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Definition

Let M be a m by n nonnegative matrix. A semidefinite
factorization of M of size k is a set of k x k positive semidefinite
matrices Ay, ---,An and By, - - B, such that M = (A;, B;).
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The smallest size of a semidefinite factorization is defined to be
the positive semidefinite rank of M, rankpsq (M)
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Basic Properties

Properties
Given M and N nonnegative we have:

(i)
rankpsd (M) = rankpsq (M7).
(if) If Dy, D, are positive diagonal then
rankpsg (D1 MD5) = rankpsg (M).

(iii)
rankpsg (M + N) < rankpsq (M) + rankpsqg (N).

(iv)
rankpsq (MN) < min(rankpsq (M), rankpsqg (N)).
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Basic Bounds

Dimension Bounds
If M € RE*9 is a nonnegative matrix, then

rank (M) < (rankdez(M) * 1), rankpsg (M) < min(p, ).

Support Bounds

A O 0
A n
rankpsd e > " rankpsg (A).
x % 0 i=1
k% An

In particular rankpsg (In) = n.
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(Algebraic) geometry of the rank

Lemma [Briét-Dadush-Pokutta 201 3]

If M has a psd factorization of size k, it has one where the
factors have largest eigenvalue bounded by +/k||M|| .

Proposition
The rankpsg function is lower semicontinuous.

Proposition
Po.gk = {M e RE* | rankpsq (M) < k}

is a closed semialgebraic set inside the rank < (“3") variety.

Even in the case (3, 3, 2) the precise description is not
completely known.
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Geometric Motivation
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Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P:{XER”

dy s.t. Ag + ZA,-X,' + Z Biy; = O}
where A; and B; are k x k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The 0/1 square is the
projection onto x; and
Xo of

1T X1 x
xy x4 y | =0.

X2 Yy X2
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R"*V given by

Example: For the unit cube.
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R"*V given by

Example: For the unit cube.

Ll dilelififel]
0 0 1 0 1 1 0
0 0 0 1 0 1 1
x>0 0 1 0 0 1 0 {1
y>0 o 0 1 0 1 1 0
z>0 o 0 0 1 0 1
1-x>0 1 0 1 1 0 1 0
1—y>0 1 1.0 1 0 0 1
1-z>0 |1 1 1 0 1 0 0

OO0 = —a
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and
only if rankpsq (Sp) < k.

Given a polytope P described as a convex hull of n points and a
polytope Q described by m inequalities with P C Q we define
Sp,o € R*™ as the evaluation of the inequalities of Q at the
points of P.

Theorem
rankpsd (Sp.q) < k if and only if there is a convex set C with an
sdp representation of size k such that P C C C Q.

Lemma (Gillis-Glineur 12)

All nonnegative matrices of rank n+ 1 can be seen as
generalized slack matrices of polytopes of dimension n.



The Hexagon

Consider the regular
hexagon.



The Hexagon

Consider the regular Its 6 x 6 slack matrix.

hexagon.

onvAANO
MABRNMOO
ABRNMOON
ANMOONN
[SE=X=RSENES
comARN



The Hexagon

Its 6 x 6 slack matrix.

the regular

Consider
hexagon.

N FTNOO

tTYNnoow

tTNOoOON <

NOON < <

coas T

oONST TTNO

-O
co~o
~—— o

-—O0or

coco

--—o0

—O oo

oo +~O



The Hexagon

Its 6 x 6 slack matrix.

the regular

Consider
hexagon.

N FTNOO

tTYNnoow

tTNOoOON <

NOON < <

coaN YT TN

oONST TTNO

-O
co~o
~—— o

-—O0or

coco

-0

—O oo

—

oo +~O

coococo

ocoooo
O~ 0O
o+~r—o0o
oocoo

ocoooo

ocooo



The Hexagon - continued

The regular hexagon must have a size
4 representation.



The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely  equiva-
lent hexagon [/ with vertices
(+£1,0),(0,+1),(1,—1) and (—1,1).




The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely  equiva-
lent hexagon [/ with vertices
(+£1,0),(0,+1),(1,—1) and (—1,1).

1 Xi Xo X{+Xo
X 1
H— (X1,X2) : 1 )4 Y2

X{+Xo Vo Y3 1
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Low rank cases

Rank 1
rank (M) = 1 < rankpsq (M) =1

Rank 2
rank (M) = 2 = rankpsq (M) = 2

Rank 3
rank (M) = 3 = rankpsq (M) > 2

Can we say more?

Let M, be the (rank 3) slack matrix of a regular n-gon then
In = rankpsq (Mp) — +oo.
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Semidefinite rank 2
If rank (M) > 3 then rankpsq (M) > 2, so we need only to study
rank 3 matrices.

