Conic lifts of polytopes

João Gouveia

University of Coimbra

17th September - MAP 2012 - Konstanz

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1. Linear Representations and Yannakakis Theorem

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_1 \boldsymbol{x}_1 + \boldsymbol{a}_2 \boldsymbol{x}_2 + \cdots + \boldsymbol{a}_n \boldsymbol{x}_n \geq \boldsymbol{b} \right\},\$$

where b and a_i are real vectors and the inequalities are taken entry-wise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_1 \boldsymbol{x}_1 + \boldsymbol{a}_2 \boldsymbol{x}_2 + \cdots + \boldsymbol{a}_n \boldsymbol{x}_n \geq b \right\},\$$

where b and a_i are real vectors and the inequalities are taken entry-wise.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example:

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_1 \boldsymbol{x}_1 + \boldsymbol{a}_2 \boldsymbol{x}_2 + \cdots + \boldsymbol{a}_n \boldsymbol{x}_n \geq b \right\},\$$

where b and a_i are real vectors and the inequalities are taken entry-wise.

Example:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If a polytope has many facets and vertices we would like a better description.

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

 $P = \{x : \exists y, a_1 x_1 + \dots + a_n x_n + a_{n+1} y_1 + \dots + a_{n+m} y_m \ge b\},\$

i.e., a description of *P* as a projection of a higher dimensional polytope.

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

 $P = \{x : \exists y, a_1 x_1 + \dots + a_n x_n + a_{n+1} y_1 + \dots + a_{n+m} y_m \ge b\},\$

i.e., a description of *P* as a projection of a higher dimensional polytope.

Linear representation of a square.

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

 $P = \{x : \exists y, a_1 x_1 + \dots + a_n x_n + a_{n+1} y_1 + \dots + a_{n+m} y_m \ge b\},\$

i.e., a description of *P* as a projection of a higher dimensional polytope.

Linear representation of a square.

Linear representation of an hexagon.

(ロ) (同) (三) (三) (三) (○) (○)

The projection of a polytope can have many more facets than the original:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The projection of a polytope can have many more facets than the original:

(Ben-Tal + Nemirovski, 2001): A regular *n*-gon can be written as the projection of a polytope with $2\lceil \log_2(n) \rceil$ sides.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The projection of a polytope can have many more facets than the original:

(Ben-Tal + Nemirovski, 2001): A regular *n*-gon can be written as the projection of a polytope with $2\lceil \log_2(n) \rceil$ sides.

To do linear optimization on the projection we can optimize on the "upper" polytope.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The projection of a polytope can have many more facets than the original:

(Ben-Tal + Nemirovski, 2001): A regular *n*-gon can be written as the projection of a polytope with $2\lceil \log_2(n) \rceil$ sides.

To do linear optimization on the projection we can optimize on the "upper" polytope.

Given a polytope P we are interested in finding how small can its linear representation be. This tells us how hard it is to optimize over P using LP.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example: For the unit cube.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the unit cube.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the unit cube.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the unit cube.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \dots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i, j) = h_i(p_j).$

Example: For the unit cube.

Let M be an m by n nonnegative matrix.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

 $M = A \times B$.

(ロ) (同) (三) (三) (三) (○) (○)

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$M = A \times B.$$

Equivalently, it is a collection of nonnegative vectors a_1, \dots, a_m and b_1, \dots, b_n in \mathbb{R}^k such that $M_{i,j} = \langle a_i, b_j \rangle$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$M = A \times B.$$

Equivalently, it is a collection of nonnegative vectors a_1, \dots, a_m and b_1, \dots, b_n in \mathbb{R}^k such that $M_{i,j} = \langle a_i, b_j \rangle$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example:

$$M = \left[\begin{array}{rrrr} 1 & 1 & 2 \\ 1 & 3 & 3 \\ 0 & 2 & 1 \end{array} \right]$$

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$M = A \times B.$$

Equivalently, it is a collection of nonnegative vectors a_1, \dots, a_m and b_1, \dots, b_n in \mathbb{R}^k such that $M_{i,j} = \langle a_i, b_j \rangle$.

Example:

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 3 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let P be any polytope and S its slack matrix. Then the following are equal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let P be any polytope and S its slack matrix. Then the following are equal.

