# Semidefinite lifts of polytopes 

João Gouveia

CMUC - Universidade de Coimbra
20th April 2013-CMUC workshop

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in S=\left\{x \mid p_{i}(x)=0, i=1, \ldots, t\right\} .
$$



$$
x_{1}^{4}-x_{1}^{3}+x_{2}^{2}=0
$$

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in \operatorname{conv} S=\operatorname{conv}\left\{x \mid p_{i}(x)=0, i=1, \ldots, t\right\} .
$$



$$
x_{1}{ }^{4}-x_{1}^{3}+x_{2}^{2}=0
$$

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in \operatorname{conv} S=\{x \mid h(x) \geq 0, \forall h \text { linear s.t. } h \mid s \geq 0\} .
$$



$$
x_{1}^{4}-x_{1}^{3}+x_{2}^{2}=0
$$

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in \operatorname{conv} S=\left\{x \mid h(x) \geq 0, \forall h \text { linear s.t. } h \equiv_{\mathcal{I}} \sum q_{i}^{2}\right\} .
$$



$$
x_{1}^{4}-x_{1}^{3}+x_{2}^{2}=0
$$

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in \operatorname{conv} S \subseteq\left\{x \mid h(x) \geq 0, \forall h \text { linear s.t. } h \equiv_{\mathcal{I}} \sum q_{i}^{2}, \operatorname{deg}\left(q_{i}\right) \leq k\right\} .
$$



$$
x_{1}{ }^{4}-x_{1}^{3}+x_{2}^{2}=0, k=2
$$

## Background - Polynomial Optimization

Linear Optimization over Algebraic Varieties
Maximize linear $I(x)$ over all $x$ such that

$$
x \in \operatorname{conv} S \subseteq\left\{x \mid h(x) \geq 0, \forall h \text { linear s.t. } h \equiv_{\mathcal{I}} \sum q_{i}^{2}, \operatorname{deg}\left(q_{i}\right) \leq k\right\} .
$$



$$
x_{1}{ }^{4}-x_{1}{ }^{3}+x_{2}^{2}=0, k=3
$$

## Combinatorial Optimization

Many combinatorial problems can be stated in this way.
Max stable set
Given a graph $G=(V, E)$, find the maximum stable set.

## Combinatorial Optimization

Many combinatorial problems can be stated in this way.

## Max stable set

Given a graph $G=(V, E)$, find the maximum stable set.


## Combinatorial Optimization

Many combinatorial problems can be stated in this way.

## Max stable set

Given a graph $G=(V, E)$, find the maximum stable set.


## Combinatorial Optimization

Many combinatorial problems can be stated in this way.
Max stable set
Given a graph $G=(V, E)$, find the maximum stable set.


Max stable set - reformulation
Maximize $\sum_{i \in V} x_{i}$ over all $x$ verifying

$$
x_{i}^{2}-x_{i}=0, \forall i \in V_{;} \quad x_{i} x_{j}=0, \forall\{i, j\} \in E .
$$

## Why do we do this?

## Main Motivation

$$
T H_{k}(\mathcal{I})=\left\{x \mid h(x) \geq 0, \forall h \text { linear s.t. } h \equiv_{\mathcal{I}} \sum q_{i}^{2}, \operatorname{deg}\left(q_{i}\right) \leq k\right\}
$$

has a description as a semidefinite program.

## Why do we do this?

## Main Motivation

$T H_{k}(\mathcal{I})=\left\{x \mid h(x) \geq 0, \forall h\right.$ linear s.t. $\left.h \equiv_{\mathcal{I}} \sum q_{i}^{2}, \operatorname{deg}\left(q_{i}\right) \leq k\right\}$ has a description as a semidefinite program.
For $\mathcal{I}=\left\langle x^{2}-x, y^{2}-y, z^{2}-z, x z-y z\right\rangle$ :


## Why do we do this?

## Main Motivation

$T H_{k}(\mathcal{I})=\left\{x \mid h(x) \geq 0, \forall h\right.$ linear s.t. $\left.h \equiv_{\mathcal{I}} \sum q_{i}^{2}, \operatorname{deg}\left(q_{i}\right) \leq k\right\}$ has a description as a semidefinite program.
For $\mathcal{I}=\left\langle x^{2}-x, y^{2}-y, z^{2}-z, x z-y z\right\rangle$ :

$$
\mathrm{TH}_{1}=\left\{(x, y, z) \mid \exists w_{1}, w_{2},\left[\begin{array}{cccc}
1 & x & y & c_{2} \\
x & x & w_{1} & w_{2} \\
y & w_{1} & w_{2} \\
z & w_{2} & w_{2} & w_{2}
\end{array}\right] \succeq 0\right\} .
$$



## What do we do with it?

Questions I'm interested in:

## What do we do with it?

Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)
- Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)
- Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas


## Applications:

- A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs, G.-Laurent-Parrilo-Thomas, (Math. Prog., 2012)


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)

O Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas

## Applications:

- A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs, G.-Laurent-Parrilo-Thomas, (Math. Prog., 2012)
- Comparing SOS and SDP relaxations of sensor network localization, G.-Pong, (Comp. Opt. App. 2011)


