Sums of Squares on the Hypercube

Greg Blekherman ${ }^{1}$ João Gouveia ${ }^{2}$ James Pfeiffer ${ }^{3}$

${ }^{1}$ Georgia Tech
${ }^{2}$ Universidade de Coimbra
${ }^{3}$ University of Washington

5th March - CMUC - Algebra and Combinatorics Seminar

Section 1

Introduction

Nonnegativity of a polynomial

Let $I \subseteq \mathbb{R}[x]$ be an ideal:

$$
\mathcal{P}(I)=\left\{p \in \mathbb{R}[/]: p \text { is nonnegative on } \mathcal{V}_{\mathbb{R}}(I)\right\}
$$

Efficiently checking membership in $\mathcal{P}(I)$ is important for optimization.

Nonnegativity of a polynomial

Let $I \subseteq \mathbb{R}[x]$ be an ideal:

$$
\mathcal{P}(I)=\left\{p \in \mathbb{R}[I]: p \text { is nonnegative on } \mathcal{V}_{\mathbb{R}}(I)\right\} .
$$

Efficiently checking membership in $\mathcal{P}(I)$ is important for optimization.
A typical strategy is to approximate $\mathcal{P}(I)$ by

$$
\Sigma(I)=\left\{p \in \mathbb{R}[I]: p \equiv \sum_{i=1}^{t} h_{i}^{2} \text { for some } h_{i} \in \mathbb{R}[I]\right\},
$$

and its truncations

$$
\Sigma_{k}(I)=\left\{p \in \mathbb{R}[]: p \equiv \sum_{i=1}^{t} h_{i}^{2} \text { for some } h_{i} \in \mathbb{R}_{k}[I]\right\} .
$$

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo $\left.I\right)$.

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo $\left.I\right)$.
- $\Sigma_{1}(I) \subseteq \Sigma_{2}(I) \subseteq \cdots \subseteq \Sigma(I) \subseteq \mathcal{P}(I)$.

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo $\left.I\right)$.
- $\Sigma_{1}(I) \subseteq \Sigma_{2}(I) \subseteq \cdots \subseteq \Sigma(I) \subseteq \mathcal{P}(I)$.
- Checking membership in $\Sigma_{k}(I)$ is doable (SDP feasibility)

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo I).
- $\Sigma_{1}(I) \subseteq \Sigma_{2}(I) \subseteq \cdots \subseteq \Sigma(I) \subseteq \mathcal{P}(I)$.
- Checking membership in $\Sigma_{k}(I)$ is doable (SDP feasibility)
- Optimizing over $\Sigma_{k}(I)$ is doable (SDP)

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo I).
- $\Sigma_{1}(I) \subseteq \Sigma_{2}(I) \subseteq \cdots \subseteq \Sigma(I) \subseteq \mathcal{P}(I)$.
- Checking membership in $\Sigma_{k}(I)$ is doable (SDP feasibility)
- Optimizing over $\Sigma_{k}(I)$ is doable (SDP)

When are sums of squares enough?

Theorem (Hilbert 1888)

$\Sigma_{k}\left(\mathbb{R}^{n}\right)=\mathcal{P}_{2 k}\left(\mathbb{R}^{n}\right)$ if and only if $n=1, k=1$ or $(n, k)=(2,2)$.

Sums of squares

Notes

- $p \in \Sigma_{k}(I)$ is said to be k-sos (modulo I).
- $\Sigma_{1}(I) \subseteq \Sigma_{2}(I) \subseteq \cdots \subseteq \Sigma(I) \subseteq \mathcal{P}(I)$.
- Checking membership in $\Sigma_{k}(I)$ is doable (SDP feasibility)
- Optimizing over $\Sigma_{k}(I)$ is doable (SDP)

When are sums of squares enough?

> Theorem (Hilbert 1888)
> $\Sigma_{k}\left(\mathbb{R}^{n}\right)=\mathcal{P}_{2 k}\left(\mathbb{R}^{n}\right)$ if and only if $n=1, k=1$ or $(n, k)=(2,2)$.

Theorem (Scheiderer 1999)

If $\operatorname{dim}\left(\mathcal{V}_{\mathbb{R}}(I)\right) \geq 3$ then $\Sigma(I) \neq \mathcal{P}(I)$.

