From approximate factorizations to approximate lifts

João Gouveia

University of Coimbra

16th November 2013 - CIRM
with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

Linear Lifts

A linear lift of a polytope P of size k is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } a_{0}+\sum a_{i} x_{i}+\sum b_{i} y_{i} \geq 0\right\}
$$

where a_{i} and b_{i} are in \mathbb{R}^{k}.

Linear Lifts

A linear lift of a polytope P of size k is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } a_{0}+\sum a_{i} x_{i}+\sum b_{i} y_{i} \geq 0\right\}
$$

where a_{i} and b_{i} are in \mathbb{R}^{k}.

Equivalently, it is a polytope Q with k facets such that $L(Q)=P$ for some affine map L.

Example - Octagon

Consider the octagon O of vertices $\{(\pm 1, \pm 2),(\pm 2, \pm 1)\}$

Example - Octagon

Consider the octagon O of vertices $\{(\pm 1, \pm 2),(\pm 2, \pm 1)\}$
O is the set of (x, y) such that $\exists z$ for which

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right] y+\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right] z \geq 0
$$

Example - Octagon

Consider the octagon O of vertices $\{(\pm 1, \pm 2),(\pm 2, \pm 1)\}$
O is the set of (x, y) such that $\exists z$ for which

$$
\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0 \\
0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right] y+\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1 \\
-1 \\
-1
\end{array}\right] z \geq 0
$$

Linear lift of size 6

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the octagon.

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the octagon.

$$
\begin{array}{l|c|c|c|c|c|c|c}
1 & -1 & -2 & -2 & -1 & 1 & 2 & 2 \\
2 & 2 & 1 & -1 & -2 & -2 & -1 & 1
\end{array}
$$

$$
\begin{gathered}
2-x \geq 0 \\
3-x-y \geq 0 \\
2-y \geq 0 \\
3+x-y \geq 0 \\
2+x \geq 0 \\
3+x+y \geq 0 \\
2+y \geq 0 \\
3-x+y \geq 0
\end{gathered}
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the octagon.

$$
\begin{aligned}
& \begin{array}{c}
2-x \geq 0 \\
3-x-y \geq 0 \\
2-y \geq 0 \\
3+x-y \geq 0 \\
2+x \geq 0 \\
3+x+y \geq 0 \\
2+y \geq 0 \\
3-x+y \geq 0
\end{array}\left[\begin{array}{lllllllll}
1 & 3 & 4 & 4 & 3 & 1 & 0 & 0 \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
\\
3-x & & & & & & & \\
\\
3+1
\end{array}\right]
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the octagon.

	1 2	${ }_{-1}^{2}$	${ }_{1}^{-2}$	${ }_{-1}^{-2}$	-1 -2	${ }_{-2}^{1}$	$\stackrel{2}{-1}$	2
$2-x \geq 0$	1	3	4	4	3	1	0	0
$\begin{gathered} 3-x-y \geq 0 \\ 2-y \geq 0 \end{gathered}$	0	2	4	6	6	4	2	0
$\begin{gathered} 3+x-y \geq 0 \\ 2+x \geq 0 \end{gathered}$								
$\begin{gathered} 3+x+y \geq 0 \\ 2+y \geq 0 \end{gathered}$								
$3-x+y \geq 0$								

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the octagon.
$2-x \geq 0$
$3-x-y \geq 0$
$2-y \geq 0$
$3+x-y \geq 0$
$2+x \geq 0$
$3+x+y \geq 0$
$2+y \geq 0$
$3-x+y \geq 0$$\quad\left[\begin{array}{cccccccc|c}1 & 3 & 4 & 4 & 3 & 1 & 0 & 0 \\ 0 & 2 & 4 & 6 & 6 & 4 & 2 & 0 \\ 2 & & -1 \\ 1\end{array} \quad\left[\begin{array}{c}1 \\ 0\end{array}\right)\right.$

Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ a k-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}_{+}^{k \times n}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A^{t} \cdot B .
$$

Nonnegative Factorizations

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ a k-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}_{+}^{k \times n}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A^{t} \cdot B
$$