## What do we do with it?

## Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)
- Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas


## Applications:

- A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs, G.-Laurent-Parrilo-Thomas, (Math. Prog., 2012)
- Comparing SOS and SDP relaxations of sensor network localization, G.-Pong, (Comp. Opt. App. 2011)
- A Semidefinite Approach to the $K_{i}$-Cover Problem, G.-Pfeiffer, submitted


## What do we do with it?

Questions I'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)
- Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas


## Applications:

- A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs, G.-Laurent-Parrilo-Thomas, (Math. Prog., 2012)
- Comparing SOS and SDP relaxations of sensor network localization, G.-Pong, (Comp. Opt. App. 2011)
- A Semidefinite Approach to the $K_{i}$-Cover Problem, G.-Pfeiffer, submitted

In combinatorial optimization, classes of graphs where we have exactness at a fixed degree correspond to classes of graphs where we can solve the problem in poly-time.

## What do we do with it?

Questions l'm interested in:

## Theory:

- Theta Bodies for Polynomial Ideals, G.-Parrilo-Thomas, (SIAM J. Opt., 2010)
- Convex hulls of algebraic sets, G.-Thomas, (Handbook of Semidefinite, Cone and Polynomial Optimization, 2012)
- Positive Polynomials and Projections of Spectrahedra, G.-Netzer, (SIAM J. Opt., 2011)

O Ongoing: work on symmetry over the cube, Blekherman-G.-Pfeiffer-Thomas

## Applications:

- A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs, G.-Laurent-Parrilo-Thomas, (Math. Prog., 2012)
- Comparing SOS and SDP relaxations of sensor network localization, G.-Pong, (Comp. Opt. App. 2011)
- A Semidefinite Approach to the $K_{i}$-Cover Problem, G.-Pfeiffer, submitted

In combinatorial optimization, classes of graphs where we have exactness at a fixed degree correspond to classes of graphs where we can solve the problem in poly-time.

However, this is only one possible way to obtain good representations. What can we say in general?

## One question and two definitions

We want to know, given a polytope $P$, what is the smallest semidefinite lift it has?

## One question and two definitions

We want to know, given a polytope $P$, what is the smallest semidefinite lift it has?

Let $P$ be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## One question and two definitions

We want to know, given a polytope $P$, what is the smallest semidefinite lift it has?

Let $P$ be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Slack matrix

The slack matrix of $P$ is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

## One question and two definitions

We want to know, given a polytope $P$, what is the smallest semidefinite lift it has?

Let $P$ be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Slack matrix

The slack matrix of $P$ is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Let $M$ be an $m$ by $n$ nonnegative matrix.

## One question and two definitions

We want to know, given a polytope $P$, what is the smallest semidefinite lift it has?

Let $P$ be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Slack matrix

The slack matrix of $P$ is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Let $M$ be an $m$ by $n$ nonnegative matrix.

## PSD factorizations

A PSD factorization of $M$ of size $k$ is a collection of $k \times k$ psd matrices $A_{1}, \cdots, A_{m}$ and $B_{1}, \cdots, B_{m}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.


## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.
It has a $4 \times 4$ slack matrix.


## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.
It has a $4 \times 4$ slack matrix.


$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.
It has a $4 \times 4$ slack matrix.


## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.
It has a $4 \times 4$ slack matrix.


$$
(x, y) \text { s.t. }\left[\begin{array}{lll}
1 & x & y \\
x & x & z \\
y & z & y
\end{array}\right] \succeq 0 .
$$

## Generalized Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 11)
A polytope $P$ has a semidefinite representation of size $k$ if and only if its slack matrix $S_{P}$ has a $\mathrm{PSD}_{k}$-factorization.

Consider the regular square.
It has a $4 \times 4$ slack matrix.


$$
(x, y) \text { s.t. }\left[\begin{array}{lll}
1 & x & y \\
x & x & z \\
y & z & y
\end{array}\right] \succeq 0 .
$$



## What is there to do?

Some questions were solved:

## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

- Connections to quantum computing.


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

- Connections to quantum computing.
- Hardness proofs for LP/SDP approach to combinatorial problems.


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

- Connections to quantum computing.
- Hardness proofs for LP/SDP approach to combinatorial problems.
- Bounds on semidefinite ranks


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

- Connections to quantum computing.
- Hardness proofs for LP/SDP approach to combinatorial problems.
- Bounds on semidefinite ranks
- ...


## What is there to do?

## Some questions were solved:

- Lifts of convex sets and cone factorizations, G.-Parrilo-Thomas, to appear in Math. Oper. Res.
- Polytopes of minimum positive semidefinite rank, G.-Robinson-Thomas, submitted
- Which nonnegative matrices are slack matrices?, G.-Grappe-Kaibel-Pashkovich-Robinson-Thomas, submitted
- Ongoing: work on approximate factorizations/lifts, G.-Parrilo-Thomas
- Ongoing: work on hardness of generic polytopes, G.-Robinson-Thomas


## Many questions are left:

- Connections to quantum computing.
- Hardness proofs for LP/SDP approach to combinatorial problems.
- Bounds on semidefinite ranks
- ...


## Thank you!