Motzkin's example - 1967

First concrete example of a (globally) nonnegative polynomial not sos.

$$
M(x, y)=x^{4} y^{2}+y^{4} x^{2}+1-3 x^{2} y^{2}
$$

Motzkin's example - 1967

First concrete example of a (globally) nonnegative polynomial not sos.

$$
M(x, y)=x^{4} y^{2}+y^{4} x^{2}+1-3 x^{2} y^{2}
$$

Motzkin's example - 1967

First concrete example of a (globally) nonnegative polynomial not sos.

$$
M(x, y)=x^{4} y^{2}+y^{4} x^{2}+1-3 x^{2} y^{2}
$$

$$
M(x, y)=\left(x^{2}+y^{2}+1\right)\left(\frac{x^{3} y+x y^{3}-2 x y}{x^{2}+y^{2}}\right)^{2}+\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}
$$

Hilbert's 17th problem

Theorem (Artin 1927 - Hilbert's 17th problem)

A polynomial is nonnegative if and only if it is a sum of squares of rational functions.

Hilbert's 17th problem

Theorem (Artin 1927-Hilbert's 17th problem)

A polynomial is nonnegative if and only if it is a sum of squares of rational functions.

We can use these stronger certificates.
$p \in \mathbb{R}[I]$ is (d, k)-rsos if for $0 \neq h \in \Sigma_{d}(I)$ we have $h p \in \Sigma_{k}(I)$.

Hilbert's 17th problem

Theorem (Artin 1927-Hilbert's 17th problem)

A polynomial is nonnegative if and only if it is a sum of squares of rational functions.

We can use these stronger certificates.
$p \in \mathbb{R}[I]$ is (d, k)-rsos if for $0 \neq h \in \Sigma_{d}(I)$ we have $h p \in \Sigma_{k}(I)$.
If $d=\lfloor k-\operatorname{deg}(p) / 2\rfloor$ we will just say p is k-rsos.

Hilbert's 17th problem

Theorem (Artin 1927 - Hilbert's 17th problem)

A polynomial is nonnegative if and only if it is a sum of squares of rational functions.

We can use these stronger certificates.
$p \in \mathbb{R}[I]$ is (d, k)-rsos if for $0 \neq h \in \Sigma_{d}(I)$ we have $h p \in \Sigma_{k}(I)$.
If $d=\lfloor k-\operatorname{deg}(p) / 2\rfloor$ we will just say p is k-rsos.
We are interested in bounding how big must k be for a given polynomial to be k-rsos.

Hilbert's 17th problem

Theorem (Artin 1927-Hilbert's 17th problem)

A polynomial is nonnegative if and only if it is a sum of squares of rational functions.

We can use these stronger certificates.
$p \in \mathbb{R}[I]$ is (d, k)-rsos if for $0 \neq h \in \Sigma_{d}(I)$ we have $h p \in \Sigma_{k}(I)$.
If $d=\lfloor k-\operatorname{deg}(p) / 2\rfloor$ we will just say p is k-rsos.
We are interested in bounding how big must k be for a given polynomial to be k-rsos.
In other words, we want to bound the degrees of the denominators in the rational functions used.

Advantages and Disadavantages

Schmudgen's Positivstellensatz

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact, p positive on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-sos for some k.
No bounds on how big can k be.

Advantages and Disadavantages

Schmudgen's Positivstellensatz

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact, p positive on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-sos for some k.
No bounds on how big can k be.

Stengle's Positivstellensatz

For any I, p nonnegative on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-rsos for some k.
k is uniformly bounded depending only on $\operatorname{deg}(p)$ and on I.

Advantages and Disadavantages

Schmudgen's Positivstellensatz

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact, p positive on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-sos for some k.
No bounds on how big can k be.

Stengle's Positivstellensatz

For any I, p nonnegative on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-rsos for some k.
k is uniformly bounded depending only on $\operatorname{deg}(p)$ and on I.

No free lunches

Advantages and Disadavantages

Schmudgen's Positivstellensatz

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact, p positive on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-sos for some k.
No bounds on how big can k be.

Stengle's Positivstellensatz

For any I, p nonnegative on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-rsos for some k.
k is uniformly bounded depending only on $\operatorname{deg}(p)$ and on I.

No free lunches

- Checking k-rsosness is still an SDP feasibility problem.

Advantages and Disadavantages

Schmudgen's Positivstellensatz

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact, p positive on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-sos for some k.
No bounds on how big can k be.

