Approximating Convex Hulls of Planar Quartics

João Gouveia

University of Washington Universidade de Coimbra

17th May - SIAM-OPT 2011 - Darmstadt

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semialgebraic sets

Given a set of polynomials $\mathcal{G} = \{g_1, \ldots, g_m\}$ we denote

$$S(\mathcal{G}) = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}.$$

We are interested in approximating convex hulls of these sets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semialgebraic sets

Given a set of polynomials $\mathcal{G} = \{g_1, \ldots, g_m\}$ we denote

$$S(\mathcal{G}) = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0\}.$$

We are interested in approximating convex hulls of these sets.

We are particularly interested in the case

$$S(g) = \{x \in \mathbb{R}^n : g(x) \ge 0\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for some simple instances of *g*.

Sums of Squares

A certificate of nonnegativity on $S(\mathcal{G})$ for p is given by a representation

$$\rho(x) = \sigma_0 + \sum \sigma_i g_i,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where the σ_i are sums of squares.

Sums of Squares

A certificate of nonnegativity on $S(\mathcal{G})$ for p is given by a representation

$$\rho(x)=\sigma_0+\sum\sigma_i g_i,$$

where the σ_i are sums of squares.

The set of all such polynomials where deg(σ_0) and deg($\sigma_i g_i$) are less or equal to 2k is denoted by QM_k(\mathcal{G}).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S(G)).

Convex Hulls of semialgebraic sets

We want to use this tool to approximate $conv(S(\mathcal{G}))$. Note that

$$\overline{\operatorname{conv}(S(\mathcal{G}))} = \bigcap_{\ell \text{ linear }, \ell|_{S(\mathcal{G})} \ge 0} \{ x \in \mathbb{R}^n : \ell(x) \ge 0 \}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S(G)). Note that

$$\overline{\operatorname{conv}(S(\mathcal{G}))} = \bigcap_{\ell \text{ linear }, \ell|_{S(\mathcal{G})} \ge 0} \{ x \in \mathbb{R}^n : \ell(x) \ge 0 \}.$$

We can therefore relax it by

$$\mathcal{L}_k(\mathcal{G}) = \bigcap_{\ell \text{ linear }, \ell \in \mathsf{QM}_k(\mathcal{G})} \{ x \in \mathbb{R}^n : \ell(x) \ge 0 \}$$

(ロ) (同) (三) (三) (三) (○) (○)

which we call the *k*-th Lasserre Relaxation of $S(\mathcal{G})$.

Lasserre Relaxation - Example

(Loading...)

$$\mathcal{L}_2(g)$$
 for $g = x(x^2 + y^2) - x^4 - x^2y^2 - y^4$.

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_k(g)$ for a plane quartic g.

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_k(g)$ for a plane quartic g. In particular:

• If S(g) has a singularity in its convex boundary,

 $\mathcal{L}_k(g) \neq \operatorname{conv}(S(g))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_k(g)$ for a plane quartic g. In particular:

• If S(g) has a singularity in its convex boundary,

 $\mathcal{L}_k(g) \neq \operatorname{conv}(\mathcal{S}(g))$

If g is concave

 $\mathcal{L}_2(g) = \operatorname{conv}(S(g)).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In "On semidefinite representations of plane quartics" Didier Henrion studied some properties of $\mathcal{L}_k(g)$ for a plane quartic g. In particular:

• If S(g) has a singularity in its convex boundary,

 $\mathcal{L}_k(g) \neq \operatorname{conv}(\mathcal{S}(g))$

If g is concave

$$\mathcal{L}_2(g) = \operatorname{conv}(S(g)).$$

The paper also contains a list of beautiful examples. This talk is in the same spirit.

Relaxations \mathcal{L}_2 , \mathcal{L}_3 and \mathcal{L}_4 of $S(-x^4 + x^3 - y^2)$.

Relaxations \mathcal{L}_2 and \mathcal{L}_3 for $S(-y(y^2 - x^2) - (x^2 + y^2)^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Relaxation \mathcal{L}_2 of $S(4(x^2 + y^2) - (x^2 + y^2 + 2x)^2)$.

(ロ)、(型)、(E)、(E)、 E) のQの

Relaxation \mathcal{L}_2 of $S(x + x^2 - 2x^4 - y^4)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This last case has a convex region with smooth boundary for which \mathcal{L}_2 fails.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

This last case has a convex region with smooth boundary for which \mathcal{L}_2 fails.

What went wrong in this case?

This last case has a convex region with smooth boundary for which \mathcal{L}_2 fails.

