Approximating Convex Hulls of Planar Quartics

João Gouveia

University of Washington

Universidade de Coimbra
17th May - SIAM-OPT 2011 - Darmstadt

Semialgebraic sets

Given a set of polynomials $\mathcal{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ we denote

$$
S(\mathcal{G})=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

We are interested in approximating convex hulls of these sets.

Semialgebraic sets

Given a set of polynomials $\mathcal{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ we denote

$$
S(\mathcal{G})=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}
$$

We are interested in approximating convex hulls of these sets.

We are particularly interested in the case

$$
S(g)=\left\{x \in \mathbb{R}^{n}: g(x) \geq 0\right\}
$$

for some simple instances of g.

Sums of Squares

A certificate of nonnegativity on $S(\mathcal{G})$ for p is given by a representation

$$
p(x)=\sigma_{0}+\sum \sigma_{i} g_{i}
$$

where the σ_{j} are sums of squares.

Sums of Squares

A certificate of nonnegativity on $S(\mathcal{G})$ for p is given by a representation

$$
p(x)=\sigma_{0}+\sum \sigma_{i} g_{i},
$$

where the σ_{j} are sums of squares.

The set of all such polynomials where $\operatorname{deg}\left(\sigma_{0}\right)$ and $\operatorname{deg}\left(\sigma_{i} g_{i}\right)$ are less or equal to $2 k$ is denoted by $\mathrm{QM}_{k}(\mathcal{G})$.

Convex Hulls of semialgebraic sets

We want to use this tool to approximate $\operatorname{conv}(S(\mathcal{G}))$.

Convex Hulls of semialgebraic sets

We want to use this tool to approximate $\operatorname{conv}(S(\mathcal{G}))$. Note that

$$
\overline{\operatorname{conv}(S(\mathcal{G}))}=\bigcap_{\ell \text { linear },\left.\ell\right|_{S(\mathcal{G})} \geq 0}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

Convex Hulls of semialgebraic sets

We want to use this tool to approximate $\operatorname{conv}(\mathcal{S}(\mathcal{G}))$. Note that

$$
\overline{\operatorname{conv}(S(\mathcal{G}))}=\bigcap_{\ell \text { linear },\left.\ell\right|_{S(\mathcal{G})} \geq 0}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

We can therefore relax it by

$$
\mathcal{L}_{k}(\mathcal{G})=\bigcap_{\ell \text { linear }, \ell \in \mathrm{QM}_{k}(\mathcal{G})}\left\{x \in \mathbb{R}^{n}: \ell(x) \geq 0\right\}
$$

which we call the k-th Lasserre Relaxation of $S(\mathcal{G})$.

Lasserre Relaxation - Example

$$
\mathcal{L}_{2}(g) \text { for } g=x\left(x^{2}+y^{2}\right)-x^{4}-x^{2} y^{2}-y^{4} .
$$

Plane Quartics

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_{k}(g)$ for a plane quartic g.

Plane Quartics

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_{k}(g)$ for a plane quartic g. In particular:

- If $S(g)$ has a singularity in its convex boundary,

$$
\mathcal{L}_{k}(g) \neq \operatorname{conv}(S(g))
$$

Plane Quartics

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_{k}(g)$ for a plane quartic g. In particular:

- If $S(g)$ has a singularity in its convex boundary,

$$
\mathcal{L}_{k}(g) \neq \operatorname{conv}(S(g))
$$

- If g is concave

$$
\mathcal{L}_{2}(g)=\operatorname{conv}(S(g))
$$

Plane Quartics

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_{k}(g)$ for a plane quartic g. In particular:

- If $S(g)$ has a singularity in its convex boundary,

$$
\mathcal{L}_{k}(g) \neq \operatorname{conv}(S(g))
$$

- If g is concave

$$
\mathcal{L}_{2}(g)=\operatorname{conv}(S(g))
$$

The paper also contains a list of beautiful examples. This talk is in the same spirit.

Example 1

Relaxations $\mathcal{L}_{2}, \mathcal{L}_{3}$ and \mathcal{L}_{4} of $S\left(-x^{4}+x^{3}-y^{2}\right)$.

Example 2

Relaxations \mathcal{L}_{2} and \mathcal{L}_{3} for $S\left(-y\left(y^{2}-x^{2}\right)-\left(x^{2}+y^{2}\right)^{2}\right)$.

Example 3

Relaxation \mathcal{L}_{2} of $S\left(4\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}+2 x\right)^{2}\right)$.

Example 4

Relaxation \mathcal{L}_{2} of $S\left(x+x^{2}-2 x^{4}-y^{4}\right)$.