(ロ) (同) (三) (三) (三) (三) (○) (○)

The least number of facets of a polytope Q whose projection is P.

Let P be any polytope and S its slack matrix. Then the following are equal.

- The least number of facets of a polytope Q whose projection is P.
- The least k such that S has a nonnegative factorization of size k. [rank₊(S)]

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let P be any polytope and S its slack matrix. Then the following are equal.

- The least number of facets of a polytope Q whose projection is P.
- The least k such that S has a nonnegative factorization of size k. [rank₊(S)]

(ロ) (同) (三) (三) (三) (三) (○) (○)

Consider the regular hexagon.

Consider the regular hexagon.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Consider the regular hexagon.

It has a 6×6 slack matrix.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider the regular hexagon.

It has a 6×6 slack matrix.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix}$$

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$\begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Consider the regular hexagon.

It has a 6×6 slack matrix.

2. Other Representations: General Yannakakis Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●
Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \text{ s.t. } A_0 + \sum A_i \boldsymbol{x}_i + \sum B_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where A_i and B_i are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \text{ s.t. } A_0 + \sum A_i \boldsymbol{x}_i + \sum B_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

Given a polytope P we are interested in finding how small can such a description be.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \exists \boldsymbol{y} \text{ s.t. } A_0 + \sum A_i \boldsymbol{x}_i + \sum B_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

Given a polytope P we are interested in finding how small can such a description be.

This tells us how hard it is to optimize over *P* using semidefinite programming.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Square

The 0/1 square is the projection onto x_1 and x_2 of

$$\begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1 & y \\ x_2 & y & x_2 \end{bmatrix} \succeq 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Square

The 0/1 square is the projection onto x_1 and x_2 of

$$\begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1 & y \\ x_2 & y & x_2 \end{bmatrix} \succeq 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let M be a m by n nonnegative matrix.

Let *M* be a *m* by *n* nonnegative matrix. A PSD_k-factorization of *M* is a set of $k \times k$ positive semidefinite matrices A_1, \dots, A_m and B_1, \dots, B_n such that $M_{i,j} = \langle A_i, B_j \rangle$.

(ロ) (同) (三) (三) (三) (○) (○)

Let *M* be a *m* by *n* nonnegative matrix. A PSD_k-factorization of *M* is a set of $k \times k$ positive semidefinite matrices A_1, \dots, A_m and B_1, \dots, B_n such that $M_{i,j} = \langle A_i, B_j \rangle$.

 $\left[\begin{array}{cccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]$

(日) (日) (日) (日) (日) (日) (日)

Let *M* be a *m* by *n* nonnegative matrix. A PSD_k-factorization of *M* is a set of $k \times k$ positive semidefinite matrices A_1, \dots, A_m and B_1, \dots, B_n such that $M_{i,j} = \langle A_i, B_j \rangle$.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_k-factorization.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_k-factorization.

The psd rank of *M*, rank_{psd}(*M*) is the smallest *k* for which *M* has a PSD_k -factorization.

(日) (日) (日) (日) (日) (日) (日)

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_k-factorization.

The psd rank of *M*, rank_{psd}(*M*) is the smallest *k* for which *M* has a PSD_k -factorization.

The psd rank of a polytope *P* is defined as

 $\operatorname{rank}_{psd}(P) := \operatorname{rank}_{psd}(S_P).$

(日) (日) (日) (日) (日) (日) (日)

Consider again the regular hexagon.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consider again the regular hexagon.

Its 6×6 slack matrix.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Consider again the regular hexagon.

Its 6×6 slack matrix.

Consider again the regular hexagon.

Its 6×6 slack matrix.

