Conic lifts of polytopes

João Gouveia
University of Coimbra

17th September - MAP 2012 - Konstanz

1. Linear Representations and Yannakakis Theorem

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$
P=\left\{x \in \mathbb{R}^{n}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geq b\right\}
$$

where b and a_{i} are real vectors and the inequalities are taken entry-wise.

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$
P=\left\{x \in \mathbb{R}^{n}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geq b\right\}
$$

where b and a_{i} are real vectors and the inequalities are taken entry-wise.

Example:

Polytopes

The usual way to describe a polytope P is by listing the vertices or giving an inequality description

$$
P=\left\{x \in \mathbb{R}^{n}: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geq b\right\}
$$

where b and a_{i} are real vectors and the inequalities are taken entry-wise.

Example:

Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a better description.

Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

$$
P=\left\{x: \exists y, a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} y_{1}+\cdots a_{n+m} y_{m} \geq b\right\}
$$

i.e., a description of P as a projection of a higher dimensional polytope.

Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

$$
P=\left\{x: \exists y, a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} y_{1}+\cdots a_{n+m} y_{m} \geq b\right\}
$$

i.e., a description of P as a projection of a higher dimensional polytope.

Linear representation of a square.

Linear Representations of Polytopes

If a polytope has many facets and vertices we would like a better description.

A linear representation of a polytope P is a description

$$
P=\left\{x: \exists y, a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} y_{1}+\cdots a_{n+m} y_{m} \geq b\right\}
$$

i.e., a description of P as a projection of a higher dimensional polytope.

Linear representation of a square.

Linear representation of an hexagon.

Why?

The projection of a polytope can have many more facets than the original:

Why?

The projection of a polytope can have many more facets than the original:
(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written as the projection of a polytope with $2\left\lceil\log _{2}(n)\right\rceil$ sides.

Why?

The projection of a polytope can have many more facets than the original:
(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written as the projection of a polytope with $2\left\lceil\log _{2}(n)\right\rceil$ sides.

To do linear optimization on the projection we can optimize on the "upper" polytope.

Why?

The projection of a polytope can have many more facets than the original:
(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written as the projection of a polytope with $2\left\lceil\log _{2}(n)\right\rceil$ sides.

To do linear optimization on the projection we can optimize on the "upper" polytope.
Given a polytope P we are interested in finding how small can its linear representation be. This tells us how hard it is to optimize over P using LP.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

0	1	0	0	1	0	1	1
0	0	1	0	1	1	0	1
0	0	0	1	0	1	1	1

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
z \geq 0 \\
1-x \geq 0 \\
1-y \geq 0 \\
1-z \geq 0
\end{gathered}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array} \\
& \begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
z & \geq 0 \\
1-x & \geq 0 \\
1-y & \geq 0 \\
1-z & \geq 0
\end{aligned}\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
\end{array}\right]
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by
$h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.
The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

	0	1 0 0	0 1 0	0 0 1	1 1 0	0 1 1	1 0 1	1
$x \geq 0$	[0	1	0	0	1	0	1	1
$y \geq 0$	0	0	1	0				1
$z \geq 0$								
$1-x \geq 0$								
$1-y \geq 0$								
$1-z \geq 0$								

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.
$x \geq 0$
$y \geq 0$
$z \geq 0$
$1-x \geq 0$
$1-y \geq 0$
$1-z \geq 0$$\quad\left[\begin{array}{lll|l|l|l|l|l|l}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$
M=A \times B
$$

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$
M=A \times B
$$

Equivalently, it is a collection of nonnegative vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$
M=A \times B
$$

Equivalently, it is a collection of nonnegative vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]
$$

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.
A nonnegative factorization of M of size k is a pair of nonnegative matrices A, m by k, and B, k by n, such that

$$
M=A \times B
$$

Equivalently, it is a collection of nonnegative vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following are equal.

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following are equal.

- The least number of facets of a polytope Q whose projection is P.

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following are equal.

- The least number of facets of a polytope Q whose projection is P.
- The least k such that S has a nonnegative factorization of size k. $\left[\mathrm{rank}_{+}(S)\right]$

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following are equal.

