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Section 1

Introduction
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Nonnegativity of a polynomial

Let I ⊆ R[x ] be an ideal:

P(I) = {p ∈ R[I] : p is nonnegative on VR(I)} .

Efficiently checking membership in P(I) is important for optimization.

A typical strategy is to approximate P(I) by

Σ(I) =

{
p ∈ R[I] : p ≡

t∑
i=1

h2
i for some hi ∈ R[I]

}
,

and its truncations

Σk (I) =

{
p ∈ R[I] : p ≡

t∑
i=1

h2
i for some hi ∈ Rk [I]

}
.
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Sums of squares

Notes
p ∈ Σk (I) is said to be k -sos (modulo I).

Σ1(I) ⊆ Σ2(I) ⊆ · · · ⊆ Σ(I) ⊆ P(I).
Checking membership in Σk (I) is doable (SDP feasibility)
Optimizing over Σk (I) is doable (SDP)

When are sums of squares enough?

Theorem (Hilbert 1888)
Σk (Rn) = P2k (Rn) if and only if n = 1, k = 1 or (n, k) = (2,2).

Theorem (Scheiderer 1999)
If dim(VR(I)) ≥ 3 then Σ(I) 6= P(I).
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Motzkin’s example - 1967

First concrete example of a (globally) nonnegative polynomial not sos.

M(x , y) = x4y2 + y4x2 + 1− 3x2y2.

M(x , y) = (x2 + y2 + 1)

(
x3y + xy3 − 2xy

x2 + y2

)2

+

(
x2 − y2

x2 + y2

)2

.
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Hilbert’s 17th problem

Theorem (Artin 1927 - Hilbert’s 17th problem)
A polynomial is nonnegative if and only if it is a sum of squares of
rational functions.

We can use these stronger certificates.

p ∈ R[I] is (d , k)-rsos if for 0 6= h ∈ Σd (I) we have hp ∈ Σk (I).

If d = bk − deg(p)/2c we will just say p is k -rsos.

We are interested in bounding how big must k be for a given
polynomial to be k -rsos.
In other words, we want to bound the degrees of the denominators in
the rational functions used.
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Advantages and Disadavantages

Schmudgen’s Positivstellensatz
If VR(I) is compact, p positive on VR(I) implies p is k -sos for some k .

No bounds on how big can k be.

Stengle’s Positivstellensatz
For any I, p nonnegative on VR(I) implies p is k -rsos for some k .

k is uniformly bounded depending only on deg(p) and on I.

No free lunches
Checking k -rsosness is still an SDP feasibility problem.
Optimizing over the set of all k -rsos polynomials is not as easy.
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Example

Consider the teardrop curve given by VR(
〈
x4 − x3 + y2〉).

Let pλ(x , y) = x + λ. Let pk
sos = minλ{pλ is k -sos} then:

p2
sos = 0.1250, p3

sos = 0.0208, p4
sos = 0.0092, ...

However minλ{pλ is 2-rsos} = 0. In fact

x2 · x = x4 + y2 modulo I.

Multipliers make the certificates less sensitive to singularities.
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Section 2

Upper bounds on multipliers
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Finite Varieties

From now on X ⊂ Rn is finite, I = I(X ).

Hilbert Regularity
Consider the Hilbert function HX (k) = dim(R[I]k ). The Hilbert
regularity of X , h(X ), is the smallest d for which HX (d) = |X |.

Equivalently, this is the largest degree of the interpolators δx , x ∈ X .

Observation
Any nonnegative polynomial on X is h(X )-sos.

What bounds can we give for rsos polynomials?
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Upper Bound Theorem

Lemma
Let ` : R[X ]2d → R be given by `(f ) =

∑
v∈X µv f (v) with all µv 6= 0.

Suppose that ` is nonnegative on Σd (X ). Then

#{v ∈ X :µv > 0} ≥ dimR[X ]d .

With this lemma we can prove our main upper bound theorem.

Theorem
Let p ∈ R[I]2s be nonnegative on X. Suppose that for some k ∈ N we
have

HX (k + s) + HX (k) > HX (2k + 2s).

Then p is (k + s)-rsos on X, i.e. there exists h ∈ Σk (X ) such that
ph ∈ Σs+k (X ).

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 11 / 24



Upper Bound Theorem

Lemma
Let ` : R[X ]2d → R be given by `(f ) =

∑
v∈X µv f (v) with all µv 6= 0.

Suppose that ` is nonnegative on Σd (X ). Then

#{v ∈ X :µv > 0} ≥ dimR[X ]d .

With this lemma we can prove our main upper bound theorem.

Theorem
Let p ∈ R[I]2s be nonnegative on X. Suppose that for some k ∈ N we
have

HX (k + s) + HX (k) > HX (2k + 2s).

Then p is (k + s)-rsos on X, i.e. there exists h ∈ Σk (X ) such that
ph ∈ Σs+k (X ).

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 11 / 24



The n-cube

We are interested in the n-cube:

Cn = {0,1}n = {x ∈ Rn : x2
i − x i = 0, i = 1, · · · ,n} = V(In).