	1 -1 0 1	- 1 0 - 1	1 0 0 1 1 0	1 -1 0 1]	, [1 0 0 0 -	0 1 1 _1	0 1 1 _1	0 1) 1 1]	,		1 1 1 0	1 1 1 0	1 1 1 0	0 0 0 1]	,		1 1 0 1	1 1 0 1	0 0 1 0	1 1 0 1]	,
[1 0 0 0	0 1 -1 1	0 -1 1 -1	0 1 -1 1]	, [1 -1 1 0	 1 0	1 - 1	1 - 1 1 0	0 0 0 1]	,		1 1 0 0	1 1 0 0	0 0 0 0	0 0 0 0] .	,		0 0 0 0	0 1 0 1	0 0 0 0	0 1 0 1]	,
	0 0 0 0	0 1 -1 0	0 -1 1 0	0 0 0 0],	[1 1 0 0	-1 1 0 0	0 0 0 0	0 0 0 0]	,		0 0 0 0	0 1 0 1	0 0 0) -) -	0 -1 0 1]	,	[0 0 0 0	0 1 1 0	0 1 1 0	0 0 0 0]	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

The Hexagon - continued

The regular hexagon must have a size 4 representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1, 0), (0, \pm 1), (1, -1)$ and (-1, 1).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1, 0), (0, \pm 1), (1, -1)$ and (-1, 1).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$H = \left\{ (x_1, x_2) : \begin{bmatrix} 1 & x_1 & x_2 & x_1 + x_2 \\ x_1 & 1 & y_1 & y_2 \\ x_2 & y_1 & 1 & y_3 \\ x_1 + x_2 & y_2 & y_3 & 1 \end{bmatrix} \succeq 0 \right\}$$

Conic Representations

In general given any closed cone K, a K-lift or K-representation of a polytope P is a representation

 $\boldsymbol{P} = \Pi(\boldsymbol{K} \cap \boldsymbol{L})$

(ロ) (同) (三) (三) (三) (○) (○)

where Π is a linear map and *L* an affine space.

Conic Representations

In general given any closed cone K, a K-lift or K-representation of a polytope P is a representation

 $P = \Pi(K \cap L)$

where Π is a linear map and *L* an affine space.

If $K = \mathbb{R}_+^k$ or $K = \mathsf{PSD}_k$ we recover the linear and semidefinite representations respectively. Other possible choices for K would be SOCP, CoP, CP ...

(日) (日) (日) (日) (日) (日) (日)

Conic Factorizations

Let *M* be a m by *n* nonnegative matrix and *K* a closed cone.

Conic Factorizations

Let *M* be a *m* by *n* nonnegative matrix and *K* a closed cone.

A *K*-factorization of *M* is a set of elements $a_1, \dots, a_m \in K$ and $b_1, \dots, b_n \in K^*$ such that $M_{i,j} = \langle a_i, b_j \rangle$.

Conic Factorizations

Let *M* be a *m* by *n* nonnegative matrix and *K* a closed cone.

A *K*-factorization of *M* is a set of elements $a_1, \dots, a_m \in K$ and $b_1, \dots, b_n \in K^*$ such that $M_{i,j} = \langle a_i, b_j \rangle$.

Note that since both \mathbb{R}^k_+ and PSD_k are self-dual, this notion generalizes both the notions of nonnegative and semidefinite factorization.

(日) (日) (日) (日) (日) (日) (日)

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

Technical Note: The forward direction actually demands either a Slater condition or K to be nice.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

Technical Note: The forward direction actually demands either a Slater condition or K to be nice.

Several further generalizations are possible (convex bodies, symmetric lifts).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3. Nonnegative and Semidefinite ranks

Let M be a p by q nonnegative matrix. Then:

Let M be a p by q nonnegative matrix. Then:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $\operatorname{rank}(M) \leq \operatorname{rank}_+(M) \leq \min\{p, q\}.$

Let M be a p by q nonnegative matrix. Then:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $\operatorname{rank}(M) \leq \operatorname{rank}_+(M) \leq \min\{p, q\}.$

•
$$\operatorname{rank}(M) \leq \binom{\operatorname{rank}_{\operatorname{psd}}(M)+1}{2}$$
.

Let M be a p by q nonnegative matrix. Then:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $\operatorname{rank}(M) \leq \operatorname{rank}_+(M) \leq \min\{p, q\}.$

•
$$\operatorname{rank}(M) \leq \binom{\operatorname{rank}_{\operatorname{psd}}(M)+1}{2}$$
.

• $\operatorname{rank}_{psd}(M) \leq \operatorname{rank}_{+}(M)$.

