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1. Linear Representations and Yannakakis Theorem



Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≥ b} ,

where b and ai are real vectors and the inequalities are taken
entry-wise.

Example:

C =

(x , y) :


1
−1
0
0

 x +


0
0
1
−1

 y ≥


0
−1
0
−1


 .



Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≥ b} ,

where b and ai are real vectors and the inequalities are taken
entry-wise.

Example:

C =

(x , y) :


1
−1
0
0

 x +


0
0
1
−1

 y ≥


0
−1
0
−1


 .



Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P = {x ∈ Rn : a1x1 + a2x2 + · · ·+ anxn ≥ b} ,

where b and ai are real vectors and the inequalities are taken
entry-wise.

Example:

C =

(x , y) :


1
−1
0
0

 x +


0
0
1
−1

 y ≥


0
−1
0
−1


 .



Linear Representations of Polytopes
If a polytope has many facets and vertices we would like a
better description.

A linear representation of a polytope P is a description

P = {x : ∃y ,a1x1 + · · ·+ anxn + an+1y1 + · · · an+mym ≥ b} ,

i.e., a description of P as a projection of a higher dimensional
polytope.

Linear representation of a
square.

Linear representation of an
hexagon.
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Why?
The projection of a polytope can have many more facets than
the original:

(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written
as the projection of a polytope with 2dlog2(n)e sides.

To do linear optimization on the projection we can optimize on
the “upper” polytope.

Given a polytope P we are interested in finding how small can
its linear representation be. This tells us how hard it is to
optimize over P using LP.
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Slack Matrix
Let P be a polytope with facets given by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

The slack matrix of P is the matrix SP ∈ Rf×v given by
SP(i , j) = hi(pj).

Example: For the unit cube.
0
0
0

1
0
0

0
1
0

0
0
1

1
1
0

0
1
1

1
0
1

1
1
1

x ≥ 0
y ≥ 0
z ≥ 0

1− x ≥ 0
1− y ≥ 0
1− z ≥ 0



0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0


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Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of
nonnegative matrices A, m by k , and B, k by n, such that

M = A× B.

Equivalently, it is a collection of nonnegative vectors a1, · · · ,am
and b1, · · · bn in Rk such that Mi,j =

〈
ai ,bj

〉
.

Example:

M =

 1 1 2
1 3 3
0 2 1



=

 1 0
1 1
0 1

[ 1 1 2
0 2 1

]
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Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following
are equal.

I The least number of facets of a polytope Q whose
projection is P.

I The least k such that S has a nonnegative factorization of
size k . [rank+(S)]



Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following
are equal.

I The least number of facets of a polytope Q whose
projection is P.

I The least k such that S has a nonnegative factorization of
size k . [rank+(S)]



Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following
are equal.

I The least number of facets of a polytope Q whose
projection is P.

I The least k such that S has a nonnegative factorization of
size k . [rank+(S)]



Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following
are equal.

I The least number of facets of a polytope Q whose
projection is P.

I The least k such that S has a nonnegative factorization of
size k . [rank+(S)]



Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix.


0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0





0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1


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Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix.



2. Other Representations: General Yannakakis Theorem



Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. A0 +

∑
Aix i +

∑
Biy i � 0

}
where Ai and Bi are k × k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The Square

The 0/1 square is the
projection onto x1 and
x2 of 1 x1 x2

x1 x1 y
x2 y x2

 � 0.
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Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

A PSDk -factorization of
M is a set of k × k positive semidefinite matrices A1, · · · ,Am
and B1, · · ·Bn such that Mi,j =

〈
Ai ,Bj

〉
.

 1/2 −1/2

−1/2 1

  1/2 0

0 0

  0 0

0 1


[

2 0
0 0

]
[

0 0
0 1

]
[

2 1
1 1

]


1 1 0

1 0 1

1 1 1


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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSDk -factorization.

The psd rank of M, rankpsd(M) is the smallest k for which M
has a PSDk -factorization.

The psd rank of a polytope P is defined as

rankpsd (P) := rankpsd (SP).
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely equiva-
lent hexagon H with vertices
(±1,0), (0,±1), (1,−1) and (−1,1).

H =

(x1, x2) :


1 x1 x2 x1 + x2
x1 1 y1 y2
x2 y1 1 y3

x1 + x2 y2 y3 1

 � 0


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Conic Representations

In general given any closed cone K , a K -lift or K -representation
of a polytope P is a representation

P = Π(K ∩ L)

where Π is a linear map and L an affine space.

If K = Rk
+ or K = PSDk we recover the linear and semidefinite

representations respectively. Other possible choices for K
would be SOCP, CoP, CP . . .
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Conic Factorizations

Let M be a m by n nonnegative matrix and K a closed cone.

A K -factorization of M is a set of elements a1, · · · ,am ∈ K and
b1, · · · bn ∈ K ∗ such that Mi,j =

〈
ai ,bj

〉
.