Stengle's Positivstellensatz

For any I, p nonnegative on $\mathcal{V}_{\mathbb{R}}(I)$ implies p is k-rsos for some k.
k is uniformly bounded depending only on $\operatorname{deg}(p)$ and on I.

No free lunches

- Checking k-rsosness is still an SDP feasibility problem.
- Optimizing over the set of all k-rsos polynomials is not as easy.

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$.

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\text {sos }}^{2}=0.1250,
$$

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\mathrm{sos}}^{2}=0.1250, \quad p_{\mathrm{sos}}^{3}=0.0208
$$

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\mathrm{sos}}^{2}=0.1250, \quad p_{\mathrm{sos}}^{3}=0.0208, \quad p_{\mathrm{sos}}^{4}=0.0092,
$$

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\mathrm{sos}}^{2}=0.1250, \quad p_{\mathrm{sos}}^{3}=0.0208, \quad p_{\mathrm{sos}}^{4}=0.0092,
$$

However $\min _{\lambda}\left\{p_{\lambda}\right.$ is 2 -rsos $\}=0$.

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\mathrm{sos}}^{2}=0.1250, \quad p_{\mathrm{sos}}^{3}=0.0208, \quad p_{\mathrm{sos}}^{4}=0.0092,
$$

However $\min _{\lambda}\left\{p_{\lambda}\right.$ is $2-$ rsos $\}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

Example

Consider the teardrop curve given by $\mathcal{V}_{\mathbb{R}}\left(\left\langle x^{4}-x^{3}+y^{2}\right\rangle\right)$.

Let $p_{\lambda}(x, y)=x+\lambda$. Let $p_{\text {sos }}^{k}=\min _{\lambda}\left\{p_{\lambda}\right.$ is k-sos $\}$ then:

$$
p_{\text {sos }}^{2}=0.1250, \quad p_{\text {sos }}^{3}=0.0208, \quad p_{\text {sos }}^{4}=0.0092, \quad \ldots
$$

However $\min _{\lambda}\left\{p_{\lambda}\right.$ is $2-$ rsos $\}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

Multipliers make the certificates less sensitive to singularities.

Section 2

Upper bounds on multipliers

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Hilbert Regularity

Consider the Hilbert function $H_{X}(k)=\operatorname{dim}\left(\mathbb{R}[/]_{k}\right)$.

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Hilbert Regularity

Consider the Hilbert function $H_{X}(k)=\operatorname{dim}\left(\mathbb{R}[I]_{k}\right)$. The Hilbert regularity of $X, h(X)$, is the smallest d for which $H_{X}(d)=|X|$.

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Hilbert Regularity

Consider the Hilbert function $H_{X}(k)=\operatorname{dim}\left(\mathbb{R}[I]_{k}\right)$. The Hilbert regularity of $X, h(X)$, is the smallest d for which $H_{X}(d)=|X|$.

Equivalently, this is the largest degree of the interpolators $\delta_{x}, x \in X$.

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Hilbert Regularity

Consider the Hilbert function $H_{X}(k)=\operatorname{dim}\left(\mathbb{R}[I]_{k}\right)$. The Hilbert regularity of $X, h(X)$, is the smallest d for which $H_{X}(d)=|X|$.

Equivalently, this is the largest degree of the interpolators $\delta_{x}, x \in X$.

Observation

Any nonnegative polynomial on X is $h(X)$-sos.

Finite Varieties

From now on $X \subset \mathbb{R}^{n}$ is finite, $I=\mathcal{I}(X)$.

Hilbert Regularity

Consider the Hilbert function $H_{X}(k)=\operatorname{dim}\left(\mathbb{R}[I]_{k}\right)$. The Hilbert regularity of $X, h(X)$, is the smallest d for which $H_{X}(d)=|X|$.

Equivalently, this is the largest degree of the interpolators $\delta_{x}, x \in X$.

Observation

Any nonnegative polynomial on X is $h(X)$-sos.
What bounds can we give for rsos polynomials?

