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Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. A0 +

∑
Aix i +

∑
Biy i � 0

}
where Ai and Bi are k × k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The Square

The 0/1 square is the
projection onto x1 and
x2 of 1 x1 x2

x1 x1 y
x2 y x2

 � 0.
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Slack Matrix
Let P be a polytope with facets given by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

The slack matrix of P is the matrix SP ∈ Rf×v given by
SP(i , j) = hi(pj).

Example: For the unit cube.
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1− x ≥ 0
1− y ≥ 0
1− z ≥ 0



0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0
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Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

A PSDk -factorization of
M is a set of k × k positive semidefinite matrices A1, · · · ,Am
and B1, · · ·Bn such that Mi,j =

〈
Ai ,Bj

〉
.
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSDk -factorization.

The psd rank of M, rankpsd(M) is the smallest k for which M
has a PSDk -factorization.

The psd rank of a polytope P is defined as

rankpsd(P) := rankpsd(SP).
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The Hexagon

Consider the regular
hexagon.

It has a 6×6 slack matrix.

 0 0 2 4 4 2
2 0 0 2 4 4
4 2 0 0 2 4
4 4 2 0 0 2
2 4 4 2 0 0
0 2 4 4 2 0


[ 1 −1 0 1

−1 1 0 −1
0 0 1 0
1 −1 0 1

]
,

[ 1 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

]
,

[ 1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

]
,

[ 1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

]
,

[ 1 0 0 0
0 1 −1 1
0 −1 1 −1
0 1 −1 1

]
,

[ 1 −1 1 0
−1 1 −1 0
1 −1 1 0
0 0 0 1

]
,

[ 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

]
,

[ 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]
,

[ 1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

]
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[ 0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely equiva-
lent hexagon H with vertices
(±1,0), (0,±1), (1,−1) and (−1,1).

H =

(x1, x2) :


1 x1 x2 x1 + x2
x1 1 y1 y2
x2 y1 1 y3

x1 + x2 y2 y3 1

 � 0


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Our Problem

We want to study which polytopes have “small” semidefinite
representations.

What do we want “small” to mean?

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

We want to make “small” = d + 1.
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Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
1 0√
2 1

]
or H
√

M=

[
−1 0√

2 1

]
or H
√

M=

[
−1 0
−
√

2 1

]
or · · ·

We define rankH(M) = min{rank( H
√

M)}.

H+
√

M is the nonnegative Hadamard square root of M.
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Hadamard Rank and Semidefinite Rank

Proposition
rankH(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsd(M) ≤ rankH(M).

Corollary
For 0/1 matrices

rankpsd(M) ≤ rankH(M) ≤ rank(M).
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Let P be a polytope with dimension d whose slack matrix SP is
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Main Theorem
Let P have dimension d . Then
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