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Lifts of Polytopes

What is a hard domain to do linear programming in?

First
guess: a polytope with many vertices and facets.

However, polytopes with many facets can be projections of
much simpler polytopes. An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑
i∈A

xi −
∑
i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.
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Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd
1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that

I
∑

k zk = x;
I
∑

k αk = 1;
I ‖ zk ‖1 = k αk ;
I 0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.
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Motivation

Polytopes with many facets can be projections of much simpler
polytopes.

Canonical LP Lift
Given a polytope P, a canonical LP lift is a description

P = Φ(Rk
+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk
+-lift.

The smallest k such that P has a Rk
+-lift is a much better

measure of “LP-complexity” than number of facets and vertices.
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Two definitions

Let P be a polytope with facets defined by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack Matrix
The slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative Factorization
Given a nonnegative matrix M ∈ Rn×m

+ we say that it has a
k -nonnegative factorization, or a Rk

+-factorization if there exist
matrices A ∈ Rn×k

+ and B ∈ Rk×m
+ such that

M = A · B.
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Yannakakis’ Theorem

Theorem (Yannakakis 1991)
A polytope P has a Rk

+-lift if and only if SP has a
Rk
+-factorization.

Our questions:

I Does it work for other types of lifts?

I Does it work for other types of convex sets?

I Can we include symmetry in the result?
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The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .
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Hexagon - continued

It is the projection of the slice of R5
+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6
+-lift is the only we can have.
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Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -Lift
Given a polytope P, and a closed convex cone K , a K -lift of P
is a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn
+, PSDn, SOCPn, CPn, CoPn,. . .

We also need to generalize the nonnegative factorizations.
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K -factorizations

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is its
dual cone, defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -Factorization
Given a nonnegative matrix M ∈ Rn×m

+ we say that it has a
K -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗

such that
Mi,j =

〈
ai ,bj

〉
.

We can now generalize Yannakakis.

Theorem (G-Parrilo-Thomas)
A polytope P has a K -lift if and only if SP has a K -factorization.
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The Square

The 0/1 square is the projection
onto x and y of the slice of PSD3
given by 1 x y

x x z
y z y

 � 0.

Its slack matrix is given by

SP =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

 ,
and should factorize in PSD3.
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Square - continued

SP =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

 ,
is factorized by

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1

 ,

 1 −1 0
−1 1 0
0 0 0

 ,

 1 0 −1
0 0 0
−1 0 1

 ,

for the rows and 1 0 0
0 0 0
0 0 0

 ,

 1 0 1
0 0 0
1 0 1

 ,

 1 1 1
1 1 1
1 1 1

 ,

 1 1 0
1 1 0
0 0 0

,
for the columns.



Slack Operator

To further generalize Yannakakis to other convex sets, we have
to introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.
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Generalized Yannakakis for convex sets

We can then define a K -factorization of SC as a pair of maps

A : ext(C)→ K B : ext(C◦)→ K ∗

such that
〈A(x),B(y)〉 = SC(x , y)

for all x , y .

Theorem (G-Parrilo-Thomas)
A convex set C has a K -lift if and only if SC has a
K -factorization.
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The Disk

The unit disk D is the projection onto x
and y of the slice of PSD2 given by[

1 + x y
y 1− x

]
� 0.

D◦ = D, there must be A : S1 → PSD2 and B : S1 → PSD2
such that 〈A(x),B(y)〉 = 1− 〈x , y〉

A(x , y) =

[
1 + x y

y 1− x

]
, B(x , y) =

[
1− x −y
−y 1 + x

]
.
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Cone ranks of polytopes

Recall - rank+(M) is the smallest k such that M has an
Rk
+-factorization. rank+(P) := rank+(SP)

Given K = {K1,K2, · · · }, (e.g. Rk
+, PSDk , CPk , CoPk ,. . . )

rankK(M) is the smallest i such that M has a Ki -factorization.
Again rankK(P) := rankK(SP).

We are specially interested in rankpsd(M).
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For M ∈ Rp×q
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+ is zero on the diagonal and positive everywhere
else then rank+(M) ≥ k, where k is the smallest integer such
that n ≤

( k
bk/2c

)
.



Bounds for matrices

For M ∈ Rp×q
+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.
I rank(M) ≤

(rankpsd(M)+1
2

)
.

I rankpsd(M) ≤ rank+(M).

Proposition
If M ∈ Rn×n

+ is zero on the diagonal and positive everywhere
else then rank+(M) ≥ k, where k is the smallest integer such
that n ≤

( k
bk/2c

)
.



Bounds for matrices

For M ∈ Rp×q
+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.
I rank(M) ≤

(rankpsd(M)+1
2

)
.

I rankpsd(M) ≤ rank+(M).

Proposition
If M ∈ Rn×n

+ is zero on the diagonal and positive everywhere
else then rank+(M) ≥ k, where k is the smallest integer such
that n ≤

( k
bk/2c

)
.



