Positive Semidefinite Rank

João Gouveia
University of Coimbra

ICERM - 5th June 2014
with Hamza Fawzi (MIT), Pablo Parrilo (MIT), Richard Z. Robinson (U.Washington) and Rekha Thomas (U.Washington)

Section 1

Definition and Basic Properties

Definition

Let M be a m by n nonnegative matrix.

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$
$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ {\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]} & 1\end{array}\right]$

The smallest size of a semidefinite factorization is defined to be the positive semidefinite rank of M, rank $_{\text {psd }}(M)$

Basic Properties

Properties

Given M and N nonnegative we have:

Basic Properties

Properties

Given M and N nonnegative we have:
(i)

$$
\operatorname{rank}_{\mathrm{psd}}(M)=\operatorname{rank}_{\mathrm{psd}}\left(M^{T}\right)
$$

Basic Properties

Properties

Given M and N nonnegative we have:
(i)

$$
\operatorname{rank}_{\mathrm{psd}}(M)=\operatorname{rank}_{\mathrm{psd}}\left(M^{T}\right)
$$

(ii) If D_{1}, D_{2} are positive diagonal then

$$
\operatorname{rank}_{\mathrm{psd}}\left(D_{1} M D_{2}\right)=\operatorname{rank}_{\mathrm{psd}}(M)
$$

Basic Properties

Properties

Given M and N nonnegative we have:
(i)

$$
\operatorname{rank}_{\mathrm{psd}}(M)=\operatorname{rank}_{\mathrm{psd}}\left(M^{T}\right)
$$

(ii) If D_{1}, D_{2} are positive diagonal then

$$
\operatorname{rank}_{\mathrm{psd}}\left(D_{1} M D_{2}\right)=\operatorname{rank}_{\mathrm{psd}}(M)
$$

(iii)

$$
\operatorname{rank}_{p s d}(M+N) \leq \operatorname{rank}_{p s d}(M)+\operatorname{rank}_{p s d}(N)
$$

Basic Properties

Properties

Given M and N nonnegative we have:
(i)

$$
\operatorname{rank}_{p s d}(M)=\operatorname{rank}_{p s d}\left(M^{T}\right)
$$

(ii) If D_{1}, D_{2} are positive diagonal then

$$
\operatorname{rank}_{\mathrm{psd}}\left(D_{1} M D_{2}\right)=\operatorname{rank}_{\mathrm{psd}}(M)
$$

(iii)

$$
\operatorname{rank}_{p s d}(M+N) \leq \operatorname{rank}_{p s d}(M)+\operatorname{rank}_{p s d}(N)
$$

(iv)

$$
\operatorname{rank}_{p s d}(M N) \leq \min \left(\operatorname{rank}_{p s d}(M), \operatorname{rank}_{p s d}(N)\right)
$$

Basic Bounds

Dimension Bounds
If $M \in \mathbb{R}_{+}^{p \times q}$ is a nonnegative matrix, then

$$
\operatorname{rank}(M) \leq\binom{\operatorname{rank}_{\text {psd }}(M)+1}{2}, \quad \operatorname{rank}_{\text {psd }}(M) \leq \min (p, q) .
$$

Basic Bounds

Dimension Bounds
If $M \in \mathbb{R}_{+}^{p \times q}$ is a nonnegative matrix, then

$$
\operatorname{rank}(M) \leq\binom{\operatorname{rank}_{\mathrm{psd}}(M)+1}{2}, \quad \operatorname{rank}_{\mathrm{psd}}(M) \leq \min (p, q)
$$

Support Bounds

$$
\operatorname{rank}_{\text {psd }}\left(\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
* & A_{2} & \ddots & 0 \\
* & * & \ddots & 0 \\
* & * & \cdots & A_{n}
\end{array}\right]\right) \geq \sum_{i=1}^{n} \operatorname{rank}_{\text {psd }}\left(A_{i}\right) .
$$

Basic Bounds

Dimension Bounds
If $M \in \mathbb{R}_{+}^{p \times q}$ is a nonnegative matrix, then

$$
\operatorname{rank}(M) \leq\binom{\operatorname{rank}_{\text {psd }}(M)+1}{2}, \quad \operatorname{rank}_{\text {psd }}(M) \leq \min (p, q) .
$$

Support Bounds

$$
\operatorname{rank}_{\text {psd }}\left(\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
* & A_{2} & \ddots & 0 \\
* & * & \ddots & 0 \\
* & * & \cdots & A_{n}
\end{array}\right]\right) \geq \sum_{i=1}^{n} \operatorname{rank}_{\text {psd }}\left(A_{i}\right) .
$$

In particular rank psd $\left(I_{n}\right)=n$.

