From approximate factorizations to approximate lifts

João Gouveia

University of Coimbra

16th November 2013 - CIRM

with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Linear Lifts

A linear lift of a polytope *P* of size *k* is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \text{ s.t. } a_0 + \sum a_i \boldsymbol{x}_i + \sum b_i \boldsymbol{y}_i \geq \boldsymbol{0} \right\}$$

where a_i and b_i are in \mathbb{R}^k .

Linear Lifts

A linear lift of a polytope *P* of size *k* is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \text{ s.t. } \boldsymbol{a}_0 + \sum \boldsymbol{a}_i \boldsymbol{x}_i + \sum \boldsymbol{b}_i \boldsymbol{y}_i \geq \boldsymbol{0} \right\}$$

where a_i and b_i are in \mathbb{R}^k .

Equivalently, it is a polytope Q with k facets such that L(Q) = P for some affine map L.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example - Octagon

Consider the octagon O of vertices $\{(\pm 1, \pm 2), (\pm 2, \pm 1)\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example - Octagon

Consider the octagon O of vertices $\{(\pm 1, \pm 2), (\pm 2, \pm 1)\}$

O is the set of (x, y) such that $\exists z$ for which

$$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} y + \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} Z \ge 0$$

Example - Octagon

Consider the octagon *O* of vertices $\{(\pm 1, \pm 2), (\pm 2, \pm 1)\}$

O is the set of (x, y) such that $\exists z$ for which

$$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} y + \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} Z \ge 0$$

Linear lift of size 6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of P is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by

 $S_P(i,j) = h_i(p_j).$

(ロ) (同) (三) (三) (三) (○) (○)

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

(ロ) (同) (三) (三) (三) (○) (○)

Example: For the octagon.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the octagon.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $2 - x \ge 0$ $3 - x - y \ge 0$ $2 - y \ge 0$ $3 + x - y \ge 0$ $2 + x \ge 0$ $3 + x + y \ge 0$ $2 + y \ge 0$ $3 - x + y \ge 0$

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the octagon.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the octagon.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Example: For the octagon.

	1 2	-1 2	-2 1	−2 −1	−1 −2	1 _2	2 -1	2 1	
2 − <i>x</i> ≥ 0	Г 1	3	4	4	3		0	0	1
$3-x-y\geq 0$	0	2	4	6	6	4	2	0	
$2 - y \ge 0$	0	0	1	3	4	4	3	1	
$3 + x - y \ge 0$	2	0	0	2	4	6	6	4	
2 + <i>x</i> ≥ 0	3	1	0	0	1	3	4	4	
$3 + x + y \ge 0$	6	4	2	0	0	2	4	6	
$2+y\geq 0$	4	4	3	1	0	0	1	3	
$3-x+y\geq 0$	4	6	6	4	2	0	0	2	

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}^{n \times m}_+$ a *k*-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}^{k \times n}_+$ and $B \in \mathbb{R}^{k \times m}_+$ such that

$$M = A^t \cdot B.$$

(ロ) (同) (三) (三) (三) (○) (○)

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}^{n \times m}_+$ a *k*-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}^{k \times n}_+$ and $B \in \mathbb{R}^{k \times m}_+$ such that

$$M = \mathbf{A}^t \cdot \mathbf{B}.$$

(ロ) (同) (三) (三) (三) (○) (○)

The smallest k for which M has such factorization is the nonnegative rank of M

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}^{n \times m}_+$ a *k*-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}^{k \times n}_+$ and $B \in \mathbb{R}^{k \times m}_+$ such that

$$M = A^t \cdot B.$$

(ロ) (同) (三) (三) (三) (○) (○)

The smallest k for which M has such factorization is the nonnegative rank of M

Г	1	3	4	4	3	1	0	0 7
	0	2	4	6	6	4	2	0
	0	0	1	3	4	4	3	1
	2	0	0	2	4	6	6	4
	3	1	0	0	1	3	4	4
	6	4	2	0	0	2	4	6
	4	4	3	1	0	0	1	3
L	4	6	6	4	2	0	0	2

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}^{n \times m}_+$ a *k*-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}^{k \times n}_+$ and $B \in \mathbb{R}^{k \times m}_+$ such that

$$M = A^t \cdot B$$
.

