A new SDP approach to the Max-Cut problem

J. Gouveia ${ }^{1} \quad$ M. Laurent ${ }^{2} \quad$ P. Parrilo ${ }^{3} \quad$ R. Thomas ${ }^{1}$
${ }^{1}$ University of Washington
${ }^{2}$ CWI, Amsterdam
${ }^{3}$ Massachusetts Institute of Technology

25th April '09 / AMS Spring Western Section Meeting

The Stable Set Problem

The Stable Set Problem

Given a graph $G=(\{1, \ldots, n\}, E)$ we'll denote by S_{G} the collection of the characteristic vectors of all the stable sets of G.

The Stable Set Problem

Given a graph $G=(\{1, \ldots, n\}, E)$ we'll denote by S_{G} the collection of the characteristic vectors of all the stable sets of G. We define the stable set polytope of $G, \operatorname{STAB}(G)$, as the convex hull of S_{G}.

The Stable Set Problem

Given a graph $G=(\{1, \ldots, n\}, E)$ we'll denote by S_{G} the collection of the characteristic vectors of all the stable sets of G. We define the stable set polytope of $G, \operatorname{STAB}(G)$, as the convex hull of S_{G}.

Stable Set Problem - LP Formulation

Given a graph $G=(\{1, \ldots, n\}, E)$ and a weight vector $\omega \in \mathbb{R}^{n}$, solve the linear program

$$
\alpha(G, \omega):=\max _{x \in \operatorname{STAB}(G)}\langle\omega, x\rangle .
$$

Definition of Theta Body

Definition (Lovász ~ 1980)

Given a graph $G=(\{1, \ldots, n\}, E)$ we define its theta body, $\mathrm{TH}(G)$, as the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all $(i, j) \in E$.

Definition of Theta Body

Definition (Lovász ~ 1980)

Given a graph $G=(\{1, \ldots, n\}, E)$ we define its theta body, $\mathrm{TH}(G)$, as the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all $(i, j) \in E$.

Theorem (Lovász ~ 1980)

The relaxation is tight, i.e. $\operatorname{TH}(G)=\operatorname{STAB}(G)$, if and only if the graph G is perfect.

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.
We say a polynomial f is k-sos modulo the ideal I if and only if

$$
f \equiv\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \quad \bmod I,
$$

for some polynomials h_{1}, \ldots, h_{m} with degree less or equal k.

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.
We say a polynomial f is k-sos modulo the ideal $/$ if and only if

$$
f \equiv\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \quad \bmod I
$$

for some polynomials h_{1}, \ldots, h_{m} with degree less or equal k. In particular, for any \mathbf{p} in the zero set $\mathcal{Z}(I)$ we have

$$
f(\mathbf{p})=h_{1}^{2}(\mathbf{p})+\ldots+h_{m}^{2}(\mathbf{p}) \geq 0
$$

so any k-sos polynomial is a nonnegative on the zero-set of the ideal.

Connection to Algebra

Theorem (Lovász ~ 1993)

$T H(G)$ equals the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are 1-sos modulo $\mathcal{I}\left(S_{G}\right)$.

Connection to Algebra

Theorem (Lovász ~ 1993)

$T H(G)$ equals the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are 1-sos modulo $\mathcal{I}\left(S_{G}\right)$.

This definition does not depend directly on the combinatorics of the graph, but only on the ideal $\mathcal{I}\left(S_{G}\right)$.

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$, as the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are k-sos modulo l.

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$, as the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are k-sos modulo l.

Remarks:

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$, as the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are k-sos modulo l.

Remarks:

- $\overline{\operatorname{conv}(\mathcal{Z}(I))} \subseteq \cdots \subseteq \mathrm{TH}_{k}(I) \subseteq \mathrm{TH}_{k-1}(I) \subseteq \cdots \subseteq \mathrm{TH}_{1}(I)$.

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$, as the intersection of all half-spaces

$$
H_{f}=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}
$$

where f ranges over all affine polynomials that are k-sos modulo l.

Remarks:

- If $S \subset \mathbb{R}^{n}$ is a finite set and $I=\mathcal{I}(S)$ then for some k, we have $\mathrm{TH}_{k}(I)=\operatorname{conv}(S)$.

