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Optimization over algebraic sets

Problem

max
x∈Rn

〈c, x〉
s.t. hi(x) = 0, i = 1, · · · , k ,

where the hi are polynomials over R.

Let I = 〈h1, ...,hk 〉 and VR(I) the set of real solutions of the
system. We can rewrite the problem as

Problem*

min
λ∈R

λ

s.t. λ− 〈c, x〉 ≥ 0, ∀x ∈ VR(I).
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Sums of squares modulo an ideal

As usual we use sums of squares as an algebraic stand-in for
nonnegativity.

Definition
Let f ∈ R[x ] we say that f is sos modulo I if there are
polynomials pi ∈ R[x ] such that

f =
∑

p2
i + g,

for g ∈ I. If all the degrees of the pi ’s are smaller than k , we say
that f is k -sos modulo I.

I Verifying the k -sos property can be done efficiently given a
‘nice’ basis for the quotient space R[x ]/I.

I We can now approximate the original program by a
hierarchy of relaxations.
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Sums of squares relaxations

Recall we had the problem

Problem*

min
λ∈R

λ

s.t. λ− 〈c, x〉 ≥ 0, ∀x ∈ VR(I).

We can now replace it by the hierarchy

Problem-SOSk

min
λ∈R

λ

s.t. λ− 〈c, x〉 is k -sos modulo I.
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Example

Consider the ideal I =
〈
x4 − x3 + y2〉 and its variety.

We want to minimize x in this variety. The relaxation gives us

k = 1 k = 2 k = 3 k = 4
λsosk −∞ −.1250 −.0208 −.0091

.
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Theta Bodies

The geometric set underlying these relaxations is called the
k -th theta body of the ideal I.

Definition

THk (I) :=
⋂

` linear ,` k -sos modulo I

{x ∈ Rn : `(x) ≥ 0}

One can see it alternatively has a relaxation of the closure of
the convex hull of the variety.

Convex Hull

cl(conv(VR(I))) =
⋂

` linear ,`|VR(I)≥0

{x ∈ Rn : `(x) ≥ 0}
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Example 2

Consider the cardioid given by
I =

〈
(x2 + 2x + y2)2 − 4(x2 + y2)

〉
.

By sweeping through
different directions and solving the optimization problem we can
visualize the second theta body:
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Combinatorial Moment Matrices
Another possible line of reasoning is the moment approach.

Let
I be a polynomial ideal and

B = {1 = f0, x1 = f1, ..., xn = fn, fn+1, ...}

be a basis of R[x ]/I and Bk = {fi : deg(fi) ≤ k} for all k .
Consider the polynomial vector f k (x) = (fi(x))fi∈Bk then

(f k (x))(f k (x))t =
∑
fi∈B

Ai fi(x)

for some symmetric matrices Ai . Given a vector y indexed by
the elements in B we define the k -th truncated combinatorial
moment matrix of y as

MB,k (y) =
∑
fi∈B

Aiyfi .
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Combinatorial Moment Matrices - Example

Let I =
〈
x2

1 − x1, x2
2 − x2, x2

3 − x3
〉
⊂ R[x1, x2, x3],

pick

B = { 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 }
y = ( y0, y1, y2, y3, y12, y13, y23, y123 ).

Then MB(y) is given by

1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3
1

x1
x2
x3

x1x2
x1x3
x2x3

x1x2x3



y0 y1 y2 y3 y12 y13 y23 y123
y1 y1 y12 y13 y12 y13 y123 y123
y2 y12 y2 y23 y12 y123 y23 y123
y3 y13 y23 y3 y123 y13 y23 y123
y12 y12 y12 y123 y12 ? y123 y123
y13 y13 y123 y13 y123 y13 y123 y123
y23 y123 y23 y23 y123 y123 y23 y123
y123 y123 y123 y123 y123 y123 y123 y123
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Moment relaxation

Define the convex body

Qk (I) = {y ∈ RB : y0 = 1,MB,k (y) � 0}.
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The k -th moment relaxation of conv(VR(I)) is the set

Lk (I) = {(y1, ..., yn) : y ∈ Qk (I)}.

