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Section 1

Definition and Basic Properties



Definition

Let M be a m by n nonnegative matrix.

A semidefinite
factorization of M of size k is a set of k × k positive semidefinite
matrices A1, · · · ,Am and B1, · · ·Bn such that Mi,j =

〈
Ai ,Bj

〉
.

 1/2 −1/2

−1/2 1

  1/2 0

0 0

  0 0

0 1


[

2 0
0 0

]
[

0 0
0 1

]
[

2 1
1 1

]


1 1 0

1 0 1

1 1 1



The smallest size of a semidefinite factorization is defined to be
the positive semidefinite rank of M, rankpsd (M)
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Basic Properties
Properties
Given M and N nonnegative we have:

(i)
rankpsd (M) = rankpsd (MT ).

(ii) If D1,D2 are positive diagonal then

rankpsd (D1MD2) = rankpsd (M).

(iii)
rankpsd (M + N) ≤ rankpsd (M) + rankpsd (N).

(iv)
rankpsd (MN) ≤ min(rankpsd (M), rankpsd (N)).
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Basic Bounds

Dimension Bounds
If M ∈ Rp×q

+ is a nonnegative matrix, then

rank (M) ≤
(

rankpsd (M) + 1
2

)
, rankpsd (M) ≤ min(p,q).

Support Bounds

rankpsd




A1 0 · · · 0

∗ A2
. . . 0

∗ ∗ . . . 0
∗ ∗ · · · An


 ≥

n∑
i=1

rankpsd (Ai).

In particular rankpsd (In) = n.
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How does the rank function look like?

Let A =

 1 x y
y 1 x
x y 1

.

rankpsd (A) ∈ {1,2,3}
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(Algebraic) geometry of the rank

Lemma [Briët-Dadush-Pokutta 2013]
If M has a psd factorization of size k , it has one where the
factors have largest eigenvalue bounded by

√
k‖M‖∞.

Proposition
The rankpsd function is lower semicontinuous.

Proposition
Pp,q,k := {M ∈ Rp×q

+ | rankpsd (M) ≤ k}

is a closed semialgebraic set inside the rank ≤
(k+1

2

)
variety.

Even in the case (3,3,2) the precise description is not
completely known.
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Section 2

Geometric Motivation



Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. A0 +

∑
Aix i +

∑
Biy i � 0

}
where Ai and Bi are k × k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The Square

The 0/1 square is the
projection onto x1 and
x2 of 1 x1 x2

x1 x1 y
x2 y x2

 � 0.
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Slack Matrix
Let P be a polytope with facets given by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

The slack matrix of P is the matrix SP ∈ Rf×v given by
SP(i , j) = hi(pj).

Example: For the unit cube.
0
0
0

1
0
0

0
1
0

0
0
1

1
1
0

0
1
1

1
0
1

1
1
1

x ≥ 0
y ≥ 0
z ≥ 0

1− x ≥ 0
1− y ≥ 0
1− z ≥ 0



0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0


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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and
only if rankpsd (SP) ≤ k.

Given a polytope P described as a convex hull of n points and a
polytope Q described by m inequalities with P ⊆ Q we define
SP,Q ⊆ Rn×m

+ as the evaluation of the inequalities of Q at the
points of P.

Theorem
rankpsd (SP,Q) ≤ k if and only if there is a convex set C with an
sdp representation of size k such that P ⊆ C ⊆ Q.

Lemma (Gillis-Glineur 12)
All nonnegative matrices of rank n + 1 can be seen as
generalized slack matrices of polytopes of dimension n.
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The Hexagon

Consider the regular
hexagon.