The smallest k for which M has such factorization is the nonnegative rank of M

Nonnegative Factorizations

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ a k-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}_{+}^{k \times n}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A^{t} \cdot B .
$$

The smallest k for which M has such factorization is the nonnegative rank of M

$$
\left[\begin{array}{llllllll}
1 & 3 & 4 & 4 & 3 & 1 & 0 & 0 \\
0 & 2 & 4 & 6 & 6 & 4 & 2 & 0 \\
0 & 0 & 1 & 3 & 4 & 4 & 3 & 1 \\
2 & 0 & 0 & 2 & 4 & 6 & 6 & 4 \\
3 & 1 & 0 & 0 & 1 & 3 & 4 & 4 \\
6 & 4 & 2 & 0 & 0 & 2 & 4 & 6 \\
4 & 4 & 3 & 1 & 0 & 0 & 1 & 3 \\
4 & 6 & 6 & 4 & 2 & 0 & 0 & 2
\end{array}\right]
$$

Nonnegative Factorizations

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ a k-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}_{+}^{k \times n}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A^{t} \cdot B .
$$

The smallest k for which M has such factorization is the nonnegative rank of M

$$
\left[\begin{array}{llllllll}
1 & 3 & 4 & 4 & 3 & 1 & 0 & 0 \\
0 & 2 & 4 & 6 & 6 & 4 & 2 & 0 \\
0 & 0 & 1 & 3 & 4 & 4 & 3 & 1 \\
2 & 0 & 0 & 2 & 4 & 6 & 6 & 4 \\
3 & 1 & 0 & 0 & 1 & 3 & 4 & 4 \\
6 & 4 & 2 & 0 & 0 & 2 & 4 & 6 \\
4 & 4 & 3 & 1 & 0 & 0 & 1 & 3 \\
4 & 6 & 6 & 4 & 2 & 0 & 0 & 2
\end{array}\right]=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 2 & 4 & 4 \\
4 & 4 & 2 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & 4 & 4 & 2 & 0 \\
0 & 2 & 4 & 4 & 2 & 0 & 0 & 0
\end{array}\right]
$$

Nonnegative Factorizations

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ a k-nonnegative factorization, is a pair of matrices $A \in \mathbb{R}_{+}^{k \times n}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A^{t} \cdot B .
$$

The smallest k for which M has such factorization is the nonnegative rank of M

$$
\left[\begin{array}{llllllll}
1 & 3 & 4 & 4 & 3 & 1 & 0 & 0 \\
0 & 2 & 4 & 6 & 6 & 4 & 2 & 0 \\
0 & 0 & 1 & 3 & 4 & 4 & 3 & 1 \\
2 & 0 & 0 & 2 & 4 & 6 & 6 & 4 \\
3 & 1 & 0 & 0 & 1 & 3 & 4 & 4 \\
6 & 4 & 2 & 0 & 0 & 2 & 4 & 6 \\
4 & 4 & 3 & 1 & 0 & 0 & 1 & 3 \\
4 & 6 & 6 & 4 & 2 & 0 & 0 & 2
\end{array}\right]=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 2 & 4 & 4 \\
4 & 4 & 2 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & 4 & 4 & 2 & 0 \\
0 & 2 & 4 & 4 & 2 & 0 & 0 & 0
\end{array}\right]
$$

The slack matrix of a regular octagon has nonnegative rank 6

Yannakakis Theorem

Theorem (Yannakakis 1991)
A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

Yannakakis Theorem

Theorem (Yannakakis 1991)
A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

More precisely, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and $S_{P}=A^{t} \cdot B$ be a k-nonnegative factorization.

$$
P=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } H^{t} x+A^{t} y=\mathbb{1}\right\}
$$

Yannakakis Theorem

Theorem (Yannakakis 1991)
A polytope P has a linear lift of size k if and only if its slack matrix has a k-nonnegative factorization.

More precisely, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and $S_{P}=A^{t} \cdot B$ be a k-nonnegative factorization.

$$
P=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } H^{t} x+A^{t} y=\mathbb{1}\right\}
$$

This formulation is very overdetermined, any perturbation of A makes it unfeasible. We need a more robust version.