How does the rank function look like?
Let $A=\left[\begin{array}{lll}1 & x & y \\ y & 1 & x \\ x & y & 1\end{array}\right]$.

How does the rank function look like?

$$
\text { Let } A=\left[\begin{array}{lll}
1 & x & y \\
y & 1 & x \\
x & y & 1
\end{array}\right] \text {. }
$$

$$
\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}
$$

How does the rank function look like?
Let $A=\left[\begin{array}{lll}1 & x & y \\ y & 1 & x \\ x & y & 1\end{array}\right]$.
$\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

How does the rank function look like, again?
Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$.

How does the rank function look like, again?

$$
\text { Let } A=\left[\begin{array}{lll}
1 & y & x \\
y & 1 & y \\
x & y & 1
\end{array}\right] \text {. }
$$

$$
\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}
$$

How does the rank function look like, again?
Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$. $\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

How does the rank function look like, again?

Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$. $\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

(Algebraic) geometry of the rank

(Algebraic) geometry of the rank

Lemma [Briët-Dadush-Pokutta 2013]
If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

(Algebraic) geometry of the rank

Lemma [Briët-Dadush-Pokutta 2013]
If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition
The rank psd function is lower semicontinuous.

(Algebraic) geometry of the rank

Lemma [Briët-Dadush-Pokutta 2013]

If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition
The rank psd function is lower semicontinuous.

Proposition

$$
\mathcal{P}_{p, q, k}:=\left\{M \in \mathbb{R}_{+}^{p \times q} \mid \operatorname{rank}_{\mathrm{psd}}(M) \leq k\right\}
$$

is a closed semialgebraic set inside the rank $\leq\binom{ k+1}{2}$ variety.

(Algebraic) geometry of the rank

Lemma [Briët-Dadush-Pokutta 2013]

If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition

The rank ${ }_{\text {psd }}$ function is lower semicontinuous.

Proposition

$$
\mathcal{P}_{p, q, k}:=\left\{M \in \mathbb{R}_{+}^{p \times q} \mid \operatorname{rank}_{\mathrm{psd}}(M) \leq k\right\}
$$

is a closed semialgebraic set inside the rank $\leq\binom{ k+1}{2}$ variety.
Even in the case $(3,3,2)$ the precise description is not completely known.

Section 2

Geometric Motivation

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

This tells us how hard it is to optimize over P using semidefinite programming.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of
$\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & x_{1} & y \\ x_{2} & y & x_{2}\end{array}\right] \succeq 0$.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

0	1	0	0	1	0	1	1
0	0	1	0	1	1	0	1
0	0	0	1	0	1	1	1

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
z \geq 0 \\
1-x \geq 0 \\
1-y \geq 0 \\
1-z \geq 0
\end{gathered}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& \begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
z & \geq 0 \\
1-x & \geq 0 \\
1-y & \geq 0 \\
1-z & \geq 0
\end{aligned}\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}\right]
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

	0	1 0 0	0 1 0	0 0 1	1 1 0	0 1 1	1 0 1	1
$x \geq 0$	[0	1	0	0	1	0	1	1
$y \geq 0$	0	0	1	0				1
$z \geq 0$								
$1-x \geq 0$								
$1-y \geq 0$								
$1-z \geq 0$								

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.
$x \geq 0$
$y \geq 0$
$z \geq 0$
$1-x \geq 0$
$1-y \geq 0$
$1-z \geq 0$$\quad\left[\begin{array}{lll|l|l|l|l|l|l}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if rank ${ }_{\text {psd }}\left(S_{P}\right) \leq k$.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if rank ${ }_{\text {psd }}\left(S_{P}\right) \leq k$.