Lemma
Let M = Spq with rank (M) = 3 then rankysq (M) = 2 if and only
if there is an ellipse E with P C E C Q.

Convex Formulation
Let P =conv(xq,---,xp) and Q = {x : Gx < h} then
rankpsq (Spq) = 2 iff there exist A, b, ¢ such that:

1. A*x0, trace(A) =1
T
Xj A b X .
2 [ 5 QJ[f] <o v

. [A b o g2 .
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Example

1+a 1+b 1—-a 1-b
1—-a 1+b 14+a 1-b
1-a 1-b 1+a 1+b
1+a 1-b 1—a 1+b

3 ifa?+b? > 1
rankpsg M = ¢ 2 if0 < &+ b? < 1
1 ifa=b=0
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General case

A similar geometric picture holds more generally, and can be
used to show general complexity results.

Theorem

Let M & Y™ with rank (M) = (“3). Checking if rankgsg = k
can be solved in time (nm)©%*) " In particular, for fixed k it is
solvable in polynomial time.

Open complexity problems:

» Is there a polynomial time algorithm to decide if
rankpsq (M) < k for fixed k > 37

» What is the complexity of computing rankpsqg ?

» Is deciding rankysq (M) < min{p, q} for a p x q matrix
NP-hard?
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Nonnegative Rank
Let M be an m by n nonnegative matrix.

The nonnegative rank of M, rank (M), is the smallest natural
number k such that there exists a pair of nonnegative matrices
A, mby k, and B, k by n, with

M=AxB.

NHEE

The nonnegative rank can be seen as the semidefinite rank
where we restrict our matrices to be diagonal. In particular

Example:

M =

o = =
N w =
- WM

rankpsg (M) < rank  (M).



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

)

Example:

1
u- !



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
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Example:
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Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:
107 wo [ 10
M‘[21]' \/m_[i\@ 11}
We define rank (M) = min{rank (V/M)}.

ranky(M) rank can be seen as the semidefinite rank where we
restrict our factor matrices to be rank one. In particular

rankpsq (M) < rank y(M).
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Further thoughts on the square-root rank

0/1 matrices
If M € {0,1}"™ then rankpsq (M) < rank (M) < rank (M).

Theorem [Barvinok 2012]

If M has at most k distinct entries, rankysq (M) < (¥~ "1tk (M)

Complexity
Computing Square-Root Rank is NP-Hard.

1 0 -~ 0 a?’
0 1 0 ag
rank y | - .. | =n iff {a1, ..., an} can be partitioned
0 O 1 a
11 1 0]
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Consider the n x n matrix Euclidean distance matrix M, whose
(i,j)-entry is (i — j)2.
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Example: Euclidean Distance Matrices

Consider the n x n matrix Euclidean distance matrix M, whose
(i,j)-entry is (i — j)2.

[0 1 4 (n—1)2]

1 0 (n—2)2

My=| 4 1 0 (n—3)?
(=12 (n-22 (n-32 .. 0

rankpsq (Mp) = rank y(Mp) = 2, while rank (Mp) > log,(n).
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Example: The Prime Matrices

Let ny, o, n3, ... be an increasing sequence such that 2n, — 1
is prime for each k. Define a k x k matrix Q such that
Q,k =n;+ nj — 1.

Q* =

NoOobh~ W

oo oo~

O NOoO O,
(o]

rank (Q") = 2 = rankpsq (Q") = rank 1 (Q") = 2.

However rank 4(Q") = n.
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Symmetric PSD factorizations

Definition
A symmetric matrix M € Sym” is completely psd if there exist
Ai,...,An € PSD¥ such that M = (A, A)).

We have the cone inclusion CP” C CPgey € DN”. The
inclusions are strict for n > 5.

Open questions

» If M € CP" can one bound the size of the matrices A;?
» Is CP" closed?
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Dependency on the field

or rank < .. What would

We could have defined rank € osd-

psd
change?

rank €

ssd(M) < rank psq(M) < 2rank 54(M).

psd

rankgsd(M) > rank psq(M), and we can show the inequality to
be possibly strict.
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H. Fawzi, J. Gouveia, and R. Z. Robinson.
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arXiv preprint arXiv:1404.4864, 2014.

J. Gouveia, PA. Parrilo, and R.R. Thomas.

Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 38(2):248-264, 2013.

J. Gouveia, R. Z. Robinson, and R. R. Thomas.
Worst-case results for positive semidefinite rank.
arXiv preprint arXiv:1305.4600, 2013.

J. Gouveia, R.Z. Robinson, and R.R. Thomas.

Polytopes of minimum positive semidefinite rank.
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Thank you
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