A new SDP approach to the Max-Cut problem

J. Gouveia¹ M. Laurent² P. Parrilo³ R. Thomas¹

¹ University of Washington

²CWI, Amsterdam

³Massachusetts Institute of Technology

25th April '09 / AMS Spring Western Section Meeting

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The Stable Set Problem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Stable Set Problem

Given a graph $G = (\{1, ..., n\}, E)$ we'll denote by S_G the collection of the **characteristic vectors** of all the **stable sets** of *G*.

The Stable Set Problem

Given a graph $G = (\{1, ..., n\}, E)$ we'll denote by S_G the collection of the **characteristic vectors** of all the **stable sets** of *G*. We define the **stable set polytope** of *G*, STAB(*G*), as the convex hull of S_G .

The Stable Set Problem

Given a graph $G = (\{1, ..., n\}, E)$ we'll denote by S_G the collection of the **characteristic vectors** of all the **stable sets** of *G*. We define the **stable set polytope** of *G*, STAB(*G*), as the convex hull of S_G .

Stable Set Problem - LP Formulation

Given a graph $G = (\{1, ..., n\}, E)$ and a weight vector $\omega \in \mathbb{R}^n$, solve the linear program

$$\alpha(\boldsymbol{G},\omega) := \max_{\boldsymbol{x} \in \mathrm{STAB}(\boldsymbol{G})} \langle \omega, \boldsymbol{x} \rangle.$$

Definition of Theta Body

Definition (Lovász \sim 1980)

Given a graph $G = (\{1, ..., n\}, E)$ we define its theta body, TH(*G*), as the set of all vectors $x \in \mathbb{R}^n$ such that

$$\left[\begin{array}{cc} 1 & x^t \\ x & U \end{array}\right] \succeq 0$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with diag(U) = x and $U_{ij} = 0$ for all $(i, j) \in E$.

Definition of Theta Body

Definition (Lovász \sim 1980)

Given a graph $G = (\{1, ..., n\}, E)$ we define its theta body, TH(*G*), as the set of all vectors $x \in \mathbb{R}^n$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U) = x$ and $U_{ij} = 0$ for all $(i, j) \in E$.

Theorem (Lovász \sim 1980)

The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the graph G is perfect.

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.

We say a polynomial f is k-sos modulo the ideal I if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod I$$
,

for some polynomials $h_1, ..., h_m$ with degree less or equal k.

(日) (日) (日) (日) (日) (日) (日)

k-Sums of Squares

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal.

We say a polynomial f is k-sos modulo the ideal I if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod I$$
,

for some polynomials $h_1, ..., h_m$ with degree less or equal k.

In particular, for any **p** in the zero set $\mathcal{Z}(I)$ we have

$$f(\mathbf{p}) = h_1^2(\mathbf{p}) + ... + h_m^2(\mathbf{p}) \ge 0,$$

so any *k*-sos polynomial is a nonnegative on the zero-set of the ideal.

Connection to Algebra

Theorem (Lovász \sim 1993)

TH(G) equals the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are 1-sos modulo $\mathcal{I}(S_G)$.

Connection to Algebra

Theorem (Lovász \sim 1993)

TH(G) equals the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are 1-sos modulo $\mathcal{I}(S_G)$.

This definition does not depend directly on the combinatorics of the graph, but only on the ideal $\mathcal{I}(S_G)$.

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$, as the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are k-sos modulo I.

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$, as the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are k-sos modulo I.

Remarks:

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$, as the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are k-sos modulo I.

Remarks:

•
$$\overline{\operatorname{conv}(\mathcal{Z}(I))} \subseteq \cdots \subseteq \operatorname{TH}_k(I) \subseteq \operatorname{TH}_{k-1}(I) \subseteq \cdots \subseteq \operatorname{TH}_1(I).$$

Theta Bodies of Ideals

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$, as the intersection of all half-spaces

$$H_f = \{x \in \mathbb{R}^n : f(x) \ge 0\}$$

where f ranges over all affine polynomials that are k-sos modulo I.

Remarks:

- $\overline{\operatorname{conv}(\mathcal{Z}(I))} \subseteq \cdots \subseteq \operatorname{TH}_k(I) \subseteq \operatorname{TH}_{k-1}(I) \subseteq \cdots \subseteq \operatorname{TH}_1(I).$
- If S ⊂ ℝⁿ is a finite set and I = I(S) then for some k, we have TH_k(I) = conv(S).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Combinatorial Moment Matrices

Let I be a polynomial ideal and

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of $\mathbb{R}[\mathbf{x}]/I$ and $\mathcal{B}_k = \{f_i : \deg(f_i) \leq k\}$ for all k.