Given a polytope P described as a convex hull of n points and a polytope Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if rank ${ }_{\text {psd }}\left(S_{P}\right) \leq k$.

Given a polytope P described as a convex hull of n points and a polytope Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Theorem
rank $_{\text {psd }}\left(S_{P, Q}\right) \leq k$ if and only if there is a convex set C with an sdp representation of size k such that $P \subseteq C \subseteq Q$.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if rank ${ }_{\text {psd }}\left(S_{P}\right) \leq k$.

Given a polytope P described as a convex hull of n points and a polytope Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Theorem
rank $_{\text {psd }}\left(S_{P, Q}\right) \leq k$ if and only if there is a convex set C with an sdp representation of size k such that $P \subseteq C \subseteq Q$.

Lemma (Gillis-Glineur 12)
All nonnegative matrices of rank $n+1$ can be seen as generalized slack matrices of polytopes of dimension n.

The Hexagon

Consider the regular hexagon.

The Hexagon

Consider the regular hexagon.

Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

The Hexagon

Consider the regular hexagon.

Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The Hexagon

Consider the regular hexagon.

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \rangle
\end{aligned}
$$

The Hexagon - continued

The regular hexagon must have a size 4 representation.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices
$(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

Section 3

Computing Semidefinite Rank

Low rank cases

Rank 1

$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{\text {psd }}(M)=1$

Low rank cases

Rank 1

$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{p s d}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{p s d}(M)=2$

Low rank cases

Rank 1
$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{\mathrm{psd}}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{p s d}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Low rank cases

Rank 1
$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{p s d}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{p s d}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Can we say more?

Low rank cases

Rank 1

$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{\text {psd }}(M)=1$

Rank 2

$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{\text {psd }}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Can we say more?
Let M_{n} be the (rank 3) slack matrix of a regular n-gon then $r_{n}=\operatorname{rank}_{\mathrm{psd}}\left(M_{n}\right) \longrightarrow+\infty$.

Semidefinite rank 2

If rank $(M)>3$ then rank psd $(M)>2$, so we need only to study rank 3 matrices.

Semidefinite rank 2

If rank $(M)>3$ then rank psd $(M)>2$, so we need only to study rank 3 matrices.

Lemma
Let $M=S_{P Q}$ with rank $(M)=3$ then rank ${ }_{\text {psd }}(M)=2$ if and only if there is an ellipse E with $P \subseteq E \subseteq Q$.

Semidefinite rank 2

If rank $(M)>3$ then rank psd $(M)>2$, so we need only to study rank 3 matrices.

Lemma

Let $M=S_{P Q}$ with rank $(M)=3$ then rank ${ }_{\text {psd }}(M)=2$ if and only if there is an ellipse E with $P \subseteq E \subseteq Q$.

Convex Formulation
Let $P=\operatorname{conv}\left(x_{1}, \cdots, x_{n}\right)$ and $Q=\{x: G x \leq h\}$ then rank $_{\text {psd }}\left(S_{P Q}\right)=2$ iff there exist A, b, c such that:

$$
\begin{aligned}
& \text { 1. } A \succeq 0, \operatorname{trace}(A)=1 \\
& \text { 2. }\left[\begin{array}{r}
x_{j} \\
1
\end{array}\right]^{T}\left[\begin{array}{rr}
A & b \\
b^{T} & c
\end{array}\right]\left[\begin{array}{l}
x_{j} \\
1
\end{array}\right] \leq 0 \quad \forall j \\
& \text { 3. } \quad \exists \lambda_{i} \geq 0:\left[\begin{array}{cc}
A & b \\
b^{T} & c
\end{array}\right] \succeq \lambda_{i}\left[\begin{array}{cc}
0 & g_{i}^{T} / 2 \\
g_{i} / 2 & -h_{i}
\end{array}\right] \quad \forall i
\end{aligned}
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

$$
\text { rank }_{p s d} M= \begin{cases}3 & \text { if } a^{2}+b^{2}>1 \\ 2 & \text { if } 0<a^{2}+b^{2} \leq 1 \\ 1 & \text { if } a=b=0\end{cases}
$$

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem
Let $M \in \mathbb{R}_{+}^{n \times m}$ with rank $(M)=\binom{k+1}{2}$. Checking if rank psd $=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular, for fixed k it is solvable in polynomial time.

