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Chapter 7

Spectrahedral

Approximations of

Convex Hulls of

Algebraic Sets

João Gouveia† and Rekha R. Thomas

This chapter describes a method for finding spectrahedral approximations of the
convex hull of a real algebraic variety (the set of real solutions to a finite system
of polynomial equations). The procedure creates a nested sequence of convex ap-
proximations of the convex hull of the variety. Computations can be done modulo
the ideal generated by the polynomials which has several advantages. We examine
conditions under which the sequence of approximations converges to the closure of
the convex hull of the real variety, either asymptotically or in finitely many steps,
with special attention to the case in which the very first approximation yields a
semidefinite representation of the convex hull. These methods allow optimization,
or approximation of the optimal value, of a linear function over a real algebraic
variety via semidefinite programming.

7.1 Introduction

A central problem in optimization is to find the maximum (or minimum) value of
a linear function over a set S in R

n. For example, in a linear program

maximize {〈c, x〉 : Ax ≤ b}

with c ∈ R
n, A ∈ R

m×n, and b ∈ R
m, the set S = {x ∈ R

n : Ax ≤ b} is a
polyhedron, while in a semidefinite program,

maximize

{

〈c, x〉 : A0 +
n

∑

i=1

Aixi � 0

}
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294 Chapter 7. Convex Hulls of Algebraic Sets

with c ∈ R
n and symmetric matrices A0, A1, . . . , An, the feasible region is the set

S = {x ∈ R
n : A0 +

∑n
i=1 Aixi � 0} which is a spectrahedron. In both cases,

S is a convex semialgebraic set as it is convex and can be defined by a finite list
of polynomial inequalities. A real algebraic variety, which is the set of all real
solutions to a finite list of polynomial equations, is a special case of a semialgebraic
set. Optimizing a linear function over any set S ⊂ R

n, in particular, a real algebraic
variety, is equivalent to optimizing the linear function over the closure of conv(S),
the convex hull of S. In this chapter we describe a method to construct semidefinite
approximations of the closure of the convex hull of a real algebraic variety.

Representing the convex hull of a real algebraic variety is a multifaceted prob-
lem that arises in many contexts in both theory and practice. In Chapter 5 we
saw a method using dual projective varieties for explicitly finding the polynomials
that describe the boundary of the convex hull of a real variety. These bounding
polynomials use the same variables as those describing the variety and can be highly
complicated. Their computation boils down to eliminating variables from a larger
polynomial system and can be challenging in practice, although they can be com-
puted using existing computer algebra packages in examples with a small number of
variables. If one is allowed to use more variables than those describing the variety,
then there is more freedom in finding representations and approximations and the
key idea then is to express the convex hull implicitly as the projection of a higher-
dimensional object. This approach is more flexible than the former and has the
potential to yield a representation of a complicated set as the projection of a simple
set in higher dimensions. The method we will describe adopts this philosophy for
finding approximations and representations of the convex hull of a real algebraic
variety.

We present a procedure for finding a sequence of approximations of the convex
hull of a real algebraic variety (sometimes just called an algebraic set) in the form of
projected spectrahedra. While the convex hull of a real algebraic variety is a convex
semialgebraic set, recall from Chapter 6 that it is not known which convex semial-
gebraic sets are projected spectrahedra. Regardless, we will develop an automatic
method that finds semidefinite representations (as projected spectrahedra) for a
sequence of outer approximations of conv(S), when S is an algebraic set. In many
cases, these approximations will converge to conv(S). If our procedure yields an
exact representation of conv(S) as a projected spectrahedron, then as a by product
we can optimize a linear function over S by solving a semidefinite program. In the
nice cases where the representation uses spectrahedra of small size (relative to the
size of S), semidefinite programming becomes an efficient method for optimizing a
linear function over S. In fact, there are several families of algebraic sets where this
spectrahedral approach yields polynomial time algorithms for linear optimization.
Similarly, the spectrahedral approach can, in some cases, yield efficient algorithms
for finding good approximations of the optimal value of a linear function over S.

While we will see many examples of real algebraic varieties (and their defining
ideals) for which our method yields an exact representation of its convex hull in a
few iterations of our procedure, many open questions remain. For instance, there
is no complete understanding of when the method is guaranteed to converge to the
convex hull of the variety in finitely many steps of the procedure. Even in the
cases where finite convergence is guaranteed, good upper bounds on the number of
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iterations required by the procedure are lacking. The work presented in this chapter
was inspired by a question posed by Lovász in [19] that asked for a characterization
of ideals for which the first approximation in our hierarchy will yield a semidefinite
representation of the convex hull of the variety of the ideal. In Section 7.3 we answer
this question for finite varieties. The case of infinite varieties is far less understood.
We identify conditions that prevent finite convergence of these approximations to
the closure of the convex hull of the variety. However, again a full characterization
is missing. Thus, the material in this chapter offers both advances in spectrahedral
representations of algebraic sets as well as many avenues for further research.