Combinatorial Moment Matrices

Let I be a polynomial ideal and

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of $\mathbb{R}[\mathbf{x}]/I$ and $\mathcal{B}_k = \{f_i : \deg(f_i) \le k\}$ for all k. Consider the polynomial vector $f^k(\mathbf{x}) = (f_i(\mathbf{x}))_{f_i \in \mathcal{B}_k}$ then

$$(f^k(\mathbf{x}))(f^k(\mathbf{x}))^t = \sum_{f_i \in \mathcal{B}} A_i f_i(\mathbf{x})$$

for some symmetric matrices A_i .

Combinatorial Moment Matrices

Let I be a polynomial ideal and

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of $\mathbb{R}[\mathbf{x}]/I$ and $\mathcal{B}_k = \{f_i : \deg(f_i) \le k\}$ for all k. Consider the polynomial vector $f^k(\mathbf{x}) = (f_i(\mathbf{x}))_{f_i \in \mathcal{B}_k}$ then

$$(f^k(\mathbf{x}))(f^k(\mathbf{x}))^t = \sum_{f_i \in \mathcal{B}} A_i f_i(\mathbf{x})$$

for some symmetric matrices A_i . Given a vector y indexed by the elements in \mathcal{B} we define the **combinatorial moment matrix** of y as

$$M_{\mathcal{B},k}(y) = \sum_{f_i \in \mathcal{B}} A_i y_{f_i}.$$

Theta Bodies and Moment Matrices

Theorem (GPT)

Let I be a polynomial ideal and $\mathcal{B} = \{1, x_1, ..., x_n, ...\}$ a basis for $\mathbb{R}[\bm{x}]/I.$ Let

$$\mathcal{M}_{\mathcal{B},k}(I) = \{ y \in \mathbb{R}^{\mathcal{B}} : y_0 = 1; M_{\mathcal{B},k}(y) \succeq 0 \}$$

then

$$TH_k(I) = \overline{\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))}$$

where $\pi_{\mathbb{R}^n} : \mathbb{R}^{\mathcal{B}} \to \mathbb{R}^n$ is just the projection over the coordinates indexed by the degree one monomials.

Zero-dimensional Varieties

Definition

We call an ideal **TH**_k-exact if $TH_k(l) = \overline{conv(\mathcal{Z}(l))}$.

Zero-dimensional Varieties

Definition

We call an ideal **TH**_k-exact if $TH_k(I) = \overline{conv(\mathcal{Z}(I))}$.

A full characterization is possible for k = 1 in the case of vanishing ideals of finite sets in \mathbb{R}^{n} .

(日) (日) (日) (日) (日) (日) (日)

Zero-dimensional Varieties

Definition

We call an ideal **TH**_k-exact if $TH_k(I) = \overline{conv(\mathcal{Z}(I))}$.

A full characterization is possible for k = 1 in the case of vanishing ideals of finite sets in \mathbb{R}^n .

Theorem (GPT)

Let $S \subset \mathbb{R}^n$ be finite then $\mathcal{I}(S)$ is TH_1 -exact if and only if for every facet defining hyperplane H of the polytope conv(S) we have a parallel translate H' of H such that $S \subseteq H' \cup H$.

Examples in \mathbb{R}^3

The Max-Cut Problem

Definition

Given a graph G = (V, E) and a partition V_1, V_2 of V the set C of edges between V_1 and V_2 is called a **cut**.

The Max-Cut Problem

Definition

Given a graph G = (V, E) and a partition V_1, V_2 of V the set C of edges between V_1 and V_2 is called a **cut**.

The Problem

Given edge weights α we want to find which cut *C* maximizes

$$\alpha(\mathbf{C}) := \sum_{(i,j)\in\mathbf{C}} \alpha_{i,j}.$$

(日) (日) (日) (日) (日) (日) (日)

The Cut Polytope

Definition

The cut polytope of *G*, CUT(*G*), is the convex hull of the characteristic vectors $\chi_C \subseteq \mathbb{R}^E$ of the cuts of *G*, where $(\chi_C)_{ij} = -1$ if $(i, j) \in C$ and 1 otherwise.

The Cut Polytope

Definition

The cut polytope of *G*, CUT(*G*), is the convex hull of the characteristic vectors $\chi_C \subseteq \mathbb{R}^E$ of the cuts of *G*, where $(\chi_C)_{ij} = -1$ if $(i, j) \in C$ and 1 otherwise.

LP formulation

Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$mcut(\boldsymbol{G}, \alpha) = max_{x \in CUT(\boldsymbol{G})} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

・ロト・四ト・モー・ ヨー うへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Computing the ideal

Let I_G be the vanishing ideal of the characteristic vectors of the cuts of G = (V, E).