Upper Bound Theorem

Lemma

Let $\ell: \mathbb{R}[X]_{2 d} \rightarrow \mathbb{R}$ be given by $\ell(f)=\sum_{v \in X} \mu_{v} f(v)$ with all $\mu_{v} \neq 0$. Suppose that ℓ is nonnegative on $\Sigma_{d}(X)$. Then

$$
\#\left\{v \in X: \mu_{v}>0\right\} \geq \operatorname{dim} \mathbb{R}[X]_{d}
$$

Upper Bound Theorem

Lemma

Let $\ell: \mathbb{R}[X]_{2 d} \rightarrow \mathbb{R}$ be given by $\ell(f)=\sum_{v \in X} \mu_{v} f(v)$ with all $\mu_{v} \neq 0$. Suppose that ℓ is nonnegative on $\Sigma_{d}(X)$. Then

$$
\#\left\{v \in X: \mu_{v}>0\right\} \geq \operatorname{dim} \mathbb{R}[X]_{d}
$$

With this lemma we can prove our main upper bound theorem.

Theorem

Let $p \in \mathbb{R}[I]_{2 s}$ be nonnegative on X. Suppose that for some $k \in \mathbb{N}$ we have

$$
H_{X}(k+s)+H_{X}(k)>H_{X}(2 k+2 s)
$$

Then p is $(k+s)$-rsos on X, i.e. there exists $h \in \Sigma_{k}(X)$ such that $p h \in \Sigma_{s+k}(X)$.

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) .
$$

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) .
$$

We have $H_{C_{n}}(k)=\sum_{i=0}^{k}\binom{n}{i}$,

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right)
$$

We have $H_{C_{n}}(k)=\sum_{i=0}^{k}\binom{n}{i}$, therefore

$$
H_{C_{n}}(\lfloor n / 2\rfloor+1)+H_{C_{n}}(\lfloor n / 2\rfloor)>2^{n}=H_{C_{n}}(n)=H_{C_{n}}(2(\lfloor n / 2\rfloor+1))
$$

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right)
$$

We have $H_{C_{n}}(k)=\sum_{i=0}^{k}\binom{n}{i}$, therefore

$$
H_{C_{n}}(\lfloor n / 2\rfloor+1)+H_{C_{n}}(\lfloor n / 2\rfloor)>2^{n}=H_{C_{n}}(n)=H_{C_{n}}(2(\lfloor n / 2\rfloor+1))
$$

Corollary

Every nonnegative quadratic polynomial on C_{n} is $(\lfloor n / 2\rfloor+1)$-rsos.

Positive certificates

Unfortunately, being rsos modulo I_{n} does not guarantee nonnegativity, since the variety is not irreducible.

Positive certificates

Unfortunately, being rsos modulo I_{n} does not guarantee nonnegativity, since the variety is not irreducible.
$p \in \mathbb{R}\left[I\right.$ is (d, k)-rsos with positive multipliers if for $h \in \Sigma_{d}(I)$ we have
$(1+h) p \in \Sigma_{k}(I)$.

Positive certificates

Unfortunately, being rsos modulo I_{n} does not guarantee nonnegativity, since the variety is not irreducible.
$p \in \mathbb{R}\left[I\right.$ is (d, k)-rsos with positive multipliers if for $h \in \Sigma_{d}(I)$ we have $(1+h) p \in \Sigma_{k}(I)$.

Equivalently

$p \in \mathbb{R}[/]$ is (d, k)-rsos with positive multipliers if for $h \in \operatorname{int}\left(\sum_{d}(I)\right)$ we have $h p \in \Sigma_{k}(I)$.

Positive certificates

Unfortunately, being rsos modulo I_{n} does not guarantee nonnegativity, since the variety is not irreducible.
$p \in \mathbb{R}[I]$ is (d, k)-rsos with positive multipliers if for $h \in \Sigma_{d}(I)$ we have $(1+h) p \in \Sigma_{k}(I)$.

Equivalently

$p \in \mathbb{R}\left[\left\lceil\right.\right.$ is (d, k)-rsos with positive multipliers if for $h \in \operatorname{int}\left(\Sigma_{d}(I)\right)$ we have $h p \in \Sigma_{k}(I)$.

Theorem

Every nonnegative quadratic polynomial on C_{n} is $(\lfloor n / 2\rfloor+2)$-rsos with positive multipliers.

Positive certificates

Unfortunately, being rsos modulo I_{n} does not guarantee nonnegativity, since the variety is not irreducible.
$p \in \mathbb{R}[I]$ is (d, k)-rsos with positive multipliers if for $h \in \Sigma_{d}(I)$ we have $(1+h) p \in \Sigma_{k}(I)$.