Robust Lifts from Factorizations

Let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and V be the matrix whose columns are the vertices of P.

Robust Lifts from Factorizations

Let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} . B$ is a k-nonnegative factorization then:

Robust Lifts from Factorizations

Let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then:

$$
P=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathbb{R}_{+}^{f}\right\}
$$

Robust Lifts from Factorizations

Let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then:

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathbb{R}_{+}^{f}\right\} \\
P=\left\{V z: z \in \mathbb{R}_{+}^{v}, \quad \mathbb{1}^{t} z \leq 1, \quad B z \in \mathbb{R}_{+}^{k}\right\}
\end{gathered}
$$

Robust Lifts from Factorizations

Let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then:

$$
\begin{gathered}
P=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathbb{R}_{+}^{f}\right\} \\
P=\left\{V z: z \in \mathbb{R}_{+}^{v}, \quad \mathbb{1}^{t} z \leq 1, \quad B z \in \mathbb{R}_{+}^{k}\right\}
\end{gathered}
$$

These are robust formulations, but too big.

Approximations for the nonnegative orthant

Define the cones

Approximations for the nonnegative orthant

Define the cones

$$
\mathcal{O}_{i n}^{n}=\left\{x \in \mathbb{R}^{n}: \sqrt{n-1} \cdot\|x\| \leq \mathbb{1}^{t} x\right\}
$$

Approximations for the nonnegative orthant

Define the cones

$$
\begin{gathered}
\mathcal{O}_{\text {in }}^{n}=\left\{x \in \mathbb{R}^{n}: \sqrt{n-1} \cdot\|x\| \leq \mathbb{1}^{t} x\right\} \\
\mathcal{O}_{\text {out }}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \mathbb{1}^{t} x\right\}
\end{gathered}
$$

Approximations for the nonnegative orthant

Define the cones

$$
\begin{gathered}
\mathcal{O}_{\text {in }}^{n}=\left\{x \in \mathbb{R}^{n}: \sqrt{n-1} \cdot\|x\| \leq \mathbb{1}^{t} x\right\} \\
\mathcal{O}_{\text {out }}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq \mathbb{1}^{t} x\right\}
\end{gathered}
$$

Then $\mathcal{O}_{\text {in }}^{n} \subseteq \mathbb{R}_{+}^{n} \subseteq \mathcal{O}_{\text {out }}^{n}$, and furthermore, $\left(\mathcal{O}_{\text {in }}^{n}\right)^{*}=\left(\mathcal{O}_{\text {out }}^{n}\right)$.

Effective Robust Lifts from Factorizations

Again, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\} \subseteq \mathbb{R}^{n}$ and V be the matrix whose columns are the vertices of P.

Effective Robust Lifts from Factorizations

Again, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\} \subseteq \mathbb{R}^{n}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then

$$
\begin{aligned}
& P= \\
& \left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathbb{R}_{+}^{f}\right\} \\
& P=\quad\left\{V z: z \in \mathbb{R}_{+}^{v}, \quad \mathbb{1}^{t} z \leq 1, \quad B z \in \mathbb{R}_{+}^{k}\right\}
\end{aligned}
$$

Effective Robust Lifts from Factorizations

Again, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\} \subseteq \mathbb{R}^{n}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then

$$
\begin{gathered}
P=\operatorname{lnn}_{P}(A)=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathcal{O}_{\text {in }}^{f}\right\} \\
P=\operatorname{Out}_{P}(B)=\left\{V z: z \in \mathcal{O}_{\text {out }}^{v}, \quad \mathbb{1}^{t} z \leq 1, \quad B z \in \mathbb{R}_{+}^{k}\right\}
\end{gathered}
$$

Effective Robust Lifts from Factorizations

Again, let $P=\left\{x: H^{t} x \leq \mathbb{1}\right\} \subseteq \mathbb{R}^{n}$ and V be the matrix whose columns are the vertices of P.