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem

Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$. Checking if rank ${ }_{\text {psd }}=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular, for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if $\operatorname{rank}_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem

Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$. Checking if rank ${ }_{\text {psd }}=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular, for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if rank $_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?
- What is the complexity of computing rank ${ }_{\text {psd }}$?

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem

Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$. Checking if rank ${ }_{\text {psd }}=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular, for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if rank $_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?
- What is the complexity of computing rank ${ }_{\text {psd }}$?
 NP-hard?

Section 4

Related Ranks

Nonnegative Rank

Let M be an m by n nonnegative matrix.

Nonnegative Rank

Let M be an m by n nonnegative matrix.
The nonnegative rank of M, rank ${ }_{+}(M)$, is the smallest natural number k such that there exists a pair of nonnegative matrices
A, m by k, and B, k by n, with

$$
M=A \times B
$$

Nonnegative Rank

Let M be an m by n nonnegative matrix.
The nonnegative rank of M, rank ${ }_{+}(M)$, is the smallest natural number k such that there exists a pair of nonnegative matrices
A, m by k, and B, k by n, with

$$
M=A \times B
$$

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]
$$

Nonnegative Rank

Let M be an m by n nonnegative matrix.
The nonnegative rank of M, rank ${ }_{+}(M)$, is the smallest natural number k such that there exists a pair of nonnegative matrices
A, m by k, and B, k by n, with

$$
M=A \times B
$$

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Nonnegative Rank

Let M be an m by n nonnegative matrix.
The nonnegative rank of M, rank ${ }_{+}(M)$, is the smallest natural number k such that there exists a pair of nonnegative matrices A, m by k, and B, k by n, with

$$
M=A \times B
$$

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

The nonnegative rank can be seen as the semidefinite rank where we restrict our matrices to be diagonal. In particular

$$
\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{+}(M)
$$

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.
rank $_{H}(M)$ rank can be seen as the semidefinite rank where we restrict our factor matrices to be rank one. In particular

$$
\operatorname{rank}_{p s d}(M) \leq \operatorname{rank}_{H}(M)
$$

Further thoughts on the square-root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then rank $_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M)$.

Further thoughts on the square-root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M)$.
Theorem [Barvinok 2012]
If M has at most k distinct entries, $\operatorname{rank}_{\text {psd }}(M) \leq(\underset{k-1}{k-1+\operatorname{rank}(M)})$

Further thoughts on the square-root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M)$.
Theorem [Barvinok 2012]
If M has at most k distinct entries, $\operatorname{rank}_{\text {psd }}(M) \leq(\underset{k-1}{k-1+\operatorname{rank}(M)})$
Complexity
Computing Square-Root Rank is NP-Hard.

Further thoughts on the square-root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M)$.
Theorem [Barvinok 2012]
If M has at most k distinct entries, rank $_{\text {psd }}(M) \leq(\underset{k-1}{k-1+\operatorname{rank}(M)})$
Complexity
Computing Square-Root Rank is NP-Hard.
$\operatorname{rank}_{H}\left[\begin{array}{ccccc}1 & 0 & \cdots & 0 & a_{1}^{2} \\ 0 & 1 & \ddots & 0 & a_{2}^{2} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n}^{2} \\ 1 & 1 & \cdots & 1 & 0\end{array}\right]=n$ iff $\left\{a_{1}, \ldots, a_{n}\right\}$ can be partitioned

Example: Euclidean Distance Matrices

Consider the $n \times n$ matrix Euclidean distance matrix M_{n} whose (i, j)-entry is $(i-j)^{2}$.