The smallest k for which M has such factorization is the nonnegative rank of M

									٥ ٦	1	0	0	0	ן 1										
									0	0	0	0	1	1	Г	0	0	1	1	0	0	1	1]	
[1 0	3 2	4 4	4 6	3 6	1 4		0 0]	1	0	0	0	1	0		1	1	0	0	1	1	0	0	
0	0	1 0	2	4 4	4 6	3 6	1 4		0	0	1	0	1	0		2	0	0	0	0	2	4	4	
3	1	0 2	0	1	3 2	4 4	4 6	=	0	1	1	0	0	0		4	4	2	0	0	0	0	2	
4	4	3 6	1	0 2	0	1	3 2		0	0	1	1	0	0		0	0	0	2	4	4	2	0	
Γ.4	0	0	-	2	0	0	2	1	1	0	0	1	0	0	L	0	2	4	4	2	0	0	ل ہ	
									Lo	0	0	1	0	1										

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}^{n \times m}_+$ a *k*-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}^{k \times n}_+$ and $B \in \mathbb{R}^{k \times m}_+$ such that

$$M = A^t \cdot B$$
.

The smallest k for which M has such factorization is the nonnegative rank of M

The slack matrix of a regular octagon has nonnegative rank 6

Yannakakis Theorem

Theorem (Yannakakis 1991)

A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Yannakakis Theorem

Theorem (Yannakakis 1991)

A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

More precisely, let $P = \{x : H^t x \le 1\}$ and $S_P = A^t \cdot B$ be a *k*-nonnegative factorization.

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \exists \boldsymbol{y} \in \mathbb{R}^k_+ \text{ s.t. } \boldsymbol{H}^t \boldsymbol{x} + \boldsymbol{A}^t \boldsymbol{y} = \mathbb{1} \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Yannakakis Theorem

Theorem (Yannakakis 1991)

A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

More precisely, let $P = \{x : H^t x \le 1\}$ and $S_P = A^t \cdot B$ be a *k*-nonnegative factorization.

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \exists \boldsymbol{y} \in \mathbb{R}^k_+ \text{ s.t. } \boldsymbol{H}^t \boldsymbol{x} + \boldsymbol{A}^t \boldsymbol{y} = \mathbb{1} \right\}$$

This formulation is very overdetermined, any perturbation of *A* makes it unfeasible. We need a more robust version.

Let $P = \{x : H^t x \le 1\}$ and V be the matrix whose columns are the vertices of P.

Let $P = \{x : H^t x \le 1\}$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then:

Let $P = \{x : H^t x \le 1\}$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then:

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \exists \boldsymbol{y} \in \mathbb{R}^k_+ \text{ s.t. } \mathbb{1} - \boldsymbol{H}^t \boldsymbol{x} - \boldsymbol{A}^t \boldsymbol{y} \in \mathbb{R}^f_+ \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $P = \{x : H^t x \le 1\}$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then:

$$P = \left\{ x \in \mathbb{R}^{n} : \exists y \in \mathbb{R}^{k}_{+} \text{ s.t. } 1 - H^{t}x - A^{t}y \in \mathbb{R}^{f}_{+} \right\}$$
$$P = \left\{ Vz : z \in \mathbb{R}^{v}_{+}, \quad \mathbb{1}^{t}z \leq 1, \quad Bz \in \mathbb{R}^{k}_{+} \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $P = \{x : H^t x \le 1\}$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then:

$$P = \left\{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^k_+ \text{ s.t. } 1 - H^t x - A^t y \in \mathbb{R}^f_+ \right\}$$
$$P = \left\{ Vz : z \in \mathbb{R}^v_+, \quad \mathbb{1}^t z \le 1, \quad Bz \in \mathbb{R}^k_+ \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

These are robust formulations, but too big.

Define the cones

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Define the cones

$$\mathcal{O}_{in}^n = \{x \in \mathbb{R}^n : \sqrt{n-1} \cdot \|x\| \le \mathbb{1}^t x\},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Define the cones

$$\mathcal{O}_{in}^n = \{x \in \mathbb{R}^n : \sqrt{n-1} \cdot \|x\| \leq \mathbb{1}^t x\},\$$

$$\mathcal{O}_{out}^n = \{ x \in \mathbb{R}^n : \|x\| \le \mathbb{1}^t x \}.$$

Define the cones

$$\mathcal{O}_{in}^{n} = \{x \in \mathbb{R}^{n} : \sqrt{n-1} \cdot ||x|| \leq \mathbb{1}^{t}x\}$$

 $\mathcal{O}_{out}^{n} = \{x \in \mathbb{R}^{n} : ||x|| \leq \mathbb{1}^{t}x\}.$

Then $\mathcal{O}_{in}^n \subseteq \mathbb{R}^n_+ \subseteq \mathcal{O}_{out}^n$, and furthermore, $(\mathcal{O}_{in}^n)^* = (\mathcal{O}_{out}^n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Again, let $P = \{x : H^t x \le 1\} \subseteq \mathbb{R}^n$ and V be the matrix whose columns are the vertices of P.