If $S_{P}=A^{t} \cdot B$ is a k-nonnegative factorization then

$$
\begin{gathered}
P=\operatorname{Inn}_{P}(A)=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}_{+}^{k} \text { s.t. } \mathbb{1}-H^{t} x-A^{t} y \in \mathcal{O}_{\text {in }}^{f}\right\} \\
P=\operatorname{Out}_{P}(B)=\left\{V z: z \in \mathcal{O}_{\text {out }}^{v}, \quad \mathbb{1}^{t} z \leq 1, \quad B z \in \mathbb{R}_{+}^{k}\right\}
\end{gathered}
$$

Both $\operatorname{Inn}_{P}(A)$ and $\operatorname{Out}_{P}(B)$ are actually $\mathbb{R}_{+}^{k} \times \operatorname{SOC}_{k+n+1}$ lifts, so we gain robustness and don't loose effectiveness.

Containment

Containment Property
For any A and B nonnegative

$$
\operatorname{lnn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B) .
$$

Containment

Containment Property

For any A and B nonnegative

$$
\operatorname{lnn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B) .
$$

So nonnegative matrices give us automatic inner and outer approximations of a polytope.

Containment

Containment Property

For any A and B nonnegative

$$
\operatorname{lnn}_{P}(A) \subseteq P \subseteq \operatorname{Out}_{P}(B) .
$$

So nonnegative matrices give us automatic inner and outer approximations of a polytope.

Polar Property
$\left(\operatorname{lnn}_{P}(A)\right)^{\circ}=\operatorname{Out}_{P \circ}(A)$ and $\left(\operatorname{Out}_{P}(B)\right)^{\circ}=\operatorname{Inn}_{P \circ}(B)$.

Example

$$
\text { Let } P=\left\{(x, y):\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq \mathbb{1}\right\}
$$

Example

$$
\text { Let } \begin{aligned}
P= & \left\{(x, y):\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq \mathbb{1}\right\} \\
& \operatorname{lnn}_{P}(0)=\left\{(x, y): 3(x+y)^{2}+(x-y)^{2} \leq 3\right\}
\end{aligned}
$$

Example

$$
\text { Let } \begin{aligned}
P= & \left\{(x, y):\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq \mathbb{1}\right\} \\
& \operatorname{lnn}_{P}(0)=\left\{(x, y): 3(x+y)^{2}+(x-y)^{2} \leq 3\right\}
\end{aligned}
$$

$$
\operatorname{Out}_{P}(0)=\left\{(x, y): 3(x+y)^{2}+(x-y)^{2} \leq 12\right\} .
$$

Example

$$
\text { Let } \begin{aligned}
P= & \left\{(x, y):\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right] \leq \mathbb{1}\right\} \\
& \operatorname{lnn}_{P}(0)=\left\{(x, y): 3(x+y)^{2}+(x-y)^{2} \leq 3\right\}
\end{aligned}
$$

$$
\operatorname{Out}_{P}(0)=\left\{(x, y): 3(x+y)^{2}+(x-y)^{2} \leq 12\right\} .
$$

Translation (In)variance

Note that the inner approximations depend on the choice of the center, while the outer is invariant.

Error bounds

Error bounds for the approximations
Let $\tilde{S}=A^{t} \cdot B$, and P a polytope such that

Error bounds

Error bounds for the approximations
Let $\tilde{S}=A^{t} \cdot B$, and P a polytope such that

$$
\varepsilon_{1}=\left\|\tilde{S}-S_{P}\right\|_{\infty, 2}
$$

Error bounds

Error bounds for the approximations
Let $\tilde{S}=A^{t} \cdot B$, and P a polytope such that

$$
\varepsilon_{1}=\left\|\tilde{S}-S_{P}\right\|_{\infty, 2} ;
$$

Then

$$
\frac{1}{1+\varepsilon_{1}} P \subseteq \operatorname{lnn}_{P}(B) \subseteq P
$$

Error bounds

Error bounds for the approximations
Let $\tilde{S}=A^{t} \cdot B$, and P a polytope such that

$$
\varepsilon_{1}=\left\|\tilde{S}-S_{P}\right\|_{\infty, 2} ; \quad \varepsilon_{2}=\left\|\tilde{S}-S_{P}\right\|_{1,2} .
$$