$$
M_{n}=\left[\begin{array}{ccccc}
0 & 1 & 4 & \cdots & (n-1)^{2} \\
1 & 0 & 1 & \ddots & (n-2)^{2} \\
4 & 1 & 0 & \ddots & (n-3)^{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
(n-1)^{2} & (n-2)^{2} & (n-3)^{2} & \cdots & 0
\end{array}\right]
$$

Example: Euclidean Distance Matrices

Consider the $n \times n$ matrix Euclidean distance matrix M_{n} whose (i, j)-entry is $(i-j)^{2}$.

$$
M_{n}=\left[\begin{array}{ccccc}
0 & 1 & 4 & \cdots & (n-1)^{2} \\
1 & 0 & 1 & \ddots & (n-2)^{2} \\
4 & 1 & 0 & \ddots & (n-3)^{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
(n-1)^{2} & (n-2)^{2} & (n-3)^{2} & \cdots & 0
\end{array}\right]
$$

$\operatorname{rank}_{\text {psd }}\left(M_{n}\right)=\operatorname{rank}_{H}\left(M_{n}\right)=2$, while rank ${ }_{+}\left(M_{n}\right) \geq \log _{2}(n)$.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be an increasing sequence such that $2 n_{k}-1$ is prime for each k. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be an increasing sequence such that $2 n_{k}-1$ is prime for each k. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be an increasing sequence such that $2 n_{k}-1$ is prime for each k. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

$\operatorname{rank}\left(Q^{n}\right)=2 \Rightarrow \operatorname{rank}_{\text {psd }}\left(Q^{n}\right)=\operatorname{rank}_{+}\left(Q^{n}\right)=2$.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be an increasing sequence such that $2 n_{k}-1$ is prime for each k. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

$\operatorname{rank}\left(Q^{n}\right)=2 \Rightarrow \operatorname{rank}_{\text {psd }}\left(Q^{n}\right)=\operatorname{rank}_{+}\left(Q^{n}\right)=2$.

However rank ${ }_{H}\left(Q^{n}\right)=n$.

Section 5

Other Interesting Topics That I Have Not Enough Time To Talk About In Length

Symmetric PSD factorizations

Definition
A symmetric matrix $M \in \operatorname{Sym}^{n}$ is completely psd if there exist $A_{1}, \ldots, A_{n} \in \mathrm{PSD}^{k}$ such that $M_{i j}=\left\langle A_{i}, A_{j}\right\rangle$.

Symmetric PSD factorizations

Definition
A symmetric matrix $M \in \operatorname{Sym}^{n}$ is completely psd if there exist $A_{1}, \ldots, A_{n} \in \mathrm{PSD}^{k}$ such that $M_{i j}=\left\langle A_{i}, A_{j}\right\rangle$.

We have the cone inclusion $\mathrm{CP}^{n} \subseteq \mathrm{CP}_{\mathrm{psd}}^{n} \subseteq \mathrm{DN}^{n}$.

Symmetric PSD factorizations

Definition
A symmetric matrix $M \in \operatorname{Sym}^{n}$ is completely psd if there exist $A_{1}, \ldots, A_{n} \in \mathrm{PSD}^{k}$ such that $M_{i j}=\left\langle A_{i}, A_{j}\right\rangle$.

We have the cone inclusion $\mathrm{CP}^{n} \subseteq \mathrm{CP}_{\text {psd }}^{n} \subseteq \mathrm{DN}^{n}$. The inclusions are strict for $n \geq 5$.

Symmetric PSD factorizations

Definition
A symmetric matrix $M \in \operatorname{Sym}^{n}$ is completely psd if there exist $A_{1}, \ldots, A_{n} \in \mathrm{PSD}^{k}$ such that $M_{i j}=\left\langle A_{i}, A_{j}\right\rangle$.

We have the cone inclusion $\mathrm{CP}^{n} \subseteq \mathrm{CP}_{\text {psd }}^{n} \subseteq \mathrm{DN}^{n}$. The inclusions are strict for $n \geq 5$.

Open questions

- If $M \in \mathrm{CP}^{n}$ can one bound the size of the matrices A_{i} ?

Symmetric PSD factorizations

Definition
A symmetric matrix $M \in \operatorname{Sym}^{n}$ is completely psd if there exist $A_{1}, \ldots, A_{n} \in \mathrm{PSD}^{k}$ such that $M_{i j}=\left\langle A_{i}, A_{j}\right\rangle$.