Let M be a p by q nonnegative matrix. Then:

• $\operatorname{rank}(M) \leq \operatorname{rank}_+(M) \leq \min\{p, q\}.$

•
$$\operatorname{rank}(M) \leq \binom{\operatorname{rank}_{\operatorname{psd}}(M)+1}{2}$$
.

• $\operatorname{rank}_{\operatorname{psd}}(M) \leq \operatorname{rank}_{+}(M)$.

Computing these ranks is hard. In fact checking if $rank(M) = rank_+(M)$ is NP-Hard (Vavasis '07).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let M be a p by q nonnegative matrix. Then:

• $\operatorname{rank}(M) \leq \operatorname{rank}_+(M) \leq \min\{p, q\}.$

•
$$\operatorname{rank}(M) \leq \binom{\operatorname{rank}_{\operatorname{psd}}(M)+1}{2}$$
.

• $\operatorname{rank}_{\operatorname{psd}}(M) \leq \operatorname{rank}_{+}(M)$.

Computing these ranks is hard. In fact checking if $rank(M) = rank_+(M)$ is NP-Hard (Vavasis '07).

Many other complexity questions are open.

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$M = \left[\begin{array}{rrrrr} 0 & 3 & 1 & 4 \\ 7 & 0 & 2 & 1 \\ 3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 0 \end{array} \right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$M = \begin{bmatrix} 0 & 3 & 1 & 4 \\ 7 & 0 & 2 & 1 \\ 3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$M = \begin{bmatrix} 0 & 3 & 4 \\ 7 & 0 & 2 & 3 \\ 3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In this case $rank_+(M) \ge 4$.

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$M = \begin{bmatrix} 0 & 3 & 4 & 4 \\ 7 & 0 & 2 & 3 \\ 3 & 2 & 0 & 1 \\ 1 & 4 & 3 & 0 \end{bmatrix}$$

In this case $\operatorname{rank}_+(M) \ge 4$.

The rectangle bound corresponds to the boolean rank and also relates to the minimum communication complexity of a 2-party protocol to compute the support of *M*.

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Example:

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

$$\sqrt{M} = \begin{bmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{bmatrix}$$

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

$$\sqrt[H]{M} = \begin{bmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \sqrt[H]{M} = \begin{bmatrix} -1 & 0 \\ \sqrt{2} & 1 \end{bmatrix}$$

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

$$\sqrt[H]{M} = \begin{bmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \sqrt[H]{M} = \begin{bmatrix} -1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \sqrt[H]{M} = \begin{bmatrix} -1 & 0 \\ -\sqrt{2} & 1 \end{bmatrix} \text{ or } \cdots$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

$$\frac{H}{M} = \begin{bmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \frac{H}{M} = \begin{bmatrix} -1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \frac{H}{M} = \begin{bmatrix} -1 & 0 \\ -\sqrt{2} & 1 \end{bmatrix} \text{ or } \cdots$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We define rank_{*H*}(M) = min{rank($\sqrt[H]{M}$)}.

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$M = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix};$$

$$V\overline{M} = \begin{bmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \sqrt[H]{M} = \begin{bmatrix} -1 & 0 \\ \sqrt{2} & 1 \end{bmatrix} \text{ or } \sqrt[H]{M} = \begin{bmatrix} -1 & 0 \\ -\sqrt{2} & 1 \end{bmatrix} \text{ or } \cdots$$

We define rank_{*H*}(M) = min{rank($\sqrt[H]{M}$)}.

 $^{H_{+}}\overline{M}$ is the nonnegative Hadamard square root of M.

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

 $rank_H(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

 $rank_H(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices. In particular $rank_{psd}(M) \le rank_H(M)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

 $rank_H(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices. In particular $rank_{psd}(M) \le rank_H(M)$.

Corollary For 0/1 matrices

 $\operatorname{rank}_{\operatorname{psd}}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M).$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 we have:

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

For
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 we have:

$$\operatorname{rank}_{\operatorname{psd}}(M) = 2$$
, $\operatorname{rank}_{H}(M) = 3$, $\operatorname{rank}(M) = 3$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

For
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 we have:

$$\operatorname{rank}_{\operatorname{psd}}(M) = 2$$
, $\operatorname{rank}_{H}(M) = 3$, $\operatorname{rank}(M) = 3$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

For
$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 we have:

For
$$M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 we have:

 $\operatorname{rank}_{\operatorname{psd}}(M) = 2$, $\operatorname{rank}_{H}(M) = 3$, $\operatorname{rank}(M) = 3$.