- The least number of facets of a polytope Q whose projection is P.
- The least k such that S has a nonnegative factorization of size k. $\left[\mathrm{rank}_{+}(S)\right]$

Hexagon

Consider the regular hexagon.

Hexagon

Consider the regular hexagon.

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

2. Other Representations: General Yannakakis Theorem

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

Semidefinite Representations

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{j} and B_{i} are $k \times k$ real symmetric matrices.
Given a polytope P we are interested in finding how small can such a description be.

This tells us how hard it is to optimize over P using semidefinite programming.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of
$\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & x_{1} & y \\ x_{2} & y & x_{2}\end{array}\right] \succeq 0$.

The Square

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

Semidefinite Factorizations

 M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Semidefinite Factorizations

Let M be a m by n nonnegative matrix. APSD_{k}-factorization of M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Semidefinite Factorizations

Let M be a m by n nonnegative matrix. APSD_{k}-factorization of M is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a semidefinite representation of size k if and only if its slack matrix has a PSD_{k}-factorization.

The psd rank of M, $\operatorname{rank}_{\text {psd }}(M)$ is the smallest k for which M has a PSD_{k}-factorization.

The psd rank of a polytope P is defined as

$$
\operatorname{rank}_{p s d}(P):=\operatorname{rank}_{p s d}\left(S_{P}\right)
$$

The Hexagon

Consider again the regular hexagon.

The Hexagon

Consider again the regular hexagon.

Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]
$$

The Hexagon

Consider again the regular hexagon.

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],} \\
& \rangle
\end{aligned}
$$

The Hexagon

Consider again the regular hexagon.

$$
\begin{aligned}
& \rangle \\
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
0 & 0 & 2 & 4 & 4 & 2 \\
2 & 0 & 0 & 2 & 4 & 4 \\
4 & 2 & 0 & 0 & 2 & 4 \\
4 & 4 & 2 & 0 & 0 & 2 \\
2 & 4 & 4 & 2 & 0 & 0 \\
0 & 2 & 4 & 4 & 2 & 0
\end{array}\right]}
\end{aligned}
$$

The Hexagon - continued

The regular hexagon must have a size 4 representation.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices
$(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

Conic Representations

In general given any closed cone K, a K-lift or K-representation of a polytope P is a representation

$$
P=\Pi(K \cap L)
$$

where Π is a linear map and L an affine space.

Conic Representations

In general given any closed cone K, a K-lift or K-representation of a polytope P is a representation

$$
P=\Pi(K \cap L)
$$

where Π is a linear map and L an affine space.

If $K=\mathbb{R}_{+}^{k}$ or $K=\mathrm{PSD}_{k}$ we recover the linear and semidefinite representations respectively. Other possible choices for K would be SOCP, CoP, CP ...

Conic Factorizations

Let M be a m by n nonnegative matrix and K a closed cone.

Conic Factorizations

Let M be a m by n nonnegative matrix and K a closed cone.

A K-factorization of M is a set of elements $a_{1}, \cdots, a_{m} \in K$ and $b_{1}, \cdots b_{n} \in K^{*}$ such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Conic Factorizations

Let M be a m by n nonnegative matrix and K a closed cone.

A K-factorization of M is a set of elements $a_{1}, \cdots, a_{m} \in K$ and $b_{1}, \cdots b_{n} \in K^{*}$ such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Note that since both \mathbb{R}_{+}^{k} and PSD_{k} are self-dual, this notion generalizes both the notions of nonnegative and semidefinite factorization.

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

Technical Note: The forward direction actually demands either a Slater condition or K to be nice.

Conic Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)
A polytope P has a K-representation if and only if its slack matrix has a K-factorization.

Technical Note: The forward direction actually demands either a Slater condition or K to be nice.

Several further generalizations are possible (convex bodies, symmetric lifts).
3. Nonnegative and Semidefinite ranks

Basic Facts

Let M be a p by q nonnegative matrix. Then:

Basic Facts

Let M be a p by q nonnegative matrix. Then:

- $\operatorname{rank}(M) \leq \operatorname{rank}_{+}(M) \leq \min \{p, q\}$.