Note that since both Rk
+ and PSDk are self-dual, this notion

generalizes both the notions of nonnegative and semidefinite
factorization.
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Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a K -representation if and only if its slack
matrix has a K -factorization.

Technical Note: The forward direction actually demands either
a Slater condition or K to be nice.

Several further generalizations are possible (convex bodies,
symmetric lifts).
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3. Nonnegative and Semidefinite ranks



Basic Facts

Let M be a p by q nonnegative matrix. Then:

I rank(M) ≤ rank+(M) ≤ min{p,q}.

I rank(M) ≤
(rankpsd(M)+1

2

)
.

I rankpsd(M) ≤ rank+(M).

Computing these ranks is hard. In fact checking if
rank(M) = rank+(M) is NP-Hard (Vavasis ’07).

Many other complexity questions are open.
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Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its
smallest rectangle cover.

Example:

In this case rank+(M) ≥ 4.

The rectangle bound corresponds to the boolean rank and also
relates to the minimum communication complexity of a 2-party
protocol to compute the support of M.
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Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M =

[
1 0√
2 1

]
or H
√

M =

[
−1 0√

2 1

]
or H
√

M =

[
−1 0
−
√

2 1

]
or · · ·

We define rankH(M) = min{rank(
H
√

M)}.

H+
√

M is the nonnegative Hadamard square root of M.
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Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)
rankH(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsd(M) ≤ rankH(M).

Corollary
For 0/1 matrices

rankpsd(M) ≤ rankH(M) ≤ rank(M).



Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)
rankH(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.
In particular rankpsd(M) ≤ rankH(M).

Corollary
For 0/1 matrices

rankpsd(M) ≤ rankH(M) ≤ rank(M).



Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)
rankH(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.
In particular rankpsd(M) ≤ rankH(M).

Corollary
For 0/1 matrices

rankpsd(M) ≤ rankH(M) ≤ rank(M).



Examples

For M =

 1 1 0
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 we have:

rankpsd(M) = 2, rankH(M) = 3, rank(M) = 3.
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 0 1 1
1 0 1
1 1 0

 we have:

rankpsd(M) = 2, rankH(M) = 2, rank(M) = 3.
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Example

Consider the matrix A ∈ Rn×n defined by ai,j = (i − j)2.

A =



0 1 4 9 16 · · ·
1 0 1 4 9 · · ·
4 1 0 1 4 · · ·
9 4 1 0 1 · · ·
16 9 4 1 0 · · ·
...

...
...

...
...

. . .


I rank(A) = 3;

I rankpsd(A) = 2;

I rank+(A) ≥ log2(n) grows with n.

rank+ can be arbitrarily larger than rank and rankpsd.
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A =



0 1 4 9 16 · · ·
1 0 1 4 9 · · ·
4 1 0 1 4 · · ·
9 4 1 0 1 · · ·
16 9 4 1 0 · · ·
...

...
...

...
...

. . .
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Bounds for polytopes - LP

Proposition
An linear representation of P of size k induces an embedding
from the facial lattice of P, L(P), to the boolean lattice 2[k ]. In
particular:

I If p is the size of the largest antichain in L(P), then for
r = rank+(P) we have p ≤

( r
br/2c

)
.

I [Goemans] If nP is the number of faces of P,
rank+(P) ≥ log2(nP).

P =cube: rank+(P) ≤ 6.
I nP = 28⇒ rank+(P) ≥ log2(28) ≈ 4.807.
I nedges = 12,

(5
2

)
= 10,

(6
3

)
= 20, hence rank+(P) ≥ 6.
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Bounds for polytopes - SDP

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in Rn has rankpsd = k than it has at most kO(k2n)

facets.

For Pn = n-gon, rank+(Pn) and rankpsd(Pn) grow to infinity as n
grows, despite rank(SPn ) = 3.

Big open question:
I Can we find a separation between rankpsd and rank+ for

polytopes?
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Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)
Let P be a polytope with dimension d whose slack matrix SP is
0/1. Then P has a semidefinite representation of size d + 1.

But we can say much more.

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d . Then

rankpsd(P) = d + 1⇔ rankH(SP) = d + 1.
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We will say a dimension d polytope P is SDP-minimal if it has a
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Results in R2

On the plane this is enough for a full characterization.

Proposition
A convex polygon is SDP-minimal if and only if it is a triangle or
a quadrilateral.
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Octahedra

Proposition
If P is combinatorially equivalent to an octahedron then it is
SDP-minimal if and only if there are two distinct sets of four
coplanar vertices of P.

This translates to a dual result on cuboids.

It also suggests some underlying matroid characterization.
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Conclusion
Conic Lifts/Factorizations is an exciting area of research with
many recent breakthroughs.

I Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis
2010)

I No polynomial size lift for TSP (Fiorini et al 2012)
I Connections to communication complexity (Faenza et al

2011, Fiorini et al 2012)...

Still many unanswered questions.
I Complexity or rank calculations.
I No polynomial psd lift of TSP.
I Any insight on matching polytope.
I Better understanding of Hadamard ranks.
I psd/lp separation...
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