Again, let $P = \{x : H^t x \le 1\} \subseteq \mathbb{R}^n$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then

$$P = \left\{ x \in \mathbb{R}^{n} : \exists y \in \mathbb{R}^{k}_{+} \text{ s.t. } \mathbb{1} - H^{t}x - A^{t}y \in \mathbb{R}^{f}_{+} \right\}$$
$$P = \left\{ Vz : z \in \mathbb{R}^{v}_{+}, \quad \mathbb{1}^{t}z \leq 1, \quad Bz \in \mathbb{R}^{k}_{+} \right\}$$

・ロト・日本・日本・日本・日本

Again, let $P = \{x : H^t x \le 1\} \subseteq \mathbb{R}^n$ and V be the matrix whose columns are the vertices of P.

If $S_P = \mathbf{A}^t \cdot \mathbf{B}$ is a *k*-nonnegative factorization then

$$P = \operatorname{Inn}_{P}(A) = \left\{ x \in \mathbb{R}^{n} : \exists y \in \mathbb{R}^{k}_{+} \text{ s.t. } \mathbb{1} - H^{t}x - A^{t}y \in \mathcal{O}_{in}^{f} \right\}$$
$$P = \operatorname{Out}_{P}(B) = \left\{ Vz : z \in \mathcal{O}_{out}^{v}, \quad \mathbb{1}^{t}z \leq 1, \quad Bz \in \mathbb{R}^{k}_{+} \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Again, let $P = \{x : H^t x \le 1\} \subseteq \mathbb{R}^n$ and V be the matrix whose columns are the vertices of P.

If $S_P = A^t \cdot B$ is a *k*-nonnegative factorization then

$$P = \operatorname{Inn}_{P}(A) = \left\{ x \in \mathbb{R}^{n} : \exists y \in \mathbb{R}^{k}_{+} \text{ s.t. } \mathbb{1} - H^{t}x - A^{t}y \in \mathcal{O}_{in}^{f} \right\}$$
$$P = \operatorname{Out}_{P}(B) = \left\{ Vz : z \in \mathcal{O}_{out}^{v}, \quad \mathbb{1}^{t}z \leq 1, \quad Bz \in \mathbb{R}^{k}_{+} \right\}$$

Both $Inn_P(A)$ and $Out_P(B)$ are actually $\mathbb{R}^k_+ \times SOC_{k+n+1}$ lifts, so we gain robustness and don't loose effectiveness.

Containment

Containment Property For any *A* and *B* nonnegative

 $\operatorname{Inn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B).$

Containment

```
Containment Property
For any A and B nonnegative
```

```
\operatorname{Inn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B).
```

So nonnegative matrices give us automatic inner and outer approximations of a polytope.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Containment

```
Containment Property
For any A and B nonnegative
```

 $\operatorname{Inn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B).$

So nonnegative matrices give us automatic inner and outer approximations of a polytope.

Polar Property $(Inn_{P}(A))^{\circ} = Out_{P^{\circ}}(A) \text{ and } (Out_{P}(B))^{\circ} = Inn_{P^{\circ}}(B).$

・ロ・・聞・・ヨ・・ヨ・ シック・

Let
$$P = \left\{ (x, y) : \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}^t \begin{bmatrix} x \\ y \end{bmatrix} \le \mathbb{1} \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let
$$P = \left\{ (x, y) : \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}^t \begin{bmatrix} x \\ y \end{bmatrix} \le 1 \right\}$$

$$\ln p(0) = \left\{ (x, y) : 3(x+y)^2 + (x-y)^2 \le 3 \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let
$$P = \left\{ (x, y) : \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}^t \begin{bmatrix} x \\ y \end{bmatrix} \le 1 \right\}$$

 $\operatorname{Inn}_P(0) = \left\{ (x, y) : 3(x + y)^2 + (x - y)^2 \le 3 \right\}$
 $\operatorname{Out}_P(0) = \left\{ (x, y) : 3(x + y)^2 + (x - y)^2 \le 12 \right\}.$

・ロト・四ト・モート ヨー うへの

Let
$$P = \left\{ (x, y) : \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}^t \begin{bmatrix} x \\ y \end{bmatrix} \le 1 \right\}$$

$$\ln P(0) = \left\{ (x, y) : 3(x + y)^2 + (x - y)^2 \le 3 \right\}$$

Out_P(0) =
$$\{(x, y) : 3(x + y)^2 + (x - y)^2 \le 12\}$$
.

Translation (In)variance

Note that the inner approximations depend on the choice of the center, while the outer is invariant.

