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A linear lift of a polytope P of size k is a description

P:{XGIRn

dy s.t. 30+Za,-x,-+2b,-y,- > 0}

where a; and b; are in RX.



Linear Lifts

A linear lift of a polytope P of size k is a description

P:{xelR”

dy s.t. 30+Za,-x,-+2b,-y,- > 0}

where a; and b; are in RX.

Equivalently, it is a polytope Q with k facets such that L(Q) = P
for some affine map L.
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Slack Matrix

Let P be a polytope with facets given by

hi(x) > 0,...,h«(x) > 0, and vertices p;, ...

The slack matrix of P is the matrix Sp € R*V given by
(1,4) = hi(p;)-

Example: For the octagon.
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R*V given by
(1,4) = hi(p;)-

Example: For the octagon.
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Slack Matrix

Let P be a polytope with facets given by

hi(x) > 0,...,h«(x) > 0, and vertices py,...

7pV'

The slack matrix of P is the matrix Sp € R*V given by

2—-x>0
3—x—y>0
2—-y>0
3+x—-y=>0
2+x>0
3+x+y=>0
2+y=>0
3—x+y>0
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Example: For the octagon.

I
-

A 20O MNWOO P&

| 1
N —

NOO - h~P~r,OW

|
N

cCoOoOMNWOO AN

O =~ pPpOWNO

- N

NDNWOoO P00




Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix M € R7*"™ a k-nonnegative
factorization, is a pair of matrices A € RK*" and B € RK*™ such

that
M= Al.B.



Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix M € R7*"™ a k-nonnegative
factorization, is a pair of matrices A € RK*" and B € RK*™ such

that
M= Al.B.

The smallest k for which M has such factorization is the
nonnegative rank of M



Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix M € R7*"™ a k-nonnegative
factorization, is a pair of matrices A € RK*" and B € RK*™ such

that
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The smallest k for which M has such factorization is the
nonnegative rank of M
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Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix M € R7*"™ a k-nonnegative
factorization, is a pair of matrices A € RK*" and B € RK*™ such
that

M= A!.B.

The smallest k for which M has such factorization is the
nonnegative rank of M
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Nonnegative Factorizations

Nonnegative Factorization
Given a nonnegative matrix M € R7*"™ a k-nonnegative
factorization, is a pair of matrices A € RK*" and B € RK*™ such
that

M= A!.B.

The smallest k for which M has such factorization is the
nonnegative rank of M

ro0 1 0 0 0 1
o0 0 0o 1 1ffro o 1 1 0 0 1 1
1 3 4 4 3 1 0 0
0 2 4 6 6 4 2 0 1t 0 0 0 1 0|1 1 0 0 1 1 0 0
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The slack matrix of a regular octagon has nonnegative rank 6
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Yannakakis Theorem

Theorem (Yannakakis 1991)

A polytope P has a linear lift of size k if and only if its slack
matrix has a k-nonnegative factorization.

More precisely, let P = {x : H!x <1} and Sp = A - Bbe a
k-nonnegative factorization.
P= {xe R" : dy € IRf‘F s.t. tx+A’y:Jl}

This formulation is very overdetermined, any perturbation of A
makes it unfeasible. We need a more robust version.
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Robust Lifts from Factorizations

Let P = {x: Hix < 1} and V be the matrix whose columns are
the vertices of P.

If Sp = Al. Bis a k-nonnegative factorization then:
P:{xelR”:Hye[Ris.t.]l— ’x—A’ye[Ri}
P={vz:zery, 1z<1, BzeRL|

These are robust formulations, but too big.
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Approximations for the nonnegative orthant

Define the cones

Ol ={xeR": Vn—1x| <1'x}

ou = (X €R" + |Ix|| < 1'x}.

Then O C R C O] ., and furthermore, (O )* = (01 ;).
in + out in out
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Effective Robust Lifts from Factorizations

Again, let P = {x : H'x <1} C R" and V be the matrix whose
columns are the vertices of P.

If Sp = Al - Bis a k-nonnegative factorization then

P =Innp(A) = {XEIR” ; Hye[Rﬁ s.t. 11— ’x—A’yeO,-fn}

P = Outp(B) = {Vz L zeOhy, 1lz<A, Bze[Rﬁ}

Both Innp(A) and Outp(B) are actually R x SOCy 1 lifts, so
we gain robustness and don’t loose effectiveness.
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Containment

Containment Property
For any A and B nonnegative

Innp(A) C P C Outp(B).

So nonnegative matrices give us automatic inner and outer
approximations of a polytope.

Polar Property
(Innp(A))° = Outp.(A) and (Outp(B))° = Innp. (B).
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Let P = {(x,y): {
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Example
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LetP:{(x,y):[‘O - 1 t[;]sn}

Innp(0) = {(x, ) i 8(x+ ¥+ (x—y)R < 3}
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Translation (In)variance

Note that the inner approximations depend on the choice of the
center, while the outer is invariant.
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Let S=A!-B,and P a polytope such that
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Error bounds

Error bounds for the approximations
Let S=A!-B,and P a polytope such that

e1 =15~ Splloz: 2=15— Spll12.

Then

T PSInne(B) S Pi P COutp(A) € (1+22)P.
1

Good factorizations give good approximations.
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Further thoughts

» All remains true for general cones

» Innp(0) is a Dikin-like ellipsoid.

» Canonical choice for k = 1 is obtained by svd.

» Approximate lifts to approximate factorizations is easy.



THE END

THANK YOU