Equivalently

$p \in \mathbb{R}[I]$ is (d, k)-rsos with positive multipliers if for $h \in \operatorname{int}\left(\Sigma_{d}(I)\right)$ we have $h p \in \Sigma_{k}(I)$.

Theorem

Every nonnegative quadratic polynomial on C_{n} is $(\lfloor n / 2\rfloor+2)$-rsos with positive multipliers.

Open Question: Is the increased degree needed?

Section 3

Lower bounds on hypercube multipliers

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Cube C_{3}

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Cube C_{3}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

$$
\text { Level } T_{0}
$$

S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\}
$$

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Level T_{1}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\}
$$

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Level T_{2}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\}
$$

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Level T_{3}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\}
$$

Hypercube

This section will focus solely on the n-cube $C_{n}=\{0,1\}^{n}$.

Level T_{3}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\}
$$

Symmetric polynomials appear naturally in combinatorial optimization, and we want lower bounds for the degree of nonnegativity certificates.

Symmetric group representations

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

1	6	3	2
4	5		

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes.

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

1	6	3	2
4	5		

1	3	4	5
2	6		

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes. A standard tableau has strictly increasing rows and columns.

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

1	6	3	2
4	5		

1	3	4	5
2	6		

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes. A standard tableau has strictly increasing rows and columns.
For a tableau $T, C_{T} \subset S_{n}$, is the set of permutations that fix its columns and $[T]$ its equivalence class (tableaux with the same row sets).

$$
e_{T}=\sum_{\sigma \in C_{T}} \operatorname{sign}(\sigma) \cdot[\sigma(T)]
$$

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

1	6	3	2
4	5		

1	3	4	5
2	6		

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes. A standard tableau has strictly increasing rows and columns.
For a tableau $T, C_{T} \subset S_{n}$, is the set of permutations that fix its columns and $[T]$ its equivalence class (tableaux with the same row sets).

$$
e_{T}=\sum_{\sigma \in C_{T}} \operatorname{sign}(\sigma) \cdot[\sigma(T)]
$$

We define the Specht module S^{λ} :
$S^{\lambda}:=\operatorname{span}\left(\left\{e_{T}: T\right.\right.$ is a standard tableau of shape $\left.\left.\lambda\right\}\right)$.

Symmetric group representations

To a partition λ of $n, \lambda_{1} \geq \ldots \geq \lambda_{k}$, corresponds a box diagram:

1	6	3	2
4	5		

1	3	4	5
2	6		

A tableau of shape λ is an assignment of numbers $\{1, \ldots, n\}$ to the boxes. A standard tableau has strictly increasing rows and columns.
For a tableau $T, C_{T} \subset S_{n}$, is the set of permutations that fix its columns and $[T]$ its equivalence class (tableaux with the same row sets).

$$
e_{T}=\sum_{\sigma \in C_{T}} \operatorname{sign}(\sigma) \cdot[\sigma(T)]
$$

We define the Specht module S^{λ} :

$$
S^{\lambda}:=\operatorname{span}\left(\left\{e_{T}: T \text { is a standard tableau of shape } \lambda\right\}\right)
$$

Irreducible S_{n}-modules are precisely given by the Specht modules S^{λ}.

S_{n} action on $\mathbb{R}[\Pi$:

The action of S_{n} in $\mathbb{R}\left[I_{k}\right.$, for $k \leq\lfloor n / 2\rfloor$ decomposes as follows:

$$
\mathbb{R}[I]_{k}=\mathbb{R}[I]_{=0} \quad \oplus \quad \mathbb{R}[I]_{=1} \quad \oplus \quad \mathbb{R}[I]_{=2} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{R}[I]_{=k}
$$

S_{n} action on $\mathbb{R}[\Pi$:

The action of S_{n} in $\mathbb{R}\left[I_{k}\right.$, for $k \leq\lfloor n / 2\rfloor$ decomposes as follows:

$$
\mathbb{R}[I]_{k}=\mathbb{R}[I]_{=0} \quad \oplus \quad \mathbb{R}[I]_{=1} \quad \oplus \quad \mathbb{R}[I]_{=2} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{R}[I]_{=k}
$$

S_{n} action on $\mathbb{R}[\eta$:

The action of S_{n} in $\mathbb{R}[]_{k}$, for $k \leq\lfloor n / 2\rfloor$ decomposes as follows:

$$
\begin{aligned}
& \mathbb{R}[I]_{k}=\mathbb{R}[I]_{=0} \quad \oplus \quad \mathbb{R}[I]_{=1} \quad \oplus \quad \mathbb{R}[I]_{=2} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{R}[I]_{=k} \\
& S^{[n, 0]} \\
& \begin{array}{c}
S^{[n,}, \\
\oplus
\end{array} \\
& S^{[n-1,1]} \\
& S^{[n-1,1]} \\
& \text {... } \\
& S^{[n-1,1]} \\
& S^{[n-2,2]} \\
& \text {... } \\
& S^{[n-2,2]} \\
& S^{[n-k, k]}
\end{aligned}
$$

S_{n} action on $\mathbb{R}[\eta$:

The action of S_{n} in $\mathbb{R}[I]_{k}$, for $k \leq\lfloor n / 2\rfloor$ decomposes as follows:

$$
\begin{aligned}
& \mathbb{R}[I]_{k}=\mathbb{R}[I]_{=0} \quad \oplus \quad \mathbb{R}[I]_{=1} \quad \oplus \quad \mathbb{R}[I]_{=2} \quad \oplus \quad \cdots \quad \oplus \quad \mathbb{R}[I]_{=k} \\
& \text { 2ll } \\
& S^{[n, 0]} \\
& \begin{array}{c}
S^{[n, 0]} \\
S^{[n-1,1]}
\end{array} \\
& + \\
& \begin{array}{c}
\mathbb{R}[\mid]=2 \\
2 \| \\
S^{[n, 0]} \\
\oplus \\
S^{[n-1,1]} \\
\oplus \\
S^{[n-2,2]}
\end{array} \\
& \begin{array}{l}
2 \| \\
S_{[n, 0]}
\end{array} \\
& S^{[n-1,1]} \\
& \ldots \quad S^{[n-1,1]} \\
& \text { (}
\end{aligned}
$$

S_{n} action on $\mathbb{R}[\eta$:

The action of S_{n} in $\mathbb{R}[]_{k}$, for $k \leq\lfloor n / 2\rfloor$ decomposes as follows:

$$
\begin{array}{ccccccc}
\mathbb{R}[I]_{k}= & \mathbb{R}[I]_{=0} & \oplus & \mathbb{R}[I]_{=1} & \oplus & \mathbb{R}[I]_{=2} & \oplus \\
2 \| & \cdots \| & \oplus & \mathbb{R}[I]_{=k} \\
S^{[n, 0]} & & S^{[n, 0]} & S^{[n, 0]} & \cdots & S^{[n, 0]} \\
& \oplus \oplus & \oplus & & & \oplus \\
& & S^{[n-1,1]} & S^{[n-1,1]} & \cdots & S^{[n-1,1]} \\
& & \oplus & S^{[n-2,2]} & \cdots & S^{[n-2,2]} \\
& & & & \ddots & \vdots \\
& & & & & & S^{[n-k, k]}
\end{array}
$$

Let M_{j} be the first copy of $S^{[n-j, j]}$ to appear, then

$$
\mathbb{R}[I]_{k}=\bigoplus_{j=0}^{k} M_{j} \oplus\left(k-\sum x_{i}\right) M_{j} \oplus \cdots \oplus\left(k-\sum x_{i}\right)^{k-j} M_{j}
$$

An explicit decomposition

We now just have to characterize M_{j}.

An explicit decomposition

We now just have to characterize M_{j}.
Let $\phi_{j}: S^{[n-j, j]} \rightarrow \mathbb{R}\left[I_{j}\right.$ be defined by

$$
\phi_{j}\left(\left[S^{C}, S\right]\right)=x^{S}=\prod_{i \in \mathcal{S}} x_{i}
$$

extended by linearity.

An explicit decomposition

We now just have to characterize M_{j}.
Let $\phi_{j}: S^{[n-j, j]} \rightarrow \mathbb{R}\left[I_{j}\right.$ be defined by

$$
\phi_{j}\left(\left[S^{C}, S\right]\right)=x^{S}=\prod_{i \in \mathcal{S}} x_{i}
$$

extended by linearity.
ϕ_{j} is injective, hence $\phi_{j}\left(S^{[n-j, j]}\right)=M_{j}$.