For
$$M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 we have:

 $\operatorname{rank}_{\operatorname{psd}}(M) = 2$, $\operatorname{rank}_{H}(M) = 2$, $\operatorname{rank}(M) = 3$.

(ロ) (型) (E) (E) (E) (O)()

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i,j} = (i - j)^2$.

$$A = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 & \cdots \\ 1 & 0 & 1 & 4 & 9 & \cdots \\ 4 & 1 & 0 & 1 & 4 & \cdots \\ 9 & 4 & 1 & 0 & 1 & \cdots \\ 16 & 9 & 4 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

rank(A) = 3;

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i,j} = (i - j)^2$.

$$A = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 & \cdots \\ 1 & 0 & 1 & 4 & 9 & \cdots \\ 4 & 1 & 0 & 1 & 4 & \cdots \\ 9 & 4 & 1 & 0 & 1 & \cdots \\ 16 & 9 & 4 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- rank(A) = 3;
- $rank_{psd}(A) = 2;$

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i,j} = (i - j)^2$.

$$A = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 & \cdots \\ 1 & 0 & 1 & 4 & 9 & \cdots \\ 4 & 1 & 0 & 1 & 4 & \cdots \\ 9 & 4 & 1 & 0 & 1 & \cdots \\ 16 & 9 & 4 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- rank(A) = 3;
- $rank_{psd}(A) = 2;$
- $\operatorname{rank}_+(A) \ge \log_2(n)$ grows with *n*.

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i,j} = (i - j)^2$.

$$A = \begin{bmatrix} 0 & 1 & 4 & 9 & 16 & \cdots \\ 1 & 0 & 1 & 4 & 9 & \cdots \\ 4 & 1 & 0 & 1 & 4 & \cdots \\ 9 & 4 & 1 & 0 & 1 & \cdots \\ 16 & 9 & 4 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- rank(A) = 3;
- rank_{psd}(A) = 2;
- $\operatorname{rank}_+(A) \ge \log_2(n)$ grows with *n*.

 $rank_+$ can be arbitrarily larger than rank and $rank_{psd}$.

・ロト・日本・日本・日本・日本

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

► If *p* is the size of the largest antichain in L(P), then for $r = \operatorname{rank}_+(P)$ we have $p \leq \binom{r}{\lfloor r/2 \rfloor}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

► If *p* is the size of the largest antichain in L(P), then for $r = \operatorname{rank}_+(P)$ we have $p \le \binom{r}{\lfloor r/2 \rfloor}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► [Goemans] If n_P is the number of faces of P, rank₊(P) ≥ log₂(n_P).

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

▶ If *p* is the size of the largest antichain in L(*P*), then for $r = \operatorname{rank}_+(P)$ we have $p \leq \binom{r}{\lfloor r/2 \rfloor}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► [Goemans] If n_P is the number of faces of P, rank₊(P) ≥ log₂(n_P).

P =cube: rank₊(P) \leq 6.

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

▶ If *p* is the size of the largest antichain in L(*P*), then for $r = \operatorname{rank}_+(P)$ we have $p \leq \binom{r}{\lfloor r/2 \rfloor}$.

► [Goemans] If n_P is the number of faces of P, rank₊(P) ≥ log₂(n_P).

- P =cube: rank₊(P) \leq 6.
 - ▶ $n_P = 28 \Rightarrow \operatorname{rank}_+(P) \ge \log_2(28) \approx 4.807.$

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of P, L(P), to the boolean lattice $2^{[k]}$. In particular:

- ▶ If *p* is the size of the largest antichain in L(*P*), then for $r = \operatorname{rank}_+(P)$ we have $p \leq \binom{r}{\lfloor r/2 \rfloor}$.
- ► [Goemans] If n_P is the number of faces of P, rank₊(P) ≥ log₂(n_P).