Basic Facts

Let M be a p by q nonnegative matrix. Then:

- $\operatorname{rank}(M) \leq \operatorname{rank}_{+}(M) \leq \min \{p, q\}$.
- $\operatorname{rank}(M) \leq\binom{\operatorname{rank}_{\text {psd }}(M)+1}{2}$.

Basic Facts

Let M be a p by q nonnegative matrix. Then:

- $\operatorname{rank}(M) \leq \operatorname{rank}_{+}(M) \leq \min \{p, q\}$.
- $\operatorname{rank}(M) \leq\left(\begin{array}{c}\operatorname{rank}_{\text {psd }}(M)+1\end{array}\right)$.
- $\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{+}(M)$.

Basic Facts

Let M be a p by q nonnegative matrix. Then:

- $\operatorname{rank}(M) \leq \operatorname{rank}_{+}(M) \leq \min \{p, q\}$.
- $\operatorname{rank}(M) \leq\binom{\operatorname{rank}_{\text {psd }}(M)+1}{2}$.
- $\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{+}(M)$.

Computing these ranks is hard. In fact checking if $\operatorname{rank}(M)=\operatorname{rank}_{+}(M)$ is NP-Hard (Vavasis '07).

Basic Facts

Let M be a p by q nonnegative matrix. Then:

- $\operatorname{rank}(M) \leq \operatorname{rank}_{+}(M) \leq \min \{p, q\}$.
- $\operatorname{rank}(M) \leq\left(\underset{2}{\operatorname{rank}_{\text {psd }}(M)+1}\right)$.
- $\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{+}(M)$.

Computing these ranks is hard. In fact checking if $\operatorname{rank}(M)=\operatorname{rank}_{+}(M)$ is NP-Hard (Vavasis '07).

Many other complexity questions are open.

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$
M=\left[\begin{array}{llll}
0 & 3 & 1 & 4 \\
7 & 0 & 2 & 1 \\
3 & 2 & 0 & 1 \\
1 & 1 & 3 & 0
\end{array}\right]
$$

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$
M=\left[\begin{array}{cccc}
0 & 3 & 1 / 4 & 4 \\
7 & 0 & 2 / 1 \\
3 & 2 & 0 & 1 \\
1 & 1 & 3 & 0
\end{array}\right]
$$

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$
M=\left[\begin{array}{cccc}
0 & 3 & 1 / 4 & 4 \\
7 & 0 & 2 / & 1 \\
3 / 2 & 0 & 1 \\
1 & 1 & 3 & 0
\end{array}\right]
$$

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$
M=\left[\begin{array}{cccc}
0 & \boxed{3} & 1 & 4 \\
7 & 0 & 2 & 1 \\
3 / 2 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right]
$$

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

$$
M=\left[\right]
$$

In this case rank ${ }_{+}(M) \geq 4$.

Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its smallest rectangle cover.

Example:

In this case rank $_{+}(M) \geq 4$.

The rectangle bound corresponds to the boolean rank and also relates to the minimum communication complexity of a 2-party protocol to compute the support of M.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

$$
\sqrt[H]{M}=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & 1
\end{array}\right]
$$

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;

$$
\sqrt[H]{M}=\left[\begin{array}{cc}
1 & 0 \\
\sqrt{2} & 1
\end{array}\right] \text { or } \sqrt[H]{M}=\left[\begin{array}{cc}
-1 & 0 \\
\sqrt{2} & 1
\end{array}\right]
$$

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots

We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.

Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:
$M=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$;
$\sqrt[H]{M}=\left[\begin{array}{cc}1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ \sqrt{2} & 1\end{array}\right]$ or $\sqrt[H]{M}=\left[\begin{array}{cc}-1 & 0 \\ -\sqrt{2} & 1\end{array}\right]$ or \cdots
We define $\operatorname{rank}_{H}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.
$\sqrt[H+]{M}$ is the nonnegative Hadamard square root of M.

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.
In particular $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M)$.

Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

$\operatorname{rank}_{H}(M)$ is the smallest k for which we have a semidefinite factorization of M of size k using only rank one matrices.
In particular $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{H}(M)$.

Corollary
For 0/1 matrices

$$
\operatorname{rank}_{\mathrm{psd}}(M) \leq \operatorname{rank}_{H}(M) \leq \operatorname{rank}(M) .
$$

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3$.