(ロ) (同) (三) (三) (三) (○) (○)

Computing the ideal

Let I_G be the vanishing ideal of the characteristic vectors of the cuts of G = (V, E). Given an even set $T \subseteq V$ we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*.

(ロ) (同) (三) (三) (三) (○) (○)

Computing the ideal

Let I_G be the vanishing ideal of the characteristic vectors of the cuts of G = (V, E). Given an even set $T \subseteq V$ we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let F_T be a *T*-join with a minimal number of edges d_T .

Computing the ideal

Let I_G be the vanishing ideal of the characteristic vectors of the cuts of G = (V, E). Given an even set $T \subseteq V$ we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let F_T be a *T*-join with a minimal number of edges d_T .

Theorem

If G is connected then the set

$$\{x_e^2 - 1 : e \in E\} \cup \{1 - \mathbf{x}^A : A \subseteq E, A \text{ circuit in } G\}$$

generates I_G, and

$$\mathcal{B} := \{ \mathbf{x}^{\mathcal{F}_{\mathcal{T}}} : \ \mathcal{T} \subseteq [\mathit{n}], \ |\mathcal{T}| \, \mathsf{even} \}$$

is a basis for $\mathbb{R}[\mathbf{x}]/I_G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

General Cut Theta body

Let \mathcal{B}_k be the set of all even $T \subseteq V$ such that $d_T \leq k$.

TheoremThe set $TH_k(I_G)$ is given by $\left\{ y \in \mathbb{R}^E : \right\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

General Cut Theta body

Let \mathcal{B}_k be the set of all even $T \subseteq V$ such that $d_T \leq k$.

Theorem

$$\begin{cases} \exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \text{ such that} \\ y \in \mathbb{R}^E : \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Cut Theta body

Let \mathcal{B}_k be the set of all even $T \subseteq V$ such that $d_T \leq k$.

Theorem

$$\exists M \succeq 0, M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \text{ such that } \\ \in \mathbb{R}^E : \quad M_{T,T} = 1 \ \forall \ T \in \mathcal{B}_k,$$

General Cut Theta body

Let \mathcal{B}_k be the set of all even $T \subseteq V$ such that $d_T \leq k$.

Theorem

$$egin{aligned} &\exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_k| imes |\mathcal{B}_k|} ext{ such that} \ &\mathcal{M}_{T,T} = 1 \ orall \ T \in \mathcal{B}_k, \ &\mathcal{M}_{e,\emptyset} = y_e \ orall e \in E \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General Cut Theta body

Let \mathcal{B}_k be the set of all even $T \subseteq V$ such that $d_T \leq k$.

Theorem

$$\begin{cases} y \in \mathbb{R}^E : & \exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \text{ such that } \\ M_{T,T} = 1 \ \forall \ T \in \mathcal{B}_k, \\ M_{e,\emptyset} = y_e \ \forall e \in E \\ M_{T,T'} = M_{R,R'} \text{ if } T\Delta T' = R\Delta R' \end{cases}$$

The First Cut Theta Body

Cut Theta Body

Given a graph G = (V, E) the body $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with

The First Cut Theta Body

Cut Theta Body

Given a graph G = (V, E) the body $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with diag(U) = 1,

The First Cut Theta Body

Cut Theta Body

Given a graph G = (V, E) the body $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with diag(U) = 1, if (e, f, g) is a triangle in G, $U_{e,f} = x_g$,

The First Cut Theta Body

Cut Theta Body

Given a graph G = (V, E) the body $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some a symmetric $U \in \mathbb{R}^{E \times E}$ with diag(U) = 1, if (e, f, g) is a triangle in G, $U_{e,f} = x_g$, and if $\{e, f, g, h\}$ forms a 4-cycle $U_{e,f} = U_{g,h}$.

Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

(日) (日) (日) (日) (日) (日) (日)

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

Using our characterization for TH_1 -exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

Using our characterization for TH_1 -exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Theorem (GLPT)

A graph is cut-perfect if and only if it has no K_5 minor and no chordless cycle of size larger than 4.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some remarks

 This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_n is only $TH_{\lceil n/4 \rceil}$ -exact.

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_n is only $TH_{\lceil n/4 \rceil}$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.

(日) (日) (日) (日) (日) (日) (日)

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_n is only $TH_{\lceil n/4 \rceil}$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies.

(日) (日) (日) (日) (日) (日) (日)

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle C_n is only $TH_{\lceil n/4 \rceil}$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies. Results may vary.

Thank You