What went wrong in this case?

More generally: can we understand the meaning of $\mathcal{L}_2(g)$ for a quartic curve?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This last case has a convex region with smooth boundary for which \mathcal{L}_2 fails.

What went wrong in this case?

More generally: can we understand the meaning of $\mathcal{L}_2(g)$ for a quartic curve?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Smooth quartic revisited

(Loading...)

$$\mathcal{L}_2(g_\alpha)$$
 for $g_\alpha = (1 - \alpha)x + x^2 - 2x^4 - y^4$, with $\alpha \in [0, 1]$.

Polynomial Shadow

Given a polynomial $p(x_1, \ldots, x_n)$, consider its graph

$$G_{\rho} = \{(x_0, x) \in \mathbb{R}^{n+1} : x_0 = \rho(x_1, \ldots, x_n)\}.$$

(ロ)、

Polynomial Shadow

Given a polynomial $p(x_1, \ldots, x_n)$, consider its graph

$$G_{\rho} = \{(x_0, x) \in \mathbb{R}^{n+1} : x_0 = \rho(x_1, \ldots, x_n)\}.$$

The shadow of p, $Sh(p) \subseteq \mathbb{R}^n$, is the set

 $\mathsf{Sh}(p) = \{ x \in \mathbb{R}^n : (0, x) \in \mathsf{conv}(G_p) \}.$

Graph of *p* and Sh(*p*) for $p = -4 + 7x^2 - 2x^4 + 1/6x^6$.

Simple Fact

If p has degree 2d then $Sh(p) \subseteq \mathcal{L}_d(p)$.

Simple Fact If *p* has degree 2*d* then $Sh(p) \subseteq \mathcal{L}_d(p)$.

Proof: If $\ell(x) = \sigma(x) + \lambda p(x)$ then $\frac{1}{\lambda}\ell(x) - p(x) \ge 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Simple Fact If p has degree 2d then $Sh(p) \subseteq \mathcal{L}_d(p)$.

Proof: If
$$\ell(x) = \sigma(x) + \lambda p(x)$$
 then $\frac{1}{\lambda}\ell(x) - p(x) \ge 0$.

This implies

$$x_0 - rac{1}{\lambda}\ell(x) \leq 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is valid in the graph of *p*.

Simple Fact If *p* has degree 2*d* then $Sh(p) \subseteq \mathcal{L}_d(p)$.

Proof: If
$$\ell(x) = \sigma(x) + \lambda p(x)$$
 then $\frac{1}{\lambda}\ell(x) - p(x) \ge 0$.

This implies

$$x_0 - rac{1}{\lambda}\ell(x) \leq 0$$

is valid in the graph of p.

Hence $\ell(x) \ge 0$ is valid over Sh(p).

Scarabeus

Consider $p = (x^2 - y^2)^2 - (x^2 + y^2)(x^2 + y^2 + 4x)^2$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_3 -exact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Scarabeus

Consider $p = (x^2 - y^2)^2 - (x^2 + y^2)(x^2 + y^2 + 4x)^2$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_3 -exact.

To prove it note

$$p(-4,0) = -256, \ \ p(1,0) = 24 \ \ \Rightarrow \ \ \left(rac{4}{7},0,0
ight) \in {
m conv}(G_{
ho}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Scarabeus

Consider $p = (x^2 - y^2)^2 - (x^2 + y^2)(x^2 + y^2 + 4x)^2$. This cuts out the scarabeus sixtic which does not seem \mathcal{L}_3 -exact.

To prove it note

$$p(-4,0) = -256, \ p(1,0) = 24 \ \Rightarrow \ \left(\frac{4}{7},0,0\right) \in \operatorname{conv}(G_p).$$

However,
$$\max_{x \in \mathcal{S}(p)} = \left(-50 + 11\sqrt{22}\right)/27 \approx 0.06.$$

Actually the proof gives us a better result.

Simple Fact 2

If p has n variables and degree 2d where

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ n = 1;
- ▶ *d* = 1 or
- ▶ n = 2 and d = 2,

then $\operatorname{Sh}(p) = \mathcal{L}_d(p)$.

Actually the proof gives us a better result.

Simple Fact 2

If p has n variables and degree 2d where

- ▶ n = 1;
- ▶ d = 1 or
- ▶ n = 2 and d = 2,

then $Sh(p) = \mathcal{L}_d(p)$.

In particular, if p is a concave planar quartic, $\mathcal{L}_2(p) = S(p)$.