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:

$$
\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3
$$

For $M=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ we have:

Examples

For $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=3, \quad \operatorname{rank}(M)=3$.

For $M=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ we have:
$\operatorname{rank}_{\mathrm{psd}}(M)=2, \operatorname{rank}_{H}(M)=2, \quad \operatorname{rank}(M)=3$.

Example

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i, j}=(i-j)^{2}$.

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 4 & 9 & 16 & \cdots \\
1 & 0 & 1 & 4 & 9 & \cdots \\
4 & 1 & 0 & 1 & 4 & \cdots \\
9 & 4 & 1 & 0 & 1 & \cdots \\
16 & 9 & 4 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $\operatorname{rank}(A)=3$;

Example

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i, j}=(i-j)^{2}$.

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 4 & 9 & 16 & \cdots \\
1 & 0 & 1 & 4 & 9 & \cdots \\
4 & 1 & 0 & 1 & 4 & \cdots \\
9 & 4 & 1 & 0 & 1 & \cdots \\
16 & 9 & 4 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $\operatorname{rank}(A)=3$;
- $\operatorname{rank}_{\mathrm{psd}}(A)=2$;

Example

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i, j}=(i-j)^{2}$.

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 4 & 9 & 16 & \cdots \\
1 & 0 & 1 & 4 & 9 & \cdots \\
4 & 1 & 0 & 1 & 4 & \cdots \\
9 & 4 & 1 & 0 & 1 & \cdots \\
16 & 9 & 4 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $\operatorname{rank}(A)=3$;
- $\operatorname{rank}_{\mathrm{psd}}(A)=2$;
- $\operatorname{rank}_{+}(A) \geq \log _{2}(n)$ grows with n.

Example

Consider the matrix $A \in \mathbb{R}^{n \times n}$ defined by $a_{i, j}=(i-j)^{2}$.

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 4 & 9 & 16 & \cdots \\
1 & 0 & 1 & 4 & 9 & \cdots \\
4 & 1 & 0 & 1 & 4 & \cdots \\
9 & 4 & 1 & 0 & 1 & \cdots \\
16 & 9 & 4 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- $\operatorname{rank}(A)=3$;
- $\operatorname{rank}_{\mathrm{psd}}(A)=2$;
- $\operatorname{rank}_{+}(A) \geq \log _{2}(n)$ grows with n.
rank ${ }_{+}$can be arbitrarily larger than rank and rank ${ }_{p s d}$.

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

- If p is the size of the largest antichain in $L(P)$, then for $r=\operatorname{rank}_{+}(P)$ we have $p \leq\binom{ r}{\llcorner/ 2\rfloor}$.

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

- If p is the size of the largest antichain in $L(P)$, then for $r=$ rank $_{+}(P)$ we have $p \leq\binom{ r}{\lfloor/ 2\rfloor}$.
- [Goemans] If n_{P} is the number of faces of P, rank $_{+}(P) \geq \log _{2}\left(n_{P}\right)$.

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

- If p is the size of the largest antichain in $L(P)$, then for $r=$ rank $_{+}(P)$ we have $p \leq\binom{ r}{\lfloor/ 2\rfloor}$.
- [Goemans] If n_{P} is the number of faces of P, rank $_{+}(P) \geq \log _{2}\left(n_{P}\right)$.
$P=$ cube: $\operatorname{rank}_{+}(P) \leq 6$.

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

- If p is the size of the largest antichain in $L(P)$, then for $r=$ rank $_{+}(P)$ we have $p \leq\binom{ r}{\lfloor/ 2\rfloor}$.
- [Goemans] If n_{P} is the number of faces of P, rank $_{+}(P) \geq \log _{2}\left(n_{P}\right)$.
$P=$ cube: $\operatorname{rank}_{+}(P) \leq 6$.
- $n_{P}=28 \Rightarrow \operatorname{rank}_{+}(P) \geq \log _{2}(28) \approx 4.807$.