Combinatorial Moment Matrices

Let / be a polynomial ideal and

$$
\mathcal{B}=\left\{1=f_{0}, x_{1}=f_{1}, \ldots, x_{n}=f_{n}, f_{n+1}, \ldots\right\}
$$

be a basis of $\mathbb{R}[\mathbf{x}] / I$ and $\mathcal{B}_{k}=\left\{f_{i}: \operatorname{deg}\left(f_{i}\right) \leq k\right\}$ for all k.

Combinatorial Moment Matrices

Let / be a polynomial ideal and

$$
\mathcal{B}=\left\{1=f_{0}, x_{1}=f_{1}, \ldots, x_{n}=f_{n}, f_{n+1}, \ldots\right\}
$$

be a basis of $\mathbb{R}[\mathbf{x}] / I$ and $\mathcal{B}_{k}=\left\{f_{i}: \operatorname{deg}\left(f_{i}\right) \leq k\right\}$ for all k. Consider the polynomial vector $f^{k}(\mathbf{x})=\left(f_{i}(\mathbf{x})\right)_{f_{i} \in \mathcal{B}_{k}}$ then

$$
\left(f^{k}(\mathbf{x})\right)\left(f^{k}(\mathbf{x})\right)^{t}=\sum_{f_{i} \in \mathcal{B}} A_{i} f_{i}(\mathbf{x})
$$

for some symmetric matrices A_{i}.

Combinatorial Moment Matrices

Let / be a polynomial ideal and

$$
\mathcal{B}=\left\{1=f_{0}, x_{1}=f_{1}, \ldots, x_{n}=f_{n}, f_{n+1}, \ldots\right\}
$$

be a basis of $\mathbb{R}[\mathbf{x}] / I$ and $\mathcal{B}_{k}=\left\{f_{i}: \operatorname{deg}\left(f_{i}\right) \leq k\right\}$ for all k. Consider the polynomial vector $f^{k}(\mathbf{x})=\left(f_{i}(\mathbf{x})\right)_{f_{i} \in \mathcal{B}_{k}}$ then

$$
\left(f^{k}(\mathbf{x})\right)\left(f^{k}(\mathbf{x})\right)^{t}=\sum_{f_{i} \in \mathcal{B}} A_{i} f_{i}(\mathbf{x})
$$

for some symmetric matrices A_{i}. Given a vector y indexed by the elements in \mathcal{B} we define the combinatorial moment matrix of y as

$$
M_{\mathcal{B}, k}(y)=\sum_{f_{i} \in \mathcal{B}} A_{i} y_{f_{i}}
$$

Theta Bodies and Moment Matrices

Theorem (GPT)

Let I be a polynomial ideal and $\mathcal{B}=\left\{1, x_{1}, \ldots, x_{n}, \ldots\right\}$ a basis for $\mathbb{R}[\mathbf{x}] /$ l. Let

$$
\mathcal{M}_{\mathcal{B}, k}(I)=\left\{y \in \mathbb{R}^{\mathcal{B}}: y_{0}=1 ; M_{\mathcal{B}, k}(y) \succeq 0\right\}
$$

then

$$
T H_{k}(I)=\overline{\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)}
$$

where $\pi_{\mathbb{R}^{n}}: \mathbb{R}^{\mathcal{B}} \rightarrow \mathbb{R}^{n}$ is just the projection over the coordinates indexed by the degree one monomials.

Zero-dimensional Varieties

Definition

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}(\mathcal{Z}(I))}$.

Zero-dimensional Varieties

Definition

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}(\mathcal{Z}(I))}$.
A full characterization is possible for $k=1$ in the case of vanishing ideals of finite sets in \mathbb{R}^{n}.

Zero-dimensional Varieties

Definition

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}(\mathcal{Z}(I))}$.
A full characterization is possible for $k=1 \mathrm{in}$ the case of vanishing ideals of finite sets in \mathbb{R}^{n}.

Theorem (GPT)

Let $S \subset \mathbb{R}^{n}$ be finite then $\mathcal{I}(S)$ is $T H_{1}$-exact if and only if for every facet defining hyperplane H of the polytope conv(S) we have a parallel translate H^{\prime} of H such that $S \subseteq H^{\prime} \cup H$.

Examples in \mathbb{R}^{3}

TH_{1}-exact

Not TH_{1}-exact

The Max-Cut Problem

Definition

Given a graph $G=(V, E)$ and a partition V_{1}, V_{2} of V the set C of edges between V_{1} and V_{2} is called a cut.