We have HCn (k) =
∑k

i=0
(n

i

)
, therefore

HCn (bn/2c+ 1) + HCn (bn/2c) > 2n = HCn (n) = HCn (2(bn/2c+ 1))

Corollary
Every nonnegative quadratic polynomial on Cn is (bn/2c+ 1)-rsos.
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Positive certificates

Unfortunately, being rsos modulo In does not guarantee nonnegativity,
since the variety is not irreducible.

p ∈ R[I] is (d , k)-rsos with positive multipliers if for h ∈ Σd (I) we have
(1 + h)p ∈ Σk (I).

Equivalently

p ∈ R[I] is (d , k)-rsos with positive multipliers if for h ∈ int(Σd (I)) we
have hp ∈ Σk (I).

Theorem
Every nonnegative quadratic polynomial on Cn is (bn/2c+ 2)-rsos with
positive multipliers.

Open Question: Is the increased degree needed?
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Section 3

Lower bounds on hypercube multipliers
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Hypercube

This section will focus solely on the n-cube Cn = {0,1}n.

Cube C3

Sn acts on Cn by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels Tk of the cube:

Tk = {x ∈ Cn :
∑

x i = k}.

Symmetric polynomials appear naturally in combinatorial optimization,
and we want lower bounds for the degree of nonnegativity certificates.
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This section will focus solely on the n-cube Cn = {0,1}n.
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Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes.

A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.

For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Symmetric group representations

To a partition λ of n, λ1 ≥ . . . ≥ λk , corresponds a box diagram:

1 6 3 2
4 5

1 3 4 5
2 6

A tableau of shape λ is an assignment of numbers {1, . . . ,n} to the
boxes. A standard tableau has strictly increasing rows and columns.
For a tableau T , CT ⊂ Sn, is the set of permutations that fix its columns
and [T ] its equivalence class (tableaux with the same row sets).

eT =
∑
σ∈CT

sign(σ) · [σ(T )].

We define the Specht module Sλ:

Sλ := span({eT : T is a standard tableau of shape λ}).

Irreducible Sn-modules are precisely given by the Specht modules Sλ.

Blekherman, Gouveia, Pfeiffer Sums of Squares on the Hypercube CMUC - 5th March 2014 16 / 24



Sn action on R[I]:
The action of Sn in R[I]k , for k ≤ bn/2c decomposes as follows:

R[I]k = R[I]=0 ⊕ R[I]=1 ⊕ R[I]=2 ⊕ · · · ⊕ R[I]=k

∼ = ∼ = ∼ = ∼ =

S[n,0] S[n,0] S[n,0] · · · S[n,0]

⊕ ⊕ ⊕
S[n−1,1] S[n−1,1] · · · S[n−1,1]

⊕ ⊕
S[n−2,2] · · · S[n−2,2]

. . .
...

S[n−k ,k ]

Let Mj be the first copy of S[n−j,j] to appear, then

R[I]k =
k⊕

j=0

Mj ⊕ (k −
∑

xi)Mj ⊕ · · · ⊕ (k −
∑

xi)
k−jMj .
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An explicit decomposition

We now just have to characterize Mj .

Let φj : S[n−j,j] → R[I]j be defined by

φj([SC ,S]) = xS =
∏
i∈S

xi

extended by linearity.

φj is injective, hence φj(S[n−j,j]) = Mj .

Polynomials in Mj do not vanish in Tk for j ≤ k ≥ n − j . This is enough
for our main lemma

Lemma
Suppose f ∈ Rd [In], vanishes on Tt . If d ≤ t ≤ n − d, then f is properly
divisible by ` = t −

∑
xi .
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The bound

Theorem

Suppose f ∈ Rt [In] with t ≤ n/2 is an Sn-invariant polynomial and f is
properly divisible by ` = t − (x1 + · · ·+ xn) to odd order. Then f is not
d-rsos for d ≤ t .

In particular:

Theorem

Let k = bn
2c and let f ∈ R[In] be given by

f = (x1 + · · ·+ xn − k)(x1 + · · ·+ xn − k − 1).

Then f is nonnegative on Cn but f is not k-rsos.

This shows our upper bound was tight.
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Section 4

Applications
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Globally nonnegative polynomials

We can leverage our result to obtain lower bounds for Hilbert’s 17th
problem.

Corollary
Let k = bn

2c. There exists a polynomial p of degree 4 nonnegative on
Rn which is not k-rsos in R[x1, . . . , xn].

This is proven by a perturbed extension of the polynomial on the
previous theorem:

p = (x1 + · · ·+ xn − k)(x1 + · · ·+ xn − k − 1) + ε+ A
∑

i

(xi
2 − xi)

2.
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MaxCut

The maxcut problem over Kn can be reduced to

Binary polynomial formulation of MaxCut

max p(x) =
∑
i 6=j

(1− x i)x j s.t. x ∈ Cn

Laurent has proved that Lassere relaxations are of limited use.

Laurent
For n = 2k + 1, pk

sos > pmax.

Note that p attains its maximum in Cn at Tk and Tk+1 so

Theorem
For n = 2k + 1, pk

rsos > pmax.
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MaxCut 2

Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max pω(x) =
∑
i 6=j

ωij(1− x i)x j s.t. x ∈ Cn.

Conjecture (Laurent)

If n = 2k + 1, (pω)max = (pω)k+1
sos for all weights.

A weaker version can now be proved.

Theorem
If n = 2k + 1, (pω)max = (pω)k+1

rsos for all weights or (pω)k+2
rsos if we want

positive multipliers.
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The End

Thank You
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