We have the cone inclusion $\mathrm{CP}^{n} \subseteq \mathrm{CP}_{\mathrm{psd}}^{n} \subseteq \mathrm{DN}^{n}$. The inclusions are strict for $n \geq 5$.

Open questions

- If $M \in \mathrm{CP}^{n}$ can one bound the size of the matrices A_{i} ?
- Is CP^{n} closed?

Dependency on the field

We could have defined rank ${ }_{p s d}^{\mathbb{C}}$ or rank ${ }_{p s d}^{\mathbb{Q}}$. What would change?

Dependency on the field

We could have defined rank $\underset{p s d}{\mathbb{C}}$ or rank ${ }_{p s d}^{\mathbb{Q}}$. What would change?
$\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M)$.

Dependency on the field

We could have defined rank ${ }_{\mathrm{psd}}^{\mathbb{C}}$ or rank ${ }_{\mathrm{psd}}^{\mathbb{Q}}$. What would change?
$\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M)$.
$\operatorname{rank}_{\mathrm{psd}}^{\mathbb{Q}}(M) \geq \operatorname{rank}_{\text {psd }}(M)$, and we can show the inequality to be possibly strict.

Dependency on the field

We could have defined rank ${ }_{\text {psd }}^{\mathbb{C}}$ or rank ${ }_{\mathrm{psd}}^{\mathbb{Q}}$. What would change?
$\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M)$.
$\operatorname{rank}_{\mathrm{psd}}^{\mathbb{Q}}(M) \geq \operatorname{rank}_{\mathrm{psd}}(M)$, and we can show the inequality to be possibly strict.

$$
M=\left(\begin{array}{llllll}
0 & 0 & 2 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Space of factorizations

Given a nonnegative matrix M with rank psd $(M)=k$ consider $\mathcal{S F}(M) / \mathrm{GL}(k)$ the set of its $k \times k$ psd factorizations.

Space of factorizations

Given a nonnegative matrix M with rank $_{\text {psd }}(M)=k$ consider $\mathcal{S F}(M) / \mathrm{GL}(k)$ the set of its $k \times k$ psd factorizations.
Proposition
If $\operatorname{rank}(M)=\binom{k+1}{2}$ and $M=S_{P Q}$ then $\mathcal{S F}(M) / G L(k)$ is homeomorphic to the space of convex sets C with sdp representation of size k that verify $P \subseteq C \subseteq Q$.

Space of factorizations

Given a nonnegative matrix M with rank $_{\text {psd }}(M)=k$ consider $\mathcal{S F}(M) / \mathrm{GL}(k)$ the set of its $k \times k$ psd factorizations.
Proposition
If $\operatorname{rank}(M)=\binom{k+1}{2}$ and $M=S_{P Q}$ then $\mathcal{S F}(M) / \mathrm{GL}(k)$ is homeomorphic to the space of convex sets C with sdp representation of size k that verify $P \subseteq C \subseteq Q$.
Question
For rank $(M)=3, \operatorname{rank}_{\text {psd }}(M)=2$ one can show $\mathcal{S F}(M) / \operatorname{GL}(k)$ is connected. What about other cases?

Space of factorizations

Given a nonnegative matrix M with rank $_{\text {psd }}(M)=k$ consider $\mathcal{S F}(M) / \mathrm{GL}(k)$ the set of its $k \times k$ psd factorizations.
Proposition
If rank $(M)=\binom{k+1}{2}$ and $M=S_{P Q}$ then $\mathcal{S F}(M) / \mathrm{GL}(k)$ is homeomorphic to the space of convex sets C with sdp representation of size k that verify $P \subseteq C \subseteq Q$.

Question

For rank $(M)=3, \operatorname{rank}_{\text {psd }}(M)=2$ one can show $\mathcal{S F}(M) / G L(k)$ is connected. What about other cases?

Quantum Information Theory

There are many connections with quantum information theory.

Quantum Information Theory

There are many connections with quantum information theory.