- P =cube: rank₊(P) \leq 6.
 - ▶ $n_P = 28 \Rightarrow \operatorname{rank}_+(P) \ge \log_2(28) \approx 4.807.$
 - ▶ $n_{\text{edges}} = 12$, $\binom{5}{2} = 10$, $\binom{6}{3} = 20$, hence $\text{rank}_+(P) \ge 6$.

Theorem (G.-Parrilo-Thomas 2011)

If a polytope P in \mathbb{R}^n has rank_{psd} = k than it has at most $k^{O(k^2n)}$ facets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (G.-Parrilo-Thomas 2011)

If a polytope *P* in \mathbb{R}^n has rank_{psd} = *k* than it has at most $k^{O(k^2n)}$ facets.

For $P_n = n$ -gon, rank₊(P_n) and rank_{psd}(P_n) grow to infinity as n grows, despite rank(S_{P_n}) = 3.

Theorem (G.-Parrilo-Thomas 2011)

If a polytope *P* in \mathbb{R}^n has rank_{psd} = *k* than it has at most $k^{O(k^2n)}$ facets.

For $P_n = n$ -gon, rank₊(P_n) and rank_{psd}(P_n) grow to infinity as n grows, despite rank(S_{P_n}) = 3.

Big open question:

Can we find a separation between rank_{psd} and rank₊ for polytopes?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polytopes with minimal representations

Lemma

A polytope of dimension d does not have a semidefinite representation of size smaller than d + 1.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polytopes with minimal representations

Lemma

A polytope of dimension d does not have a semidefinite representation of size smaller than d + 1.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)

Let *P* be a polytope with dimension *d* whose slack matrix S_P is 0/1. Then *P* has a semidefinite representation of size d + 1.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Polytopes with minimal representations

Lemma

A polytope of dimension d does not have a semidefinite representation of size smaller than d + 1.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)

Let *P* be a polytope with dimension *d* whose slack matrix S_P is 0/1. Then *P* has a semidefinite representation of size d + 1.

But we can say much more.

Theorem (G.-Robinson-Thomas 2012) Let *P* have dimension *d*. Then

 $\operatorname{rank}_{\operatorname{psd}}(P) = d + 1 \Leftrightarrow \operatorname{rank}_{H}(S_{P}) = d + 1.$
We will say a dimension *d* polytope *P* is SDP-minimal if it has a semidefinite representation of size d + 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We will say a dimension *d* polytope *P* is SDP-minimal if it has a semidefinite representation of size d + 1.

Properties of SDP-minimal polytopes

► Faces of SDP-minimal polytopes are SDP-minimal.

We will say a dimension *d* polytope *P* is SDP-minimal if it has a semidefinite representation of size d + 1.

Properties of SDP-minimal polytopes

- ► Faces of SDP-minimal polytopes are SDP-minimal.
- *d*-dimensional polytopes with at most *d* + 2 vertices are SDP-minimal.

We will say a dimension *d* polytope *P* is SDP-minimal if it has a semidefinite representation of size d + 1.

Properties of SDP-minimal polytopes

- ► Faces of SDP-minimal polytopes are SDP-minimal.
- *d*-dimensional polytopes with at most *d* + 2 vertices are SDP-minimal.
- Pyramids over SDP-minimal polytopes are SDP-minimal.

Results in \mathbb{R}^2

On the plane this is enough for a full characterization.

Results in \mathbb{R}^2

On the plane this is enough for a full characterization.

Proposition

A convex polygon is SDP-minimal if and only if it is a triangle or a quadrilateral.

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

This translates to a dual result on cuboids.

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

This translates to a dual result on cuboids.

It also suggests some underlying matroid characterization.

(ロ) (同) (三) (三) (三) (○) (○)

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)

(ロ) (同) (三) (三) (三) (○) (○)

No polynomial size lift for TSP (Fiorini et al 2012)

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

(ロ) (同) (三) (三) (三) (○) (○)

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

(ロ) (同) (三) (三) (三) (○) (○)

Still many unanswered questions.

Complexity or rank calculations.

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Complexity or rank calculations.
- No polynomial psd lift of TSP.

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

(ロ) (同) (三) (三) (三) (○) (○)

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.
- Better understanding of Hadamard ranks.

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.
- Better understanding of Hadamard ranks.
- psd/lp separation...

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Thank you