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Semialgebraic sets

Given a set of polynomials G = {g1, . . . ,gm} we denote

S(G) = {x ∈ Rn : g1(x) ≥ 0, . . . ,gm(x) ≥ 0}.

We are interested in approximating convex hulls of these sets.

We are particularly interested in the case

S(g) = {x ∈ Rn : g(x) ≥ 0}.

for some simple instances of g.
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Sums of Squares

A certificate of nonnegativity on S(G) for p is given by a
representation

p(x) = σ0 +
∑

σigi ,

where the σj are sums of squares.

The set of all such polynomials where deg(σ0) and deg(σigi)
are less or equal to 2k is denoted by QMk (G).
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Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S(G)).

Note that

conv(S(G)) =
⋂

` linear ,`|S(G)≥0

{x ∈ Rn : `(x) ≥ 0}.

We can therefore relax it by

Lk (G) =
⋂

` linear ,`∈QMk (G)

{x ∈ Rn : `(x) ≥ 0}

which we call the k -th Lasserre Relaxation of S(G).
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Lasserre Relaxation - Example

(Loading...)

L2(g) for g = x(x2 + y2)− x4 − x2y2 − y4.


bean.mpg
Media File (video/mpeg)



Plane Quartics

In “On semidefinite representations of plane quartics” Didier
Henrion studied some properties of Lk (g) for a plane quartic g.

In particular:

I If S(g) has a singularity in its convex boundary,

Lk (g) 6= conv(S(g))

I If g is concave
L2(g) = conv(S(g)).

The paper also contains a list of beautiful examples. This talk is
in the same spirit.
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Example 1

Relaxations L2, L3 and L4 of S(−x4 + x3 − y2).



Example 2

Relaxations L2 and L3 for S(−y(y2 − x2)− (x2 + y2)2).



Example 3

Relaxation L2 of S(4(x2 + y2)− (x2 + y2 + 2x)2).



Example 4

Relaxation L2 of S(x + x2 − 2x4 − y4).



Question

This last case has a convex region with smooth boundary for
which L2 fails.

What went wrong in this case?

More generally: can we understand the meaning of L2(g) for a
quartic curve?
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Question

This last case has a convex region with smooth boundary for
which L2 fails.

What went wrong in this case?

More generally: can we understand the meaning of L2(g) for a
quartic curve?



Smooth quartic revisited

(Loading...)

L2(gα) for gα = (1− α)x + x2 − 2x4 − y4, with α ∈ [0,1].


convex.mpg
Media File (video/mpeg)



Polynomial Shadow

Given a polynomial p(x1, . . . , xn), consider its graph

Gp = {(x0, x) ∈ Rn+1 : x0 = p(x1, . . . , xn)}.

The shadow of p, Sh(p) ⊆ Rn, is the set

Sh(p) = {x ∈ Rn : (0, x) ∈ conv(Gp)}.
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Example

Graph of p and Sh(p) for p = −4 + 7x2 − 2x4 + 1/6x6.



Fact

Simple Fact
If p has degree 2d then Sh(p) ⊆ Ld (p).

Proof: If `(x) = σ(x) + λp(x) then 1
λ`(x)− p(x) ≥ 0.

This implies

x0 −
1
λ
`(x) ≤ 0

is valid in the graph of p.

Hence `(x) ≥ 0 is valid over Sh(p). �
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Scarabeus

Consider p = (x2 − y2)2 − (x2 + y2)(x2 + y2 + 4x)2. This cuts
out the scarabeus sixtic which does not seem L3-exact.

To prove it note

p(−4,0) = −256, p(1,0) = 24 ⇒
(

4
7
,0,0

)
∈ conv(Gp).

However, maxx∈S(p) =
(
−50 + 11

√
22
)
/27 ≈ 0.06.
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Fact 2

Actually the proof gives us a better result.

Simple Fact 2
If p has n variables and degree 2d where
I n = 1;
I d = 1 or
I n = 2 and d = 2,

then Sh(p) = Ld (p).

In particular, if p is a concave planar quartic, L2(p) = S(p).
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Example

L2(20x4 + 85y2x2 − 25x2 − 3x + 20y4 − 25y2 + 7).



Example

L2(20x4 + 85y2x2 − 25x2 − 3x + 20y4 − 25y2 + 7).



Example 2

L2(4(x2 + y2)− (x2 + y2 + 2x)2).



Example 2

L2(4(x2 + y2)− (x2 + y2 + 2x)2).



Univariate quartics

For p = −(x − a1)(x − a2)(x − a3)(x − a4), what is L2(p)?

Consider ā the average of a1,a2,a3,a4, and define

b1,b2 = ā±
√

a1
2 + a2

2 + a3
2 + a4

2

4
− ā2.

L2(p) = conv(S(p)) iff {b1,b2} ⊆ conv({a1,a2,a3,a4}).

Otherwise L2(p) = conv({a1,a2,a3,a4, c}, where c is the
x-intercept of the bitangent at {b1,b2}.
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Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).
Unfortunately it has not worked well in practice.



Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).
Unfortunately it has not worked well in practice.



Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).
Unfortunately it has not worked well in practice.



Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).
Unfortunately it has not worked well in practice.



Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).

Unfortunately it has not worked well in practice.



Computing

Given a quartic p, we can consider the set of points
w1,w2,w ∈ R3 such that

I w1 and w2 are in the graph of p;

I ∂p
∂x (w1) = ∂p

∂x (w2) and ∂p
∂y (w1) = ∂p

∂y (w2);

I w is in the line through w1 and w2 and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing
the boundary of L2(p).
Unfortunately it has not worked well in practice.



Teardrop revisited

For the teardrop curve x3 − x4 − y2 we get the boundary curve

−1− 8x + 64y2.



The end

Thank You


