+}^{n \times k}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A \cdot B .
$$

Yannakakis' Theorem

Theorem (Yannakakis 1991)
A polytope P has a \mathbb{R}_{+}^{k}-lift if and only if S_{P} has a \mathbb{R}_{+}^{k}-factorization.

Yannakakis' Theorem

Theorem (Yannakakis 1991)
A polytope P has a \mathbb{R}_{+}^{k}-lift if and only if S_{P} has a \mathbb{R}_{+}^{k}-factorization.

- Does it work for other types of lifts?

Yannakakis' Theorem

Theorem (Yannakakis 1991)
A polytope P has a \mathbb{R}_{+}^{k}-lift if and only if S_{P} has a \mathbb{R}_{+}^{k}-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?

Yannakakis' Theorem

Theorem (Yannakakis 1991)
A polytope P has a \mathbb{R}_{+}^{k}-lift if and only if S_{P} has a \mathbb{R}_{+}^{k}-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?

Yannakakis' Theorem

Theorem (Yannakakis 1991)
A polytope P has a \mathbb{R}_{+}^{k}-lift if and only if S_{P} has a \mathbb{R}_{+}^{k}-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?
- Does LP solve all polynomial combinatorial problems?

The Hexagon

Consider the regular hexagon.

The Hexagon

Consider the regular hexagon.

The Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix S_{H}.

The Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix S_{H}.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

The Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix S_{H}.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hexagon - continued

It is the projection of the slice of \mathbb{R}_{+}^{5} cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1 .
$$

Hexagon - continued

It is the projection of the slice of \mathbb{R}_{+}^{5} cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1 .
$$

Hexagon - continued

It is the projection of the slice of \mathbb{R}_{+}^{5} cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1 .
$$

For irregular hexagons a \mathbb{R}_{+}^{6}-lift is the only we can have.

Generalizing to non-LP

We want to generalize this result to other types of lifts.

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$
P=\Phi(K \cap L)
$$

for some affine space L and affine map Φ.

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$
P=\Phi(K \cap L)
$$

for some affine space L and affine map Φ.

Important cases are $\mathbb{R}_{+}^{n}, \mathrm{PSD}_{n}, \mathrm{SOCP}_{n}, \mathrm{CP}_{n}, \mathrm{CoP}_{n}, \ldots$

Generalizing to non-LP

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$
P=\Phi(K \cap L)
$$

for some affine space L and affine map Φ.

Important cases are $\mathbb{R}_{+}^{n}, \mathrm{PSD}_{n}, \mathrm{SOCP}_{n}, \mathrm{CP}_{n}, \mathrm{CoP}_{n}, \ldots$
Note that if the theta body is exact, it is a PSD-lift.

K-factorizations

We also need to generalize the nonnegative factorizations.

K-factorizations

We also need to generalize the nonnegative factorizations.
Recall that if $K \subseteq \mathbb{R}^{\prime}$ is a closed convex cone, $K^{*} \subseteq \mathbb{R}^{\prime}$ is its dual cone, defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{\prime}\langle y, x\rangle \geq 0, \forall x \in K\right\}
$$

K-factorizations

We also need to generalize the nonnegative factorizations.
Recall that if $K \subseteq \mathbb{R}^{\prime}$ is a closed convex cone, $K^{*} \subseteq \mathbb{R}^{\prime}$ is its dual cone, defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{\prime}\langle y, x\rangle \geq 0, \forall x \in K\right\}
$$

K-Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ we say that it has a K-factorization if there exist $a_{1}, \ldots a_{n} \in K$ and $b_{1}, \ldots, b_{m} \in K^{*}$ such that

$$
M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle
$$

We can now generalize Yannakakis.

Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K-lift if and only if S_{P} has a K-factorization.

Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K-lift if and only if S_{P} has a K-factorization.

- If G is perfect $\operatorname{STAB}(G)$ has a PSD_{n+1}-lift (theta body).

Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K-lift if and only if S_{P} has a K-factorization.

- If G is perfect $\operatorname{STAB}(G)$ has a PSD_{n+1}-lift (theta body).
- That is actually the best possible PSD-lift.

Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K-lift if and only if S_{P} has a K-factorization.

- If G is perfect $\operatorname{STAB}(G)$ has a PSD_{n+1}-lift (theta body).
- That is actually the best possible PSD-lift.
- [Burer] In general $\operatorname{STAB}(G)$ has a CP_{n+1}-lift.

Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K-lift if and only if S_{P} has a K-factorization.

- If G is perfect $\operatorname{STAB}(G)$ has a PSD_{n+1}-lift (theta body).
- That is actually the best possible PSD-lift.
- [Burer] In general $\operatorname{STAB}(G)$ has a CP_{n+1}-lift.
- We can generalize Yannakakis further to other convex sets by introducing a slack operator.

Open questions - further directions

- The role of symmetry.

Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?

Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?

Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?
- Which sets are SDP-representable, i.e., which sets have SDP-lifts?

The end

Thank You