Bounds for matrices

For M ∈ Rp×q
+ .

I rank(M) ≤ rank+(M) ≤ min{p,q}.
I rank(M) ≤

(rankpsd(M)+1
2

)
.

I rankpsd(M) ≤ rank+(M).

Proposition
If M ∈ Rn×n

+ is zero on the diagonal and positive everywhere
else then rank+(M) ≥ k, where k is the smallest integer such
that n ≤

( k
bk/2c

)
.



Bounds for matrices - 2

Proposition
If M ∈ Rp×q has rank k, then the matrix M ′ obtained by
squaring each entry of M has psd-rank at most k.

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.
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Bounds for polytopes - LP

Proposition
An Rk

+-lift of P induces an embedding from the lattice of faces
of P, L(P), to the boolean lattice 2[k ]. In particular:

I If p is the size of the largest antichain in L(P), then
rank+(P) ≤ k where k is the smallest integer such that
p ≤

( k
bk/2c

)
.

I [Goemans] If nP is the number of faces of P,
rank+(P) ≥ log2(nP).

P = 3-cube: rank+(P) ≤ 6.
I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.
I nedges = 12,

(5
2

)
= 10,

(6
3

)
= 20, hence rank+(P) ≥ 6.
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Bounds for polytopes - SDP

Theorem
If a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as n
grows, despite rank(SPn ) = 3.

Open questions:
I Can we find a separation between rankpsd and rank+ for

polytopes?
I Recently, [Fiorini-Massar-Pokutta-Tiwary-de Wolf] proved

rank+(TSP) grows exponentially. What about rankpsd?
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Symmetric Lifts

In the LP case there has been much interest in symmetric lifts.
[Kaibel-Pashkovich-Theis]

Symmetric lifts
Let P be a polytope and P = Φ(K ∩ L) a lift of P. We say the lift
is symmetric if there exists a group homomorphism sending g
∈ Aut(P) to ψg ∈ Aut(K ) such that ψg(L) = L and Φ ◦ ψg = g.

Symmetric lift preserves symmetries of the lifted objects.

Common lift-and-project methods are symmetric (w.r.t.
permutation of variables): LS, SA, Las...
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Example:The square

Recall the lift of the 0/1 square[
1 x y
x x z
y z y

]
� 0.

Aut(g) = 〈g(x , y) = (y , x),h(x , y) = (1− x , y)〉.

φg(A) =
[

1 y x
y y z
x z x

]
= P23AP23,

φh(A) =
[

1 1 − x y
1 − x 1 − x y − z

y y − z y

]
=
[

1 0 0
1 −1 0
0 0 1

]
A
[

1 1 0
0 −1 0
0 0 1

]
,

generate a homomorphism so the lift is symmetric.
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Example 2 : Regular n-gons

Proposition
For p prime the smallest k for which there exists a symmetric
Rk
+-lift of the p-gon is p.

Note that we know that there are actually O(log(n))
dimensional lifts of these polytopes [Ben-Tal, Nemirovski].

Open (small) problem: prove that the smallest symmetric lift of
an n-gon is to Rn

+.
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Symmetric Yannakakis

K -Factorization
Given a polytope P and its slack matrix SP ∈ Rn×m

+ and its
K -factorization given by a1, . . .an ∈ K , b1, . . . ,bm ∈ K ∗, we say
that it is symmetric if there is an homomorphism
φ : Aut(P)→ Aut(K ) such that if g send the i-th vertex to the
j-th vertex, φ(ai) = aj .

Theorem (G-Parrilo-Thomas)
A convex set C has a symmetric K -lift if and only if SC has a
symmetric K -factorization.
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Matchings

Matchings
Given the complete graph Kn = ([n],En) a matching is a
collection M of edges such that there’s one and only one edge
incident to each vertex.

χM ∈ {0,1}En is the indicator vector of M.
For this example χM = (0,0,0,0,1,1).
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The matching Polytope

MaxMatch
Given a complete graph K2n with edge weights ω : En → R, find
the matching with maximum weight.

This has a geometrical version.

MaxMatch
Maximize 〈ω, x〉 over the polytope

conv({χM : M is a matching}).

This polytope is the Matching Polytope, denoted PMatch2n.
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Symmetric lifts of matching polytope

Yannakakis
Although the max-matching problem is polynomial time
solvable, there is no polynomial size linear symmetric lift for the
matching polytope.

What about non-symmetric?

With other versions of the matching polytope, Kaibel,
Pashkovich and Theis show that symmetry does matter, but the
general question is still open.
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Symmetry in SDP

Further thoughts:

I SDP lift-and-project algorithms don’t work polynomially for
matchings [Tuncel].

I Do all polynomial sized symmetric SDP lifts fail?

I What about non-symmetric?
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The end

Thank You
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