The Max-Cut Problem

Definition

Given a graph $G=(V, E)$ and a partition V_{1}, V_{2} of V the set C of edges between V_{1} and V_{2} is called a cut.

The Problem

Given edge weights α we want to find which cut C maximizes

$$
\alpha(C):=\sum_{(i, j) \in C} \alpha_{i, j} .
$$

The Cut Polytope

Definition

The cut polytope of $G, \operatorname{CUT}(G)$, is the convex hull of the characteristic vectors $\chi_{c} \subseteq \mathbb{R}^{E}$ of the cuts of G, where $\left(\chi_{c}\right)_{i j}=-1$ if $(i, j) \in C$ and 1 otherwise.

The Cut Polytope

Definition

The cut polytope of $G, \operatorname{CUT}(G)$, is the convex hull of the characteristic vectors $\chi_{c} \subseteq \mathbb{R}^{E}$ of the cuts of G, where $\left(\chi_{c}\right)_{i j}=-1$ if $(i, j) \in C$ and 1 otherwise.

LP formulation
Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$
\operatorname{mcut}(G, \alpha)=\max _{x \in \operatorname{CUT}(G)} \frac{1}{2}\langle\alpha, 1-x\rangle
$$

Computing the ideal

Let I_{G} be the vanishing ideal of the characteristic vectors of the cuts of $G=(V, E)$.

Computing the ideal

Let I_{G} be the vanishing ideal of the characteristic vectors of the cuts of $G=(V, E)$.
Given an even set $T \subseteq V$ we define a T-join to be a subgraph of G with odd degree precisely in the vertices of T.

Computing the ideal

Let I_{G} be the vanishing ideal of the characteristic vectors of the cuts of $G=(V, E)$.
Given an even set $T \subseteq V$ we define a T-join to be a subgraph of G with odd degree precisely in the vertices of T. Let F_{T} be a T-join with a minimal number of edges d_{T}.

Computing the ideal

Let I_{G} be the vanishing ideal of the characteristic vectors of the cuts of $G=(V, E)$.
Given an even set $T \subseteq V$ we define a T-join to be a subgraph of G with odd degree precisely in the vertices of T. Let F_{T} be a T-join with a minimal number of edges d_{T}.

Theorem

If G is connected then the set

$$
\left.\left\{x_{e}^{2}-1: e \in E\right)\right\} \cup\left\{1-\mathbf{x}^{A}: A \subseteq E, A \text { circuit in } G\right\}
$$

generates I_{G}, and

$$
\mathcal{B}:=\left\{\mathbf{x}^{F_{T}}: T \subseteq[n],|T| \text { even }\right\}
$$

is a basis for $\mathbb{R}[\mathbf{x}] / I_{G}$.

General Cut Theta body

Let \mathcal{B}_{k} be the set of all even $T \subseteq V$ such that $d_{T} \leq k$.

Theorem

The set $T H_{k}\left(I_{G}\right)$ is given by

$$
\left\{y \in \mathbb{R}^{E}:\right.
$$

General Cut Theta body

Let \mathcal{B}_{k} be the set of all even $T \subseteq V$ such that $d_{T} \leq k$.

Theorem

The set $T H_{k}\left(I_{G}\right)$ is given by

$$
\left\{y \in \mathbb{R}^{E}: \quad \exists M \succeq 0, M \in \mathbb{R}^{\left|\mathcal{B}_{k}\right| \times\left|\mathcal{B}_{k}\right|} \text { such that }\right\}
$$

General Cut Theta body

Let \mathcal{B}_{k} be the set of all even $T \subseteq V$ such that $d_{T} \leq k$.

Theorem

The set $T H_{k}\left(I_{G}\right)$ is given by

$$
\left\{\begin{array}{ll}
\exists M \succeq 0, M \in \mathbb{R}^{\left|\mathcal{B}_{k}\right| \times\left|\mathcal{B}_{k}\right|} \text { such that } \\
y \in \mathbb{R}^{E}: & M_{T, T}=1 \forall T \in \mathcal{B}_{k},
\end{array}\right\}
$$

General Cut Theta body

Let \mathcal{B}_{k} be the set of all even $T \subseteq V$ such that $d_{T} \leq k$.