Bounds for polytopes - LP

Proposition

An linear representation of P of size k induces an embedding from the facial lattice of $P, L(P)$, to the boolean lattice $2^{[k]}$. In particular:

- If p is the size of the largest antichain in $L(P)$, then for $r=$ rank $_{+}(P)$ we have $p \leq\binom{ r}{\lfloor/ 2\rfloor}$.
- [Goemans] If n_{P} is the number of faces of P, rank $_{+}(P) \geq \log _{2}\left(n_{P}\right)$.
$P=$ cube: $\operatorname{rank}_{+}(P) \leq 6$.
- $n_{P}=28 \Rightarrow \operatorname{rank}_{+}(P) \geq \log _{2}(28) \approx 4.807$.
- $n_{\text {edges }}=12,\binom{5}{2}=10,\binom{6}{3}=20$, hence rank ${ }_{+}(P) \geq 6$.

Bounds for polytopes - SDP

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in \mathbb{R}^{n} has rank ${ }_{p s d}=k$ than it has at most $k^{O\left(k^{2} n\right)}$ facets.

Bounds for polytopes - SDP

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in \mathbb{R}^{n} has rank ${ }_{\text {psd }}=k$ than it has at most $k^{O\left(k^{2} n\right)}$ facets.

For $P_{n}=n$-gon, rank ${ }_{+}\left(P_{n}\right)$ and rank psd $\left(P_{n}\right)$ grow to infinity as n grows, despite $\operatorname{rank}\left(S_{P_{n}}\right)=3$.

Bounds for polytopes - SDP

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in \mathbb{R}^{n} has rank ${ }_{p s d}=k$ than it has at most $k^{O\left(k^{2} n\right)}$ facets.

For $P_{n}=n$-gon, rank ${ }_{+}\left(P_{n}\right)$ and rank $_{p s d}\left(P_{n}\right)$ grow to infinity as n grows, despite $\operatorname{rank}\left(S_{P_{n}}\right)=3$.

Big open question:

- Can we find a separation between rank ${ }_{p s d}$ and rank ${ }_{+}$for polytopes?

Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

Using the Hadamard rank we recover an older result.
Theorem (G.-Parrilo-Thomas 2009)
Let P be a polytope with dimension d whose slack matrix S_{P} is $0 / 1$. Then P has a semidefinite representation of size $d+1$.

Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite representation of size smaller than $d+1$.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)

Let P be a polytope with dimension d whose slack matrix S_{P} is $0 / 1$. Then P has a semidefinite representation of size $d+1$.

But we can say much more.
Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d. Then

$$
\operatorname{rank}_{\mathrm{psd}}(P)=d+1 \Leftrightarrow \operatorname{rank}_{H}\left(S_{P}\right)=d+1 .
$$

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.
- d-dimensional polytopes with at most $d+2$ vertices are SDP-minimal.

Properties of SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a semidefinite representation of size $d+1$.

Properties of SDP-minimal polytopes

- Faces of SDP-minimal polytopes are SDP-minimal.
- d-dimensional polytopes with at most $d+2$ vertices are SDP-minimal.
- Pyramids over SDP-minimal polytopes are SDP-minimal.

Results in \mathbb{R}^{2}

On the plane this is enough for a full characterization.

Results in \mathbb{R}^{2}

On the plane this is enough for a full characterization.

Proposition

A convex polygon is SDP-minimal if and only if it is a triangle or a quadrilateral.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

This translates to a dual result on cuboids.

Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is SDP-minimal if and only if there are two distinct sets of four coplanar vertices of P.

This translates to a dual result on cuboids.
It also suggests some underlying matroid characterization.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

- Complexity or rank calculations.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

- Complexity or rank calculations.
- No polynomial psd lift of TSP.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.
- Better understanding of Hadamard ranks.

Conclusion

Conic Lifts/Factorizations is an exciting area of research with many recent breakthroughs.

- Symmetry matters for linear lifts (Kaibel-Pashkovich-Theis 2010)
- No polynomial size lift for TSP (Fiorini et al 2012)
- Connections to communication complexity (Faenza et al 2011, Fiorini et al 2012)...

Still many unanswered questions.

- Complexity or rank calculations.
- No polynomial psd lift of TSP.
- Any insight on matching polytope.
- Better understanding of Hadamard ranks.
- psd/lp separation...

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

For more information

Polytopes of Minimum Positive Semidefinite Rank - Gouveia, Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo and Thomas - arXiv:1111.3164

Thank you

