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Linear Lifts

A linear lift of a polytope P of size k is a description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. a0 +

∑
aix i +

∑
biy i ≥ 0

}
where ai and bi are in R

k .

Equivalently, it is a polytope Q with k facets such that L(Q) = P
for some affine map L.
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Example - Octagon

Consider the octagon O of vertices {(±1,±2), (±2,±1)}
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Slack Matrix
Let P be a polytope with facets given by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

The slack matrix of P is the matrix SP ∈ Rf×v given by
SP(i , j) = hi(pj).

Example: For the octagon.
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2− x ≥ 0
3− x − y ≥ 0

2− y ≥ 0
3 + x − y ≥ 0

2 + x ≥ 0
3 + x + y ≥ 0

2 + y ≥ 0
3− x + y ≥ 0



1 3 4 4 3 1 0 0
0 2 4 6 6 4 2 0
0 0 1 3 4 4 3 1
2 0 0 2 4 6 6 4
3 1 0 0 1 3 4 4
6 4 2 0 0 2 4 6
4 4 3 1 0 0 1 3
4 6 6 4 2 0 0 2
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Nonnegative Factorizations
Nonnegative Factorization
Given a nonnegative matrix M ∈ Rn×m

+ a k -nonnegative
factorization, is a pair of matrices A ∈ Rk×n

+ and B ∈ Rk×m
+ such

that
M = At · B.

The smallest k for which M has such factorization is the
nonnegative rank of M
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The slack matrix of a regular octagon has nonnegative rank 6
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Yannakakis Theorem

Theorem (Yannakakis 1991)
A polytope P has a linear lift of size k if and only if its slack
matrix has a k-nonnegative factorization.

More precisely, let P = {x : H tx ≤ 1} and SP = At · B be a
k -nonnegative factorization.

P =
{

x ∈ Rn : ∃y ∈ Rk
+ s.t. H tx + Aty = 1

}

This formulation is very overdetermined, any perturbation of A
makes it unfeasible. We need a more robust version.
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Robust Lifts from Factorizations

Let P = {x : H tx ≤ 1} and V be the matrix whose columns are
the vertices of P.

If SP = At · B is a k -nonnegative factorization then:

P =
{

x ∈ Rn : ∃y ∈ Rk
+ s.t. 1− H tx − Aty ∈ Rf

+

}

P =
{

Vz : z ∈ Rv
+, 1

tz ≤ 1, Bz ∈ Rk
+

}

These are robust formulations, but too big.
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Approximations for the nonnegative orthant

Define the cones

On
in = {x ∈ Rn :

√
n − 1·‖x‖ ≤ 1

tx},

On
out = {x ∈ Rn : ‖x‖ ≤ 1

tx}.

Then On
in ⊆ R

n
+ ⊆ On

out , and furthermore, (On
in)
∗ = (On

out).
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Effective Robust Lifts from Factorizations

Again, let P = {x : H tx ≤ 1} ⊆ R
n and V be the matrix whose

columns are the vertices of P.

If SP = At · B is a k -nonnegative factorization then

P =

InnP(A) =

{
x ∈ Rn : ∃y ∈ Rk

+ s.t. 1− H tx − Aty ∈ Rf
+

}
P =

OutP(B) =

{
Vz : z ∈ Rv

+ , 1
tz ≤ 1, Bz ∈ Rk

+

}

Both InnP(A) and OutP(B) are actually Rk
+ × SOCk+n+1 lifts, so

we gain robustness and don’t loose effectiveness.
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Containment

Containment Property
For any A and B nonnegative

InnP(A) ⊆ P ⊆ OutP(B).

So nonnegative matrices give us automatic inner and outer
approximations of a polytope.

Polar Property
(InnP(A))◦ = OutP◦(A) and (OutP(B))◦ = InnP◦(B).
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Example

Let P =

{
(x , y) :

[
−1 0 1
0 −1 1

]t [ x
y

]
≤ 1

}

InnP(0) =
{
(x , y) : 3(x + y)2 + (x − y)2 ≤ 3

}
OutP(0) =

{
(x , y) : 3(x + y)2 + (x − y)2 ≤ 12

}
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Translation (In)variance

Note that the inner approximations depend on the choice of the
center, while the outer is invariant.



Error bounds

Error bounds for the approximations
Let S̃ = At · B, and P a polytope such that

ε1 = ‖S̃ − SP‖∞,2;

ε2 = ‖S̃ − SP‖1,2.

Then

1
1 + ε1

P ⊆ InnP(B) ⊆ P; P ⊆ OutP(A) ⊆ (1 + ε2)P.

Good factorizations give good approximations.



Error bounds

Error bounds for the approximations
Let S̃ = At · B, and P a polytope such that

ε1 = ‖S̃ − SP‖∞,2;

ε2 = ‖S̃ − SP‖1,2.

Then

1
1 + ε1

P ⊆ InnP(B) ⊆ P; P ⊆ OutP(A) ⊆ (1 + ε2)P.

Good factorizations give good approximations.



Error bounds

Error bounds for the approximations
Let S̃ = At · B, and P a polytope such that

ε1 = ‖S̃ − SP‖∞,2;

ε2 = ‖S̃ − SP‖1,2.

Then

1
1 + ε1

P ⊆ InnP(B) ⊆ P;

P ⊆ OutP(A) ⊆ (1 + ε2)P.

Good factorizations give good approximations.



Error bounds

Error bounds for the approximations
Let S̃ = At · B, and P a polytope such that

ε1 = ‖S̃ − SP‖∞,2; ε2 = ‖S̃ − SP‖1,2.

Then

1
1 + ε1

P ⊆ InnP(B) ⊆ P; P ⊆ OutP(A) ⊆ (1 + ε2)P.

Good factorizations give good approximations.



Error bounds

Error bounds for the approximations
Let S̃ = At · B, and P a polytope such that

ε1 = ‖S̃ − SP‖∞,2; ε2 = ‖S̃ − SP‖1,2.

Then

1
1 + ε1

P ⊆ InnP(B) ⊆ P; P ⊆ OutP(A) ⊆ (1 + ε2)P.

Good factorizations give good approximations.



Example
Consider P the square with vertices (±1,±1).

SP =

[ 2 2 0 0
0 2 2 0
0 0 2 2
2 0 0 2

]
S̃ = At ·B =

[ 4/3 0
4/3 4/3

0 4/3
0 4/3

] [
1 1 1 0
1 0 1 1

]

ε1 = 2/3
√

10; ε2 = 2/3
√

6
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Further thoughts
I All remains true for general cones

I InnP(0) is a Dikin-like ellipsoid.

I Canonical choice for k = 1 is obtained by svd.

I Generalizes to “sandwiched” polytopes.

I Approximate lifts to approximate factorizations is easy.
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THE END

THANK YOU