Error bounds for the approximations Let $\tilde{S} = A^t \cdot B$, and *P* a polytope such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Error bounds for the approximations Let $\tilde{S} = A^t \cdot B$, and *P* a polytope such that

$$arepsilon_1 = \| ilde{S} - S_{P} \|_{\infty,2};$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Error bounds for the approximations Let $\tilde{S} = A^t \cdot B$, and *P* a polytope such that

$$\varepsilon_1 = \|\tilde{\boldsymbol{S}} - \boldsymbol{S}_{\boldsymbol{P}}\|_{\infty,2};$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then

$$\frac{1}{1+\varepsilon_1} \mathbf{P} \subseteq \operatorname{Inn}_{\mathbf{P}}(\mathbf{B}) \subseteq \mathbf{P};$$

Error bounds for the approximations Let $\tilde{S} = A^t \cdot B$, and *P* a polytope such that

$$\varepsilon_1 = \|\tilde{S} - S_P\|_{\infty,2}; \quad \varepsilon_2 = \|\tilde{S} - S_P\|_{1,2}.$$

Then

$$\frac{1}{1+\varepsilon_1} P \subseteq \operatorname{Inn}_P(B) \subseteq P; \quad P \subseteq \operatorname{Out}_P(A) \subseteq (1+\varepsilon_2) P.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Error bounds for the approximations Let $\tilde{S} = A^t \cdot B$, and *P* a polytope such that

$$\varepsilon_1 = \|\tilde{S} - S_P\|_{\infty,2}; \quad \varepsilon_2 = \|\tilde{S} - S_P\|_{1,2}.$$

Then

$$\frac{1}{1+\varepsilon_1} P \subseteq \operatorname{Inn}_{P}(B) \subseteq P; \quad P \subseteq \operatorname{Out}_{P}(A) \subseteq (1+\varepsilon_2) P.$$

Good factorizations give good approximations.

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

$$S_P = \left[egin{array}{cccccc} 2 & 2 & 0 & 0 \ 0 & 2 & 2 & 0 \ 0 & 0 & 2 & 2 \ 2 & 0 & 0 & 2 \end{array}
ight]$$

(ロ)、

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

$$S_{P} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 2 & 0 & 0 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix} \qquad \qquad \tilde{S} = A^{t} \cdot B = \begin{bmatrix} 4/3 & 0 \\ 4/3 & 4/3 \\ 0 & 4/3 \\ 0 & 4/3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

$$S_{P} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix} \qquad \qquad \tilde{S} = A^{t} \cdot B = \begin{bmatrix} 4/3 & 0 \\ 4/3 & 4/3 \\ 0 & 4/3 \\ 0 & 4/3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

$$\boldsymbol{S_{P}} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix} \qquad \qquad \tilde{\boldsymbol{S}} = \boldsymbol{A}^{t} \cdot \boldsymbol{B} = \begin{bmatrix} 4/3 & 4/3 & 4/3 & 0 \\ 4/3 & 4/3 & 4/3 & 0 \\ 4/3 & 0 & 4/3 & 4/3 \\ 4/3 & 0 & 4/3 & 4/3 \end{bmatrix}$$

$$\varepsilon_1 = 2/3\sqrt{10}; \quad \varepsilon_2 = 2/3\sqrt{6}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider *P* the square with vertices $(\pm 1, \pm 1)$.

$$\boldsymbol{S_{P}} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix} \qquad \qquad \tilde{\boldsymbol{S}} = \boldsymbol{A}^{t} \cdot \boldsymbol{B} = \begin{bmatrix} 4/3 & 4/3 & 4/3 & 0 \\ 4/3 & 4/3 & 4/3 & 0 \\ 4/3 & 0 & 4/3 & 4/3 \\ 4/3 & 0 & 4/3 & 4/3 \end{bmatrix}$$

$$\varepsilon_1 = 2/3\sqrt{10}; \quad \varepsilon_2 = 2/3\sqrt{6}$$

All remains true for general cones

All remains true for general cones

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $Inn_P(0)$ is a Dikin-like ellipsoid.

- All remains true for general cones
- $Inn_P(0)$ is a Dikin-like ellipsoid.
- Canonical choice for k = 1 is obtained by svd.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- All remains true for general cones
- $Inn_P(0)$ is a Dikin-like ellipsoid.
- Canonical choice for k = 1 is obtained by svd.

Generalizes to "sandwiched" polytopes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- All remains true for general cones
- $Inn_P(0)$ is a Dikin-like ellipsoid.
- Canonical choice for k = 1 is obtained by svd.

Generalizes to "sandwiched" polytopes.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Approximate lifts to approximate factorizations is easy.

THANK YOU