Note that for all p = (p1, ...,pn) ∈ VR(I) we have

MB,k (f k (p)) =
∑
fi∈Bk

Ai fi(p) = (f k (p))(f k (p))t � 0.
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Note that for all p = (p1, ...,pn) ∈ VR(I) we have

MB,k (f k (p)) =
∑
fi∈Bk

Ai fi(p) = (f k (p))(f k (p))t � 0.



Relation between approaches

We say that an ideal I is real radical if

I =
R√I := {p : −p2m sos modulo I for some m}

or equivalently if I = I(VR(I)) (Real Nullstellensatz).

Theorem (G.,Parrilo,Thomas)
Let I be a polynomial ideal:

I cl(Lk (I)) ⊆ THk (I).
I If I is real radical, cl(Lk (I)) = THk (I).
I If I is real radical and VR(I) ⊆ {0,1}n, then Lk (I) = THk (I).
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Real Radicalness matters?

How important is real radicalness?

Lemma (G.,Thomas)
Let p be a polynomial of degree d such that −p2m is k-sos
modulo I (i.e. p ∈ R√I). Then p + ε is (k + 4dm)-sos modulo I
for all ε > 0.

Fixing the ideal there exist bounds for the Real Nullstellensatz
that bound m and k as a function of d . Using this we get:

Theorem (G.,Thomas)
Fix an ideal I and an integer k. Then there exists mk ∈ N such
that THmk (I) ⊆ THk (

R√I).
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Proof of Lemma
Suppose −p2m is k -sos.

I For l ≥ m and ξ > 0 we have

pl + ξ =
1
ξ

(
(pl/2 + ξ)2 +

1
2

(−p2m)p2(l−m)

)
is sos.

I For σ > 0, consider the Taylor series of
√
σ + t and let f (t)

be the truncation of this series at the (2m − 1)-th term.One
can check

(f (p(x)))2 = σ+p(x)+
m−1∑
i=0

aip(x)2m+2i−
m−2∑
i=0

bip(x)2m+2i+1,

for positive ai ’s and bi ’s,hence

σ+p(x) = (f (p(x)))2−
m−1∑
i=0

aip(x)2m+2i +
m−2∑
i=0

bip(x)2m+2i+1.
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Convergence

By the previous theorem the asymptotic/finite convergence of
the theta bodies depends only on the real variety.

Theorem
Let I be a polynomial ideal:

I If VR(I) is compact, THk (I)→ cl(conv(VR(I))).
(Schmügden)

I If VR(I) is finite, then the convergence is finite. (Lasserre,
Laurent, Rostalski)

However we do not always have convergence.
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Bad Example

Consider the ideal I =
〈
y2 − x3〉.

It is not hard to see that no linear polynomial is sos modulo this
ideal, hence THk (I) = R2 for all k .
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Singularities and Convergence

Definition
For x ∈ VR(I), the tangent space of x , Tx (I) is the affine space
passing through x and perpendicular to ∇g for all g ∈ R√I.

x is convex-singular if x ∈ ∂(conv(VR(I))) and Tx (I) intersects
the relative interior of conv(VR(I)).

Proposition (G.,Netzer)
If I has a convex-singularity then, for all k ,

THk (I) 6= cl(conv(VR(I))).
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Zero-dimensional varieties

In combinatorial optimization, zero-dimensional varieties
(0/1-optimization) play an important role.

Example: Stable Set Problem
Given a graph G = ([n],E) find the maximum set S ⊆ [n] such
that no two points in S are connected with an edge.

This can be modeled by the ideal

I =
〈

x2
i − xi , xjxk : ∀i ∈ [n], {j , k} ∈ E

〉
since VR(I) is the set of characteristic vectors of stable sets.
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TH1-Exactness

It is interesting to characterize convergence in one step of the
theta body hierarchy, i.e, TH1-exactness.

