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Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P:{XER”

dy s.t. Ag + ZA,-X,' + Z Biy; = O}
where A; and B; are k x k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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Slack Matrix

Let P be a polytope with facets given by
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R"*V given by

Example: For the unit cube.
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSD-factorization.

The psd rank of M, rankpsq(M) is the smallest k for which V/
has a PSD-factorization.

The psd rank of a polytope P is defined as

rankpsq(P) := rankpsq(Sp).
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely  equiva-
lent hexagon [/ with vertices
(+£1,0),(0,+1),(1,—1) and (—1,1).

1 Xi Xo X{+Xo
X 1
H— (X1,X2) : 1 )4 Y2

X{+Xo Vo Y3 1




Our Problem

We want to study which polytopes have “small” semidefinite
representations.



Our Problem

We want to study which polytopes have “small” semidefinite
representations.

What do we want “small” to mean?



Our Problem

We want to study which polytopes have “small” semidefinite
representations.

What do we want “small” to mean?

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.



Our Problem

We want to study which polytopes have “small” semidefinite
representations.

What do we want “small” to mean?

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

We want to make “small” = d + 1.
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Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

we| 1]

H 1.0 H -10 W -1 0
\/M—[\@ 1]OFW—[\@ 1]or\/ﬂ—[_\@ 1]or---
We define ranky(M) = min{rank( ¥/M)}.

/M is the nonnegative Hadamard square root of M.
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Hadamard Rank and Semidefinite Rank

Proposition

ranky(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsq(M) < ranky(M).

Corollary
For 0/1 matrices

rankpsq(M) < ranky(M) < rank(M).
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Polytopes with minimal representations

We can already recover an older result obtained originally using
sums of squares.

Theorem (G.-Parrilo-Thomas 2009)

Let P be a polytope with dimension d whose slack matrix Sp is
0/1. Then P has a semidefinite representation of size d + 1.



Polytopes with minimal representations

We can already recover an older result obtained originally using
sums of squares.

Theorem (G.-Parrilo-Thomas 2009)

Let P be a polytope with dimension d whose slack matrix Sp is
0/1. Then P has a semidefinite representation of size d + 1.

But we can say much more.

Main Theorem
Let P have dimension d. Then

rankpsg(P) = d + 1 < ranky(Sp) = d + 1.
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Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a
semidefinite representation of size d + 1.

Properties of SDP-minimal polytopes

» Faces of SDP-minimal polytopes are SDP-minimal.

» d-dimensional polytopes with at most d + 2 vertices are
SDP-minimal.

» Pyramids over SDP-minimal polytopes are SDP-minimal.
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Results in R?

On the plane this is enough for a full characterization.

Proposition
A convex polygon is SDP-minimal if and only if it is a triangle or
a quadrilateral.
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Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is

SDP-minimal if and only if there are two distinct sets of four
coplanar vertices of P.

This translates to a dual result on cuboids.

It also suggests some underlying matroid characterization.

[m] = =
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Open questions

Does ranky(Sp) = d + 1 imply rank( "3/Sp) = d + 1?

v

v

Does ranky(Sp) = d + 1 imply rank(supp(Sp)) = d +1?

v

Classification of SDP-minimal polyhedra.

v

Better Algebraic/Geometrical characterization of
SDP-minimality.
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