Its 6× 6 slack matrix. 0 0 2 4 4 2
2 0 0 2 4 4
4 2 0 0 2 4
4 4 2 0 0 2
2 4 4 2 0 0
0 2 4 4 2 0


[ 1 −1 0 1

−1 1 0 −1
0 0 1 0
1 −1 0 1

]
,

[ 1 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

]
,

[ 1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

]
,

[ 1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

]
,

[ 1 0 0 0
0 1 −1 1
0 −1 1 −1
0 1 −1 1

]
,

[ 1 −1 1 0
−1 1 −1 0
1 −1 1 0
0 0 0 1

]
,

[ 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

]
,

[ 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]
,

[ 1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

]
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0 1 1 0
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0 0 0 0
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely equiva-
lent hexagon H with vertices
(±1,0), (0,±1), (1,−1) and (−1,1).

H =

(x1, x2) :


1 x1 x2 x1 + x2
x1 1 y1 y2
x2 y1 1 y3

x1 + x2 y2 y3 1

 � 0


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Section 3

Computing Semidefinite Rank



Low rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more?
Let Mn be the (rank 3) slack matrix of a regular n-gon then
rn = rankpsd (Mn) −→ +∞.
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Semidefinite rank 2
If rank (M) > 3 then rankpsd (M) > 2, so we need only to study
rank 3 matrices.

Lemma
Let M = SPQ with rank (M) = 3 then rankpsd (M) = 2 if and only
if there is an ellipse E with P ⊆ E ⊆ Q.

Convex Formulation
Let P = conv(x1, · · · , xn) and Q = {x : Gx ≤ h} then
rankpsd (SPQ) = 2 iff there exist A,b, c such that:

1. A � 0, trace(A) = 1

2.
[
xj
1

]T [ A b
bT c

] [
xj
1

]
≤ 0 ∀j

3. ∃λi ≥ 0 :

[
A b
bT c

]
� λi

[
0 gT

i /2
gi/2 −hi

]
∀i
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Example

M =


1 + a 1 + b 1− a 1− b
1− a 1 + b 1 + a 1− b
1− a 1− b 1 + a 1 + b
1 + a 1− b 1− a 1 + b



rankpsd M =


3 if a2 + b2 > 1
2 if 0 < a2 + b2 ≤ 1
1 if a = b = 0
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General case

A similar geometric picture holds more generally, and can be
used to show general complexity results.

Theorem
Let M ∈ Rn×m

+ with rank (M) =
(k+1

2

)
. Checking if rankpsd = k

can be solved in time (nm)O(k5). In particular, for fixed k it is
solvable in polynomial time.

Open complexity problems:

I Is there a polynomial time algorithm to decide if
rankpsd (M) ≤ k for fixed k ≥ 3?

I What is the complexity of computing rankpsd ?
I Is deciding rankpsd (M) < min{p,q} for a p × q matrix

NP-hard?
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Section 4

Related Ranks



Nonnegative Rank
Let M be an m by n nonnegative matrix.

The nonnegative rank of M, rank +(M), is the smallest natural
number k such that there exists a pair of nonnegative matrices
A, m by k , and B, k by n, with

M = A× B.

Example:

M =

 1 1 2
1 3 3
0 2 1



=

 1 0
1 1
0 1

[ 1 1 2
0 2 1

]

The nonnegative rank can be seen as the semidefinite rank
where we restrict our matrices to be diagonal. In particular

rankpsd (M) ≤ rank +(M).
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Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]

We define rank H(M) = min{rank ( H
√

M)}.

rankH(M) rank can be seen as the semidefinite rank where we
restrict our factor matrices to be rank one. In particular

rankpsd (M) ≤ rank H(M).
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Further thoughts on the square-root rank

0/1 matrices
If M ∈ {0,1}n×m then rankpsd (M) ≤ rank H(M) ≤ rank (M).

Theorem [Barvinok 2012]
If M has at most k distinct entries, rankpsd (M) ≤

(k−1+rank (M)
k−1

)
Complexity
Computing Square-Root Rank is NP-Hard.

rank H


1 0 · · · 0 a2

1

0 1
. . . 0 a2

2
...

. . . . . .
...

