Semidefinite lifts of polytopes

João Gouveia
University of Coimbra
21st of August - ISMP 2012

with Richard Z. Robinson and Rekha Thomas (U.Washington)

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

This tells us how hard it is to optimize over P using semidefinite programming.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of
$\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & x_{1} & y \\ x_{2} & y & x_{2}\end{array}\right] \succeq 0$.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

0	1	0	0	1	0	1	1
0	0	1	0	1	1	0	1
0	0	0	1	0	1	1	1

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
z \geq 0 \\
1-x \geq 0 \\
1-y \geq 0 \\
1-z \geq 0
\end{gathered}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& \begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
z & \geq 0 \\
1-x & \geq 0 \\
1-y & \geq 0 \\
1-z & \geq 0
\end{aligned}\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}\right]
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

	0	1 0 0	0 1 0	0 0 1	1 1 0	0 1 1	1 0 1	1
$x \geq 0$	[0	1	0	0	1	0	1	1
$y \geq 0$	0	0	1	0				1
$z \geq 0$								
$1-x \geq 0$								
$1-y \geq 0$								
$1-z \geq 0$								

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.
$x \geq 0$
$y \geq 0$
$z \geq 0$
$1-x \geq 0$
$1-y \geq 0$
$1-z \geq 0$$\quad\left[\begin{array}{lll|l|l|l|l|l|l}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

Semidefinite Factorizations

 M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Semidefinite Factorizations

Let M be a m by n nonnegative matrix. APSD_{k}-factorization of M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Semidefinite Factorizations

Let M be a m by n nonnegative matrix. APSD_{k}-factorization of M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

The psd rank of a polytope P is defined as

$$
\operatorname{rank}_{p s d}(P):=\operatorname{rank}_{p s d}\left(S_{P}\right)
$$

The Hexagon

Consider the regular hexagon.

The Hexagon

Consider the regular hexagon.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

The Hexagon

Consider the regular hexagon.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\\
{\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
\left.\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
\end{array}, l\right.}
\end{aligned}
$$

The Hexagon

Consider the regular hexagon.

$$
\begin{aligned}
& \left\langle\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]\right. \\
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

The Hexagon - continued

The regular hexagon must have a size 4 representation.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices
$(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

Our Problem

We want to study which polytopes have "small" semidefinite representations.

Our Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

Our Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

Our Problem

We want to study which polytopes have "small" semidefinite representations.

What do we want "small" to mean?

Lemma

A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

We want to make "small" $=d+1$.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

$$
\sqrt[H]{M}=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & 1
\end{array}\right]
$$

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

$$
\sqrt[H]{M}=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & 1
\end{array}\right] \text { or } \sqrt[H]{M}=\left[\begin{array}{cc}
-1 & 0 \\
\sqrt{2} & 1
\end{array}\right]
$$

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots

We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots
We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.
$\sqrt[H+]{M}$ is the nonnegative Hadamard square root of M.

Hadamard Rank and Semidefinite Rank

Proposition

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.

Hadamard Rank and Semidefinite Rank

Proposition

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.
In particular $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M)$.

Hadamard Rank and Semidefinite Rank

Proposition

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.
In particular $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M)$.

Corollary
For 0/1 matrices

$$
\operatorname{rank}_{p s d}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M) .
$$

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3$.

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:

$$
\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3
$$

For $M=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ we have:

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3$.

For $M=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=2, \quad \operatorname{rank}(M)=3$.

Polytopes with minimal representations

We can already recover an older result obtained originally using sums of squares.

Theorem (G.-Parrilo-Thomas 2009)
Let P be a polytope with dimension d whose slack matrix S_{P} is $0 / 1$. Then P has a semidefinite representation of size $d+1$.

Polytopes with minimal representations

We can already recover an older result obtained originally using sums of squares.

Theorem (G.-Parrilo-Thomas 2009)
Let P be a polytope with dimension d whose slack matrix S_{P} is $0 / 1$. Then P has a semidefinite representation of size $d+1$.

But we can say much more.

Main Theorem
Let P have dimension d. Then

$$
\operatorname{rank}_{p s d}(P)=d+1 \Leftrightarrow \operatorname{rank}_{H}\left(S_{P}\right)=d+1
$$

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.
- d-dimensional polytopes with at most $d+2$ vertices are SDP-minimal.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.
- d-dimensional polytopes with at most $d+2$ vertices are SDP-minimal.
- Pyramids over SDP-minimal polytopes are SDP-minimal.

Results in \mathbb{R}^{2}

On the plane this is enough for a full characterization.

Results in \mathbb{R}^{2}

On the plane this is enough for a full characterization.

Proposition

A convex polygon is SDP-minimal if and only if it is a triangle or a quadrilateral.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

This translates to a dual result on cuboids.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

This translates to a dual result on cuboids.
It also suggests some underlying matroid characterization.

Open questions

- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply $\operatorname{rank}\left(\sqrt[H+]{S_{P}}\right)=d+1$?

Open questions

- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply $\operatorname{rank}\left(\sqrt[H+]{S_{P}}\right)=d+1$?
- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply rank $\left(\operatorname{supp}\left(S_{P}\right)\right)=d+1$?

Open questions

- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply rank $\left(\sqrt[H+]{S_{P}}\right)=d+1$?
- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply rank $\left(\operatorname{supp}\left(S_{P}\right)\right)=d+1$?
- Classification of SDP-minimal polyhedra.

Open questions

- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply rank $\left(\sqrt[H+]{S_{P}}\right)=d+1$?
- Does $\operatorname{rank}_{H}\left(S_{P}\right)=d+1$ imply $\operatorname{rank}\left(\operatorname{supp}\left(S_{P}\right)\right)=d+1$?
- Classification of SDP-minimal polyhedra.
- Better Algebraic/Geometrical characterization of SDP-minimality.

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

Lifts and Factorizations of Convex Sets - Semiplenary talk by Rekha this afternoon.

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

Lifts and Factorizations of Convex Sets - Semiplenary talk by Rekha this afternoon.

Thank you