Question

This last case has a convex region with smooth boundary for which \mathcal{L}_{2} fails.

Question

This last case has a convex region with smooth boundary for which \mathcal{L}_{2} fails.

What went wrong in this case?

Question

This last case has a convex region with smooth boundary for which \mathcal{L}_{2} fails.

What went wrong in this case?

More generally: can we understand the meaning of $\mathcal{L}_{2}(g)$ for a quartic curve?

Question

This last case has a convex region with smooth boundary for which \mathcal{L}_{2} fails.

What went wrong in this case?

More generally: can we understand the meaning of $\mathcal{L}_{2}(g)$ for a quartic curve?

Smooth quartic revisited

$\mathcal{L}_{2}\left(g_{\alpha}\right)$ for $g_{\alpha}=(1-\alpha) x+x^{2}-2 x^{4}-y^{4}$, with $\alpha \in[0,1]$.

Polynomial Shadow

Given a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$, consider its graph

$$
G_{p}=\left\{\left(x_{0}, x\right) \in \mathbb{R}^{n+1}: x_{0}=p\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

Polynomial Shadow

Given a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$, consider its graph

$$
G_{p}=\left\{\left(x_{0}, x\right) \in \mathbb{R}^{n+1}: x_{0}=p\left(x_{1}, \ldots, x_{n}\right)\right\}
$$

The shadow of $p, \operatorname{Sh}(p) \subseteq \mathbb{R}^{n}$, is the set

$$
\operatorname{Sh}(p)=\left\{x \in \mathbb{R}^{n}:(0, x) \in \operatorname{conv}\left(G_{p}\right)\right\} .
$$

Example

Graph of p and $\operatorname{Sh}(p)$ for $p=-4+7 x^{2}-2 x^{4}+1 / 6 x^{6}$.

Fact

Simple Fact
If p has degree $2 d$ then $\operatorname{Sh}(p) \subseteq \mathcal{L}_{d}(p)$.

Fact

Simple Fact
If p has degree $2 d$ then $\operatorname{Sh}(p) \subseteq \mathcal{L}_{d}(p)$.

Proof: If $\ell(x)=\sigma(x)+\lambda p(x)$ then $\frac{1}{\lambda} \ell(x)-p(x) \geq 0$.

Fact

Simple Fact
If p has degree $2 d$ then $\operatorname{Sh}(p) \subseteq \mathcal{L}_{d}(p)$.

Proof: If $\ell(x)=\sigma(x)+\lambda p(x)$ then $\frac{1}{\lambda} \ell(x)-p(x) \geq 0$.

This implies

$$
x_{0}-\frac{1}{\lambda} \ell(x) \leq 0
$$

is valid in the graph of p.

Fact

Simple Fact
If p has degree $2 d$ then $\operatorname{Sh}(p) \subseteq \mathcal{L}_{d}(p)$.

Proof: If $\ell(x)=\sigma(x)+\lambda p(x)$ then $\frac{1}{\lambda} \ell(x)-p(x) \geq 0$.

This implies

$$
x_{0}-\frac{1}{\lambda} \ell(x) \leq 0
$$

is valid in the graph of p.

Hence $\ell(x) \geq 0$ is valid over $\operatorname{Sh}(p)$.

Scarabeus

Consider $p=\left(x^{2}-y^{2}\right)^{2}-\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+4 x\right)^{2}$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_{3}-exact.

Scarabeus

Consider $p=\left(x^{2}-y^{2}\right)^{2}-\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+4 x\right)^{2}$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_{3}-exact.

To prove it note

$$
p(-4,0)=-256, \quad p(1,0)=24 \Rightarrow\left(\frac{4}{7}, 0,0\right) \in \operatorname{conv}\left(G_{p}\right)
$$

Scarabeus

Consider $p=\left(x^{2}-y^{2}\right)^{2}-\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+4 x\right)^{2}$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_{3}-exact.

To prove it note

$$
p(-4,0)=-256, \quad p(1,0)=24 \Rightarrow\left(\frac{4}{7}, 0,0\right) \in \operatorname{conv}\left(G_{p}\right)
$$

However, $\max _{x \in S(p)}=(-50+11 \sqrt{22}) / 27 \approx 0.06$.

Fact 2

Actually the proof gives us a better result.

Simple Fact 2

If p has n variables and degree $2 d$ where

- $n=1$;
- $d=1$ or
- $n=2$ and $d=2$,
then $\operatorname{Sh}(p)=\mathcal{L}_{d}(p)$.

Fact 2

Actually the proof gives us a better result.