Then

$$
\frac{1}{1+\varepsilon_{1}} P \subseteq \operatorname{lnn}_{P}(B) \subseteq P ; \quad P \subseteq \operatorname{Out}_{P}(A) \subseteq\left(1+\varepsilon_{2}\right) P
$$

Error bounds

Error bounds for the approximations
Let $\tilde{S}=A^{t} \cdot B$, and P a polytope such that

$$
\varepsilon_{1}=\left\|\tilde{S}-S_{P}\right\|_{\infty, 2} ; \quad \varepsilon_{2}=\left\|\tilde{S}-S_{P}\right\|_{1,2}
$$

Then

$$
\frac{1}{1+\varepsilon_{1}} P \subseteq \operatorname{lnn}_{P}(B) \subseteq P ; \quad P \subseteq \operatorname{Out}_{P}(A) \subseteq\left(1+\varepsilon_{2}\right) P
$$

Good factorizations give good approximations.

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

$$
S_{P}=\left[\begin{array}{llll}
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right]
$$

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

$$
S_{P}=\left[\begin{array}{llll}
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right] \quad \tilde{S}=A^{t} \cdot B=\left[\begin{array}{cc}
4 / 3 & 0 \\
4 / 3 & 4 / 3 \\
0 & 4 / 3 \\
0 & 4 / 3
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

$$
S P=\left[\begin{array}{llll}
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right] \quad \tilde{S}=A^{t} \cdot B=\left[\begin{array}{cc}
4 / 3 & 0 \\
4 / 3 & 4 / 3 \\
0 & 4 / 3 \\
0 & 4 / 3
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

$$
\begin{gathered}
S_{P}=\left[\begin{array}{cccc}
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right] \quad \tilde{S}=A^{t} \cdot B=\left[\begin{array}{cccc}
4 / 3 & 4 / 3 & 4 / 3 & 0 \\
4 / 3 & 4 / 3 & 4 / 3 & 0 \\
4 / 3 & 0 & 4 / 3 & 4 / 3 \\
4 / 3 & 0 & 4 / 3 & 4 / 3
\end{array}\right] \\
\varepsilon_{1}=2 / 3 \sqrt{10} ; \quad \varepsilon_{2}=2 / 3 \sqrt{6}
\end{gathered}
$$

Example

Consider P the square with vertices $(\pm 1, \pm 1)$.

$$
\begin{gathered}
S_{P}=\left[\begin{array}{llll}
2 & 2 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 2 & 2 \\
2 & 0 & 0 & 2
\end{array}\right] \quad \tilde{S}=A^{t} \cdot B=\left[\begin{array}{cccc}
4 / 3 & 4 / 3 & 4 / 3 & 0 \\
4 / 3 & 4 / 3 & 4 / 3 & 0 \\
4 / 3 & 0 & 4 / 3 & 4 / 3 \\
4 / 3 & 0 & 4 / 3 & 4 / 3
\end{array}\right] \\
\varepsilon_{1}=2 / 3 \sqrt{10} ; \quad \varepsilon_{2}=2 / 3 \sqrt{6}
\end{gathered}
$$

Further thoughts

- All remains true for general cones

Further thoughts

- All remains true for general cones
- $\operatorname{lnn}_{P}(0)$ is a Dikin-like ellipsoid.

Further thoughts

- All remains true for general cones
- $\operatorname{Inn}_{P}(0)$ is a Dikin-like ellipsoid.
- Canonical choice for $k=1$ is obtained by svd.

Further thoughts

- All remains true for general cones
- $\operatorname{Inn}_{P}(0)$ is a Dikin-like ellipsoid.
- Canonical choice for $k=1$ is obtained by svd.

- Generalizes to "sandwiched" polytopes.

Further thoughts

- All remains true for general cones
- $\operatorname{Inn}_{P}(0)$ is a Dikin-like ellipsoid.
- Canonical choice for $k=1$ is obtained by svd.

- Generalizes to "sandwiched" polytopes.

- Approximate lifts to approximate factorizations is easy.

THE END

THANK YOU