・ロ・・四・・ヨ・・ヨ・・日・

 $\mathcal{L}_2(20x^4 + 85y^2x^2 - 25x^2 - 3x + 20y^4 - 25y^2 + 7).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $\mathcal{L}_2(20x^4 + 85y^2x^2 - 25x^2 - 3x + 20y^4 - 25y^2 + 7).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$\mathcal{L}_2(4(x^2+y^2)-(x^2+y^2+2x)^2).$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

 $\mathcal{L}_2(4(x^2+y^2)-(x^2+y^2+2x)^2).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

For
$$p = -(x - a_1)(x - a_2)(x - a_3)(x - a_4)$$
, what is $\mathcal{L}_2(p)$?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

For
$$p = -(x - a_1)(x - a_2)(x - a_3)(x - a_4)$$
, what is $\mathcal{L}_2(p)$?

Consider \overline{a} the average of a_1, a_2, a_3, a_4 , and define

$$b_1, b_2 = \bar{a} \pm \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 + a_4^2}{4} - \bar{a}^2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

For
$$p = -(x - a_1)(x - a_2)(x - a_3)(x - a_4)$$
, what is $\mathcal{L}_2(p)$?

Consider \overline{a} the average of a_1, a_2, a_3, a_4 , and define

$$b_1, b_2 = \bar{a} \pm \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 + a_4^2}{4}} - \bar{a}^2.$$

 $\mathcal{L}_2(p) = \operatorname{conv}(S(p)) \text{ iff } \{ \underline{b}_1, \underline{b}_2 \} \subseteq \operatorname{conv}(\{a_1, a_2, a_3, a_4 \}).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For
$$p = -(x - a_1)(x - a_2)(x - a_3)(x - a_4)$$
, what is $\mathcal{L}_2(p)$?

Consider \bar{a} the average of a_1, a_2, a_3, a_4 , and define

$$b_1, b_2 = \bar{a} \pm \sqrt{\frac{a_1^2 + a_2^2 + a_3^2 + a_4^2}{4}} - \bar{a}^2.$$

 $\mathcal{L}_2(p) = \operatorname{conv}(S(p)) \text{ iff } \{ \underline{b}_1, \underline{b}_2 \} \subseteq \operatorname{conv}(\{a_1, a_2, a_3, a_4\}).$

Otherwise $\mathcal{L}_2(p) = \operatorname{conv}(\{a_1, a_2, a_3, a_4, c\}, \text{ where } c \text{ is the } x \text{-intercept of the bitangent at } \{b_1, b_2\}.$

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• w_1 and w_2 are in the graph of p;

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

• w_1 and w_2 are in the graph of p;

$$\bullet \ \frac{\partial p}{\partial x}(w_1) = \frac{\partial p}{\partial x}(w_2) \text{ and } \frac{\partial p}{\partial y}(w_1) = \frac{\partial p}{\partial y}(w_2);$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

• w_1 and w_2 are in the graph of p;

•
$$\frac{\partial p}{\partial x}(w_1) = \frac{\partial p}{\partial x}(w_2)$$
 and $\frac{\partial p}{\partial y}(w_1) = \frac{\partial p}{\partial y}(w_2)$;

• *w* is in the line through w_1 and w_2 and has *z*-coordinate 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

• w_1 and w_2 are in the graph of p;

$$\bullet \ \frac{\partial p}{\partial x}(w_1) = \frac{\partial p}{\partial x}(w_2) \text{ and } \frac{\partial p}{\partial y}(w_1) = \frac{\partial p}{\partial y}(w_2);$$

• *w* is in the line through w_1 and w_2 and has *z*-coordinate 0.

Eliminating all variables but *w* we should get a curve containing the boundary of $\mathcal{L}_2(p)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Given a quartic p, we can consider the set of points $w_1, w_2, w \in \mathbb{R}^3$ such that

• w_1 and w_2 are in the graph of p;

•
$$\frac{\partial p}{\partial x}(w_1) = \frac{\partial p}{\partial x}(w_2)$$
 and $\frac{\partial p}{\partial y}(w_1) = \frac{\partial p}{\partial y}(w_2)$;

• *w* is in the line through w_1 and w_2 and has *z*-coordinate 0.

Eliminating all variables but *w* we should get a curve containing the boundary of $\mathcal{L}_2(p)$. Unfortunately it has not worked well in practice.

Teardrop revisited

For the teardrop curve $x^3 - x^4 - y^2$ we get the boundary curve

$$-1 - 8x + 64y^2$$
.

The end

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●