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1. Linear Representations and Yannakakis Theorem



Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P={x€R": aiXi+ axXo+ -+ anXn > b},

where b and a; are real vectors and the inequalities are taken
entry-wise.



Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P={x€R": aiXi+ axXo+ -+ anXn > b},

where b and a; are real vectors and the inequalities are taken
entry-wise.

Example:

1




Polytopes

The usual way to describe a polytope P is by listing the vertices
or giving an inequality description

P={x€R": aiXi+ axXo+ -+ anXn > b},

where b and a; are real vectors and the inequalities are taken
entry-wise.

Example:
1 0 0
! —1 0 —1
C=<(xy): o | Xt 1 |V > 0
0 —1 —1




Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a
better description.



Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a
better description.

A linear representation of a polytope P is a description
P={x:3y,aixi + -+ anXn+ani1y1 + - animym > b},

i.e., a description of P as a projection of a higher dimensional
polytope.



Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a
better description.

A linear representation of a polytope P is a description
P={x:3y,aixi + -+ anXn+ani1y1 + - animym > b},

i.e., a description of P as a projection of a higher dimensional
polytope.
pun

Linear representation of a
square.



Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a
better description.

A linear representation of a polytope P is a description
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i.e., a description of P as a projection of a higher dimensional
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>

Linear representation of a Linear representation of an
square. hexagon.



Why?

The projection of a polytope can have many more facets than
the original:



Why?

The projection of a polytope can have many more facets than
the original:

(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written
as the projection of a polytope with 2[log,(n)]| sides.




Why?

The projection of a polytope can have many more facets than
the original:

(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written
as the projection of a polytope with 2[log,(n)]| sides.

To do linear optimization on the projection we can optimize on
the “upper” polytope.



Why?

The projection of a polytope can have many more facets than
the original:

(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written
as the projection of a polytope with 2[log,(n)]| sides.

To do linear optimization on the projection we can optimize on
the “upper” polytope.

Given a polytope P we are interested in finding how small can
its linear representation be. This tells us how hard it is to
optimize over P using LP.
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R"*V given by

Example: For the unit cube.

Ll dilelififel]
0 0 1 0 1 1 0
0 0 0 1 0 1 1
x>0 0 1 0 0 1 0 {1
y>0 o 0 1 0 1 1 0
z>0 o 0 0 1 0 1
1-x>0 1 0 1 1 0 1 0
1—y>0 1 1.0 1 0 0 1
1-z>0 |1 1 1 0 1 0 0

OO0 = —a
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Nonnegative Factorizations
Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of
nonnegative matrices A, mby k, and B, k by n, such that

M= AxB.

Equivalently, it is a collection of nonnegative vectors ay,--- ,an
and by, - - - by in R such that M;; = (a;, by).
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Consider the regular hexagon.

It has a 6 x 6 slack matrix.
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Consider the regular hexagon.

It has a 6 x 6 slack matrix.
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A semidefinite representation of size k of a polytope P is a
description

P:{XER”

dy s.t. Ag + ZA,-X,' + Z Biy; = O}
where A; and B; are k x k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The 0/1 square is the
projection onto x; and
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSD-factorization.

The psd rank of M, rankpsq(M) is the smallest k for which V/
has a PSD-factorization.

The psd rank of a polytope P is defined as

rankpsq(P) := rankpsq(Sp).
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely  equiva-
lent hexagon [/ with vertices
(+£1,0),(0,+1),(1,—1) and (—1,1).

1 Xi Xo X{+Xo
X 1
H— (X1,X2) : 1 )4 Y2

X{+Xo Vo Y3 1
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Conic Representations

In general given any closed cone K, a K-lift or K-representation
of a polytope P is a representation

P=nN(KNL)

where I is a linear map and L an affine space.

If K = RK or K = PSDx we recover the linear and semidefinite
representations respectively. Other possible choices for K
would be SOCP, CoP, CP ...
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Conic Factorizations

Let M be a m by n nonnegative matrix and K a closed cone.

A K-factorization of M is a set of elements ay,--- ,an € K and
by, --- by € K* such that M,"j = <a,-, bj>.

Note that since both Rﬁ and PSD, are self-dual, this notion
generalizes both the notions of nonnegative and semidefinite
factorization.
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Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a K -representation if and only if its slack
matrix has a K-factorization.