In the
zero-dimensional case a full characterization is possible.

Theorem (G.,Parrilo,Thomas)
Let S ⊂ Rn be finite, and I = I(S).
I is TH1-exact if and only if for every facet of the polytope
conv(S) all points of S are either on that face or on a unique
plane parallel to it.

I For the stable set problem the ideal is TH1-exact if and
only if the graph is perfect. (Lovász)
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Examples in R3

TH1-exact

Not TH1-exact



Optimization over semialgebraic sets
We now change our focus to basic closed semialgebraic sets.

Problem

max
x∈Rn

〈c, x〉
s.t. gi(x) ≥ 0, i = 1, · · · , k ,

where the gi are polynomials over R.
Let S = {x ∈ Rn : gi(x) ≥ 0, i = 1, ..., k}. We can rewrite the
problem as

Problem*

min
λ∈R

λ

s.t. λ− 〈c, x〉 ≥ 0, ∀x ∈ S.

To do as in the algebraic set case we have to find an algebraic
certificate of nonnegativity over S.
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Nonnegativity over semialgebraic sets

A classic way of certifying nonnegativity of a polynomial p over
S is to provide a representation

p(x) = σ0(x) +
k∑

i=1

σi(x)gi(x)

where the σi are sums of squares of polynomials.

We will denote by ΣS
d the set of all polynomials that have such a

representation with deg(σigi) ≤ 2d for all i .
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Sums of squares relaxations

We then get the sums of squares problem

Problem-Σd

min
λ∈R

λ

s.t. λ− 〈c, x〉 ∈ ΣS
d .

Again we are interested in the underlying geometry of this
problem.

Lasserre Bodies

Ld (S) =
⋂

` linear ,`∈ΣS
d

{x ∈ Rn : `(x) ≥ 0}

which we call the d-th Lasserre Relaxation of conv(S).
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Remarks

I One can also use the moment approach as we have done
in the algebraic sets case. This is the more traditional
definition of Lasserre relaxations.

If we assume that the set
S has non-empty interior, these two definitions match.

I The definition actually depends on a particular
representation for S, and not only on S itself. When we
write S we are thinking of a fixed representation.

I If S is Archimedean (i.e., has an algebraic certificate of
compactness) then we have asymptotic convergence of
the hierarchy Ld (S). (Putinar)

I We are interested in finding when does finite convergence
not hold.
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Obstruction Lemma

Lemma (G., Netzer)

I Let S = {x ∈ Rn : g1(x) ≥ 0, . . . ,gk (x) ≥ 0},

I L a line in Rn s.t. int(S ∩ L) 6= ∅ relative to L,
I a ∈ S be in the relative boundary of conv(S) ∩ L.

If for all gi s.t. gi(a) = 0 we have 5gi(a) ⊥ L then, for all d, we
have Ld (S) 6= cl(conv(S)).
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I Let S = {x ∈ Rn : g1(x) ≥ 0, . . . ,gk (x) ≥ 0},
I L a line in Rn s.t. int(S ∩ L) 6= ∅ relative to L,
I a ∈ S be in the relative boundary of conv(S) ∩ L.

If for all gi s.t. gi(a) = 0 we have 5gi(a) ⊥ L then, for all d, we
have Ld (S) 6= cl(conv(S)).



Singularities

Corollary
If S has non-empty interior and there exists a point a ∈ S that is
on the boundary of conv(S) s.t. all gi verifying gi(a) = 0 are
singular at a, then we have Ld (S) 6= cl(conv(S)) for all d.

g(x , y) = −x4 + x3 − y2
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Non-exposed faces

Corollary (Netzer-Plaumann-Schweighofer)
Suppose S is convex and has non-empty interior. If S has a
non-exposed face then Ld (S) 6= cl(conv(S)) for all d.

g1(x , y) = y−x3, g2(x , y) = y , g3(x , y) = x+1, g4(x , y) = 1−y
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The End

Thank You
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