An explicit decomposition

We now just have to characterize M_{j}.
Let $\phi_{j}: S^{[n-j, j]} \rightarrow \mathbb{R}\left[I_{j}\right.$ be defined by

$$
\phi_{j}\left(\left[S^{C}, S\right]\right)=x^{S}=\prod_{i \in S} x_{i}
$$

extended by linearity.
ϕ_{j} is injective, hence $\phi_{j}\left(S^{[n-j, j]}\right)=M_{j}$.
Polynomials in M_{j} do not vanish in T_{k} for $j \leq k \geq n-j$. This is enough for our main lemma

Lemma

Suppose $f \in \mathbb{R}_{d}\left[I_{n}\right]$, vanishes on T_{t}. If $d \leq t \leq n-d$, then f is properly divisible by $\ell=t-\sum x_{i}$.

The bound

Theorem

Suppose $f \in \mathbb{R}_{t}\left[I_{n}\right]$ with $t \leq n / 2$ is an S_{n}-invariant polynomial and f is properly divisible by $\ell=t-\left(x_{1}+\cdots+x_{n}\right)$ to odd order. Then f is not d-rsos for $d \leq t$.

The bound

Theorem

Suppose $f \in \mathbb{R}_{t}\left[I_{n}\right]$ with $t \leq n / 2$ is an S_{n}-invariant polynomial and f is properly divisible by $\ell=t-\left(x_{1}+\cdots+x_{n}\right)$ to odd order. Then f is not d-rsos for $d \leq t$.

In particular:

Theorem

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$ and let $f \in \mathbb{R}\left[I_{n}\right]$ be given by

$$
f=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right) .
$$

Then f is nonnegative on C_{n} but f is not k-rsos.

The bound

Theorem

Suppose $f \in \mathbb{R}_{t}\left[I_{n}\right]$ with $t \leq n / 2$ is an S_{n}-invariant polynomial and f is properly divisible by $\ell=t-\left(x_{1}+\cdots+x_{n}\right)$ to odd order. Then f is not d-rsos for $d \leq t$.

In particular:

Theorem

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$ and let $f \in \mathbb{R}\left[I_{n}\right]$ be given by

$$
f=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right) .
$$

Then f is nonnegative on C_{n} but f is not k-rsos.
This shows our upper bound was tight.

Section 4

Applications

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Corollary

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Corollary

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Corollary

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

This is proven by a perturbed extension of the polynomial on the previous theorem:

$$
p=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)
$$

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Corollary

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

This is proven by a perturbed extension of the polynomial on the previous theorem:

$$
p=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)+\varepsilon
$$

Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert's 17th problem.

Corollary

Let $k=\left\lfloor\frac{n}{2}\right\rfloor$. There exists a polynomial p of degree 4 nonnegative on \mathbb{R}^{n} which is not k-rsos in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

This is proven by a perturbed extension of the polynomial on the previous theorem:

$$
p=\left(x_{1}+\cdots+x_{n}-k\right)\left(x_{1}+\cdots+x_{n}-k-1\right)+\varepsilon+A \sum_{i}\left(x_{i}^{2}-x_{i}\right)^{2} .
$$

MaxCut

The maxcut problem over K_{n} can be reduced to
Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

MaxCut

The maxcut problem over K_{n} can be reduced to
Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lassere relaxations are of limited use.

Laurent

For $n=2 k+1, p_{\mathrm{sos}}^{k}>p_{\text {max }}$.

MaxCut

The maxcut problem over K_{n} can be reduced to
Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lassere relaxations are of limited use.

Laurent

For $n=2 k+1, p_{\text {sos }}^{k}>p_{\max }$.
Note that p attains its maximum in C_{n} at T_{k} and T_{k+1} so

Theorem

For $n=2 k+1, p_{\text {rsos }}^{k}>p_{\text {max }}$.

MaxCut 2

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n} .
$$

MaxCut 2

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Conjecture (Laurent)

 If $n=2 k+1,\left(p_{\omega}\right)_{\max }=\left(p_{\omega}\right)_{\text {sos }}^{k+1}$ for all weights.
MaxCut 2

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Conjecture (Laurent)

If $n=2 k+1,\left(p_{\omega}\right)_{\max }=\left(p_{\omega}\right)_{\text {sos }}^{k+1}$ for all weights.
A weaker version can now be proved.

Theorem

If $n=2 k+1,\left(p_{\omega}\right)_{\max }=\left(p_{\omega}\right)_{\text {rsos }}^{k+1}$ for all weights or $\left(p_{\omega}\right)_{\text {rsos }}^{k+2}$ if we want positive multipliers.

The End

Thank You