Theorem

The set $T H_{k}\left(I_{G}\right)$ is given by

$$
\left\{\begin{array}{ll}
& \exists M \succeq 0, M \in \mathbb{R}^{\left|\mathcal{B}_{k}\right| \times\left|\mathcal{B}_{k}\right|} \text { such that } \\
y \in \mathbb{R}^{E}: & M_{T, T}=1 \forall T \in \mathcal{B}_{k}, \\
& M_{e, \emptyset}=y_{e} \forall e \in E
\end{array}\right\}
$$

General Cut Theta body

Let \mathcal{B}_{k} be the set of all even $T \subseteq V$ such that $d_{T} \leq k$.

Theorem

The set $T H_{k}\left(I_{G}\right)$ is given by

$$
\left\{\begin{aligned}
& \exists M \succeq 0, M \in \mathbb{R}^{\left|\mathcal{B}_{k}\right| \times\left|\mathcal{B}_{k}\right|} \text { such that } \\
y \in \mathbb{R}^{E}: & M_{T, T}=1 \forall T \in \mathcal{B}_{k}, \\
& M_{e, \emptyset}=y_{e} \forall e \in E \\
& M_{T, T^{\prime}}=M_{R, R^{\prime}} \text { if } T \Delta T^{\prime}=R \Delta R^{\prime}
\end{aligned}\right\}
$$

The First Cut Theta Body

Cut Theta Body

Given a graph $G=(V, E)$ the body $T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ such that

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with

The First Cut Theta Body

Cut Theta Body

Given a graph $G=(V, E)$ the body $T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ such that

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with $\operatorname{diag}(U)=\mathbf{1}$,

The First Cut Theta Body

Cut Theta Body

Given a graph $G=(V, E)$ the body $T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ such that

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with $\operatorname{diag}(U)=1$, if (e, f, g) is a triangle in $G, U_{e, f}=x_{g}$,

The First Cut Theta Body

Cut Theta Body

Given a graph $G=(V, E)$ the body $T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with $\operatorname{diag}(U)=1$, if (e, f, g) is a triangle in $G, U_{e, f}=x_{g}$, and if $\{e, f, g, h\}$ forms a 4-cycle $U_{e, f}=U_{g, h}$.

Example

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & & & & & \\ x_{2} & & & & & \\ x_{3} & & & & & \\ x_{4} & & & & & \end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & & & x_{5} & \\ x_{2} & & 1 & & & \\ x_{3} & & & 1 & & \\ x_{4} & & & & 1 & \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & & & x_{5} & x_{4} \\ x_{2} & & 1 & & & \\ x_{3} & & & 1 & & \\ x_{4} & & & & 1 & \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & & & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & & \\
x_{3} & & & 1 & & \\
x_{4} & & & & 1 & \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & & & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & & x_{3} \\
x_{3} & & & 1 & & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & ? & & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & & x_{3} \\
x_{3} & & & 1 & ? & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & y_{1} & & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & & x_{3} \\
x_{3} & & & 1 & y_{1} & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & y_{1} & ? & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & ? & x_{3} \\
x_{3} & & & 1 & y_{1} & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & y_{1} & y_{2} & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & y_{2} & x_{3} \\
x_{3} & & & 1 & y_{1} & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & y_{1} & y_{2} & x_{5} & x_{4} \\ x_{2} & y_{1} & 1 & x_{5} & y_{2} & x_{3} \\ x_{3} & y_{2} & x_{5} & 1 & y_{1} & x_{2} \\ x_{4} & x_{5} & y_{2} & y_{1} & 1 & x_{1} \\ x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & 1\end{array}\right] \succeq 0$

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.
Using our characterization for TH_{1}-exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.
Using our characterization for TH_{1}-exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Theorem (GLPT)

A graph is cut-perfect if and only if it has no K_{5} minor and no chordless cycle of size larger than 4.

Some remarks

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.

Some remarks

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_{n} is only $\mathrm{TH}_{[n / 4]}$-exact.

Some remarks

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_{n} is only $\mathrm{TH}_{[n / 4]}$-exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.

Some remarks

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_{n} is only $\mathrm{TH}_{[n / 4]}$-exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies.

Some remarks

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_{n} is only $\mathrm{TH}_{[n / 4]}$-exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies. Results may vary.

The End

Thank You