Simple Fact 2

If p has n variables and degree $2 d$ where

- $n=1$;
- $d=1$ or
- $n=2$ and $d=2$,
then $\operatorname{Sh}(p)=\mathcal{L}_{d}(p)$.

In particular, if p is a concave planar quartic, $\mathcal{L}_{2}(p)=S(p)$.

Example

$\mathcal{L}_{2}\left(20 x^{4}+85 y^{2} x^{2}-25 x^{2}-3 x+20 y^{4}-25 y^{2}+7\right)$.

Example

$$
\mathcal{L}_{2}\left(20 x^{4}+85 y^{2} x^{2}-25 x^{2}-3 x+20 y^{4}-25 y^{2}+7\right)
$$

Example 2

$$
\mathcal{L}_{2}\left(4\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}+2 x\right)^{2}\right)
$$

Example 2

$$
\mathcal{L}_{2}\left(4\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}+2 x\right)^{2}\right)
$$

Univariate quartics

For $p=-\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$, what is $\mathcal{L}_{2}(p)$?

Univariate quartics

For $p=-\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$, what is $\mathcal{L}_{2}(p)$?

Consider \bar{a} the average of $a_{1}, a_{2}, a_{3}, a_{4}$, and define

$$
b_{1}, b_{2}=\bar{a} \pm \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{4}-\bar{a}^{2}}
$$

Univariate quartics

For $p=-\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$, what is $\mathcal{L}_{2}(p)$?

Consider \bar{a} the average of $a_{1}, a_{2}, a_{3}, a_{4}$, and define

$$
b_{1}, b_{2}=\bar{a} \pm \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{4}-\bar{a}^{2}}
$$

$\mathcal{L}_{2}(p)=\operatorname{conv}(S(p))$ iff $\left\{b_{1}, b_{2}\right\} \subseteq \operatorname{conv}\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$.

Univariate quartics

For $p=-\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$, what is $\mathcal{L}_{2}(p)$?

Consider \bar{a} the average of $a_{1}, a_{2}, a_{3}, a_{4}$, and define

$$
b_{1}, b_{2}=\bar{a} \pm \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}}{4}-\bar{a}^{2}}
$$

$\mathcal{L}_{2}(p)=\operatorname{conv}(S(p))$ iff $\left\{b_{1}, b_{2}\right\} \subseteq \operatorname{conv}\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)$.

Otherwise $\mathcal{L}_{2}(p)=\operatorname{conv}\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}, c\right\}\right.$, where c is the x-intercept of the bitangent at $\left\{b_{1}, b_{2}\right\}$.

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

- w_{1} and w_{2} are in the graph of p;

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

- w_{1} and w_{2} are in the graph of p;
- $\frac{\partial p}{\partial x}\left(w_{1}\right)=\frac{\partial p}{\partial x}\left(w_{2}\right)$ and $\frac{\partial p}{\partial y}\left(w_{1}\right)=\frac{\partial p}{\partial y}\left(w_{2}\right)$;

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

- w_{1} and w_{2} are in the graph of p;
- $\frac{\partial p}{\partial x}\left(w_{1}\right)=\frac{\partial p}{\partial x}\left(w_{2}\right)$ and $\frac{\partial p}{\partial y}\left(w_{1}\right)=\frac{\partial p}{\partial y}\left(w_{2}\right)$;
- w is in the line through w_{1} and w_{2} and has z-coordinate 0.

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

- w_{1} and w_{2} are in the graph of p;
- $\frac{\partial p}{\partial x}\left(w_{1}\right)=\frac{\partial p}{\partial x}\left(w_{2}\right)$ and $\frac{\partial p}{\partial y}\left(w_{1}\right)=\frac{\partial p}{\partial y}\left(w_{2}\right)$;
- w is in the line through w_{1} and w_{2} and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing the boundary of $\mathcal{L}_{2}(p)$.

Computing

Given a quartic p, we can consider the set of points $w_{1}, w_{2}, w \in \mathbb{R}^{3}$ such that

- w_{1} and w_{2} are in the graph of p;
- $\frac{\partial p}{\partial x}\left(w_{1}\right)=\frac{\partial p}{\partial x}\left(w_{2}\right)$ and $\frac{\partial p}{\partial y}\left(w_{1}\right)=\frac{\partial p}{\partial y}\left(w_{2}\right)$;
- w is in the line through w_{1} and w_{2} and has z-coordinate 0.

Eliminating all variables but w we should get a curve containing the boundary of $\mathcal{L}_{2}(p)$.
Unfortunately it has not worked well in practice.

Teardrop revisited

For the teardrop curve $x^{3}-x^{4}-y^{2}$ we get the boundary curve

$$
-1-8 x+64 y^{2}
$$

The end

Thank You