...
0 0 . . . 1 a2

n
1 1 . . . 1 0

 = n iff {a1, ...,an} can be partitioned
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Example: Euclidean Distance Matrices

Consider the n × n matrix Euclidean distance matrix Mn whose
(i , j)-entry is (i − j)2.

Mn =



0 1 4 · · · (n − 1)2

1 0 1
. . . (n − 2)2

4 1 0
. . . (n − 3)2

...
. . . . . . . . .

...
(n − 1)2 (n − 2)2 (n − 3)2 · · · 0



rankpsd (Mn) = rank H(Mn) = 2, while rank +(Mn) ≥ log2(n).
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Example: The Prime Matrices

Let n1,n2,n3, . . . be an increasing sequence such that 2nk − 1
is prime for each k . Define a k × k matrix Qk such that
Qk

ij = ni + nj − 1.

Q4 =


3 4 5 7
4 5 6 8
5 6 7 9
7 8 9 11

 .

rank (Qn) = 2⇒ rankpsd (Qn) = rank +(Qn) = 2.

However rank H(Qn) = n.
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3 4 5 7
4 5 6 8
5 6 7 9
7 8 9 11

 .

rank (Qn) = 2⇒ rankpsd (Qn) = rank +(Qn) = 2.

However rank H(Qn) = n.



Section 5

Other Interesting Topics That I Have Not
Enough Time To Talk About In Length



Symmetric PSD factorizations

Definition
A symmetric matrix M ∈ Symn is completely psd if there exist
A1, . . . ,An ∈ PSDk such that Mij = 〈Ai ,Aj〉.

We have the cone inclusion CPn ⊆ CPn
psd ⊆ DNn. The

inclusions are strict for n ≥ 5.

Open questions

I If M ∈ CPn can one bound the size of the matrices Ai?
I Is CPn closed?
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Dependency on the field

We could have defined rank C
psd or rank Q

psd. What would
change?

rank C
psd(M) ≤ rank psd(M) ≤ 2 rank C

psd(M).

rank Q
psd(M) ≥ rank psd(M), and we can show the inequality to

be possibly strict.
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Space of factorizations
Given a nonnegative matrix M with rankpsd (M) = k consider
SF(M)/GL(k) the set of its k × k psd factorizations.

Proposition
If rank (M) =

(k+1
2

)
and M = SPQ then SF(M)/GL(k) is

homeomorphic to the space of convex sets C with sdp
representation of size k that verify P ⊆ C ⊆ Q.

Question
For rank (M) = 3, rankpsd (M) = 2 one can show SF(M)/GL(k)
is connected. What about other cases?
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Quantum Information Theory

There are many connections with quantum information theory.

Correlation Generation Problem
Alice and Bob want to sample from (X ,Y ), where Alice samples
from X and Bob samples from Y , following the joint distribution
of (X ,Y ). We want to know how much (quantum) common
information they must share in order to achieve their task.

Theorem (Jain-Shi-Wei-Zhang 2013)
Let M ∈ Rp×q

+ where all the entries sum up to one.The following
are equivalent:
(i) rankpsd (M) ≤ r .
(ii) There is a quantum protocol for the correlation generation
problem using log r qubits.
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Open problems
Very ambitious wish list

I Develop better upper/lower bounding tools.
I Decide rankpsd of traveling salesman polytope.
I Decide rankpsd vs rank + for polytopes.

Less ambitious wish list

Decide rankpsd



0 1 2 2 1 2 1 1 1 1
1 0 1 2 2 1 2 1 1 1
2 1 0 1 2 1 1 2 1 1
2 2 1 0 1 1 1 1 2 1
1 2 2 1 0 1 1 1 1 2
2 1 1 1 1 0 2 1 1 2
1 2 1 1 1 2 0 2 1 1
1 1 2 1 1 1 2 0 2 1
1 1 1 2 1 1 1 2 0 2
1 1 1 1 2 2 1 1 2 0


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Rational and real positive semidefinite rank can be different.
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Lifts of convex sets and cone factorizations.
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Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix, 2012.
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