Correlation Generation Problem
Alice and Bob want to sample from (X, Y), where Alice samples from X and Bob samples from Y, following the joint distribution of (X, Y).

Quantum Information Theory

There are many connections with quantum information theory.

Correlation Generation Problem
Alice and Bob want to sample from (X, Y), where Alice samples from X and Bob samples from Y, following the joint distribution of (X, Y). We want to know how much (quantum) common information they must share in order to achieve their task.

Quantum Information Theory

There are many connections with quantum information theory.

Correlation Generation Problem

Alice and Bob want to sample from (X, Y), where Alice samples from X and Bob samples from Y, following the joint distribution of (X, Y). We want to know how much (quantum) common information they must share in order to achieve their task.

Theorem (Jain-Shi-Wei-Zhang 2013)

Let $M \in \mathbb{R}_{+}^{p \times q}$ where all the entries sum up to one. The following are equivalent:
(i) $\operatorname{rank}_{\mathrm{psd}}(M) \leq r$.
(ii) There is a quantum protocol for the correlation generation problem using log r qubits.

Quantum Information Theory

There are many connections with quantum information theory.

Correlation Generation Problem

Alice and Bob want to sample from (X, Y), where Alice samples from X and Bob samples from Y, following the joint distribution of (X, Y). We want to know how much (quantum) common information they must share in order to achieve their task.

Theorem (Jain-Shi-Wei-Zhang 2013)

Let $M \in \mathbb{R}_{+}^{p \times q}$ where all the entries sum up to one. The following are equivalent:
(i) $\operatorname{rank}_{\mathrm{psd}}(M) \leq r$.
(ii) There is a quantum protocol for the correlation generation problem using log r qubits.

Section 6

Conclusion

Open problems

Very ambitious wish list

Open problems

Very ambitious wish list

- Develop better upper/lower bounding tools.

Open problems

Very ambitious wish list

- Develop better upper/lower bounding tools.
- Decide rank ${ }_{\text {psd }}$ of traveling salesman polytope.

Open problems

Very ambitious wish list

- Develop better upper/lower bounding tools.
- Decide rank ${ }_{\text {psd }}$ of traveling salesman polytope.
- Decide rank ${ }_{\text {psd }}$ vs rank + for polytopes.

Open problems

Very ambitious wish list

- Develop better upper/lower bounding tools.
- Decide rank ${ }_{\text {psd }}$ of traveling salesman polytope.
- Decide rank ${ }_{p s d}$ vs rank + for polytopes.

Less ambitious wish list

Open problems

Very ambitious wish list

- Develop better upper/lower bounding tools.
- Decide rank ${ }_{\text {psd }}$ of traveling salesman polytope.
- Decide rank psd vs rank + for polytopes.

Less ambitious wish list
Decide $^{2}\left(\begin{array}{cccccccccc}0 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 & 2 & 1 & 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 & 0 & 1 & 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 1 & 1 & 0 & 2 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 & 1 & 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 2 \\ 1 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 0\end{array}\right)$.

The end

Survey coming soon!!!

The end

Survey coming soon!!! In the meantime:

J. Briët, D. Dadush, and S. Pokutta.

On the existence of $0 / 1$ polytopes with high semidefinite extension complexity.
In Algorithms, ESA 2013, volume 8125 of Lecture Notes in Computer Science, pages 217-228. Springer Berlin Heidelberg, 2013.

H. Fawzi, J. Gouveia, and R. Z. Robinson.

Rational and real positive semidefinite rank can be different.
arXiv preprint arXiv:1404.4864, 2014.
J. Gouveia, P.A. Parrilo, and R.R. Thomas.

Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 38(2):248-264, 2013.
J. Gouveia, R. Z. Robinson, and R. R. Thomas.

Worst-case results for positive semidefinite rank.
arXiv preprint arXiv:1305.4600, 2013.

J. Gouveia, R.Z. Robinson, and R.R. Thomas.

Polytopes of minimum positive semidefinite rank.
Discrete \& Computational Geometry, 50(3):679-699, 2013.
T. Lee and D.O. Theis.

Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix, 2012.

Thank you