Technical Note: The forward direction actually demands either
a Slater condition or K to be nice.

Several further generalizations are possible (convex bodies,
symmetric lifts).
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Basic Facts

Let M be a p by g nonnegative matrix. Then:
» rank(M) < rank, (M) < min{p, q}.

> I’ank(M) S (rankpsdz(M)-H).

» rankpsq(M) < rank  (M).

Computing these ranks is hard. In fact checking if
rank(M) = rank. (M) is NP-Hard (Vavasis '07).

Many other complexity questions are open.
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Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its
smallest rectangle cover.
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Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its

smallest rectangle cover.

Example:

In this case rank (M) > 4.

. 27

Vam's

The rectangle bound corresponds to the boolean rank and also
relates to the minimum communication complexity of a 2-party
protocol to compute the support of M.
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Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

we| 1]

H 1.0 H -10 W -1 0
\/M—[\@ 1]OFW—[\@ 1]or\/ﬂ—[_\@ 1]or---
We define ranky(M) = min{rank( ¥/M)}.

/M is the nonnegative Hadamard square root of M.
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Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

ranky(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsq(M) < ranky(M).

Corollary
For 0/1 matrices

rankpsq(M) < ranky(M) < rank(M).
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ForM= |1 0 1 | wehave:
1 1 1
rankpsq(M) = 2, ranky(M) = 3, rank(M) = 3.
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ForM= |1 0 1 | wehave:
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rankpsg(M) = 2, ranky(M) =2, rank(M) = 3.
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Example

Consider the matrix A € R™" defined by a;; = (i — /).

0 149 16
1 01 4 9
4 101 4
A=1 9 41 0 1
16 9 41 0
» rank(A) = 3;

> rankpsq(A) = 2;
» rank. (A) > log,(n) grows with n.

rank, can be arbitrarily larger than rank and rankpsg.
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Bounds for polytopes - LP

Proposition
An linear representation of P of size k induces an embedding
from the facial lattice of P, L(P), to the boolean lattice 2. In

particular:
» If p is the size of the largest antichain in L(P), then for
r =rank, (P) we have p < (erzj)-
» [Goemans] I/f np is the number of faces of P,
rank,.(P) > log,(np).

P =cube: rank,(P) < 6.
» np =28 = rank,(P) > log,(28) ~ 4.807.
> Nedges = 12, (3) = 10, (§) = 20, hence rank.(P) > 6.
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Bounds for polytopes - SDP

Theorem (G.-Parrilo-Thomas 2011)

If a polytope P in R” has rank,sy = k than it has at most kO(°")
facets.

For P = n-gon, rank (Pp) and rankysq(Pn) grow to infinity as n
grows, despite rank(Sp,) = 3.

Big open question:

» Can we find a separation between rankysq and rank . for
polytopes?
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Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)

Let P be a polytope with dimension d whose slack matrix Sp is
0/1. Then P has a semidefinite representation of size d + 1.

But we can say much more.

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d. Then

rankpsd(P) = d + 1 < ranky(Sp) = d + 1.
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Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a
semidefinite representation of size d + 1.

Properties of SDP-minimal polytopes

» Faces of SDP-minimal polytopes are SDP-minimal.

» d-dimensional polytopes with at most d + 2 vertices are
SDP-minimal.

» Pyramids over SDP-minimal polytopes are SDP-minimal.
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Results in R?

On the plane this is enough for a full characterization.

Proposition
A convex polygon is SDP-minimal if and only if it is a triangle or
a quadrilateral.
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Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is

SDP-minimal if and only if there are two distinct sets of four
coplanar vertices of P.

This translates to a dual result on cuboids.

It also suggests some underlying matroid characterization.

[m] = =
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Conclusion

Conic Lifts/Factorizations is an exciting area of research with
many recent breakthroughs.

» Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis
2010)

» No polynomial size lift for TSP (Fiorini et al 2012)

» Connections to communication complexity (Faenza et al
2011, Fiorini et al 2012)...

Still many unanswered questions.
» Complexity or rank calculations.
» No polynomial psd lift of TSP.
» Any insight on matching polytope.
» Better understanding of Hadamard ranks.
» psd/lp separation...
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