This chapter is organized as follows. In Section 7.2 we explain the proce-
dure for finding spectrahedral approximations of the convex hull of an algebraic
set. These techniques were developed in [8], coauthored with Parrilo. One of the
key theorems needed in this section (Theorem 7.6) was strengthened in this presen-
tation with the help of Greg Blekherman. We illustrate the method with various
examples and explain the underlying computations. In Section 7.3 we discuss the
situations in which this method converges, either asymptotically or finitely, to an
exact semidefinite representation of the convex hull of the variety. The most useful
scenario is when the first approximation yields an exact semidefinite representation
of the convex hull of the variety. We characterize all finite varieties for which this
happens. We conclude in Section 7.4 with examples from combinatorial optimiza-
tion where the underlying varieties are all finite. The methods we describe have
algorithmic impact on certain classes of combinatorial optimization problems and
the algebra becomes endowed with rich combinatorics in these cases.

7.2 The Method

Let f1, . . . , fm ∈ R[x1, . . . , xn] =: R[x] be polynomials and

VR(f1, . . . , fm) := {x ∈ R
n : f1(x) = f2(x) = · · · = fm(x) = 0}

be their set of real zeros. We are interested in representing conv(VR(f1, . . . , fm)),
the convex hull of VR(f1, . . . , fm) in R

n as projected spectrahedra.
Recall that the ideal generated by f1, . . . , fm in R[x] is the set

I = 〈f1, . . . , fm〉 =
{

m
∑

i=1

gifi : gi ∈ R[x], m ∈ N

}

⊂ R[x].

The real variety of I is the set VR(I) := {x ∈ R
n : h(x) = 0 for all h ∈ I} of

real zeros of all polynomials in I. Note that if s ∈ VR(f1, . . . , fm), then s ∈ VR(I)
since fi(s) = 0 implies that h(s) =

∑m
i=1 gi(s)fi(s) = 0 for all h ∈ I. Con-

versely, if s ∈ VR(I), then for all i = 1, . . . ,m, fi(s) = 0 since fi ∈ I. Therefore,
VR(f1, . . . , fm) = VR(I), and our goal can be viewed more generally as wanting to
find semidefinite representations of the convex hull of the real variety of an ideal in
R[x], or approximations of it.

For any set S ⊆ R
n, the closure of conv(S) is exactly the intersection of all

closed half spaces {x ∈ R
n : l(x) ≥ 0} as l varies over all linear polynomials that

are nonnegative on S. Throughout this chapter, linear polynomials include affine
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linear polynomials (those with a constant term). In particular, given an ideal I,

cl(conv(VR(I))) =
⋂

l linear, l|VR(I)≥0

{x : l(x) ≥ 0}.

It is not so clear how to work with this description. Even for a single linear polyno-
mial l, checking whether l(x) is nonnegative on VR(I) is a difficult task. A natural
idea is to relax the condition l|VR(I) ≥ 0 to something easier to check, at the risk
of losing some of the l(x) in the above intersection, and obtaining a superset of
cl(conv(VR(I))). As seen already in Chapters 3 and 4, the classical method to
certify the nonnegativity of a polynomial on all of Rn is to write it as a sum of
squares (sos) of other polynomials. In our case, we just need to certify that l(x) is
nonnegative on VR(I), a subset of Rn.

Let Σ denote the set of all sos polynomials in R[x], R[x]k the set of all poly-
nomials in R[x] of degree at most k, and Σ2k the set of all sos polynomials

∑

h2
j ,

where hj ∈ R[x]k. Nonnegativity of l(x) on VR(I) is guaranteed if

l(x) = σ(x) +

m
∑

i=1

gi(x)fi(x) (7.1)

for σ(x) ∈ Σ and gi ∈ R[x], since then for all s ∈ VR(I), l(s) = σ(s) ≥ 0. In
Chapter 3 we saw that semidefinite programming can be used to check whether a
polynomial is sos. In (7.1) we need to find both σ(x) and the polynomials gi to
write l(x) as sos mod I. Therefore, to check (7.1) in practice, we impose degree
restrictions and proceed in one of two possible ways.

(i) In the first method, we ask that σ ∈ Σ2k and gifi ∈ R[x]2k for a fixed positive
integer k and, if so, say that l(x) is k-sos mod {f1, . . . , fm}. This is the basic
idea that underlies Lasserre’s moment method for approximating the convex
hull of a semialgebraic set described in Chapter 6.

(ii) In the second method, we ask only that σ ∈ Σ2k for a fixed positive integer k
which reduces (7.1) to l(x) = σ(x)+h(x) where h(x) ∈ I. If this is the case, we
say that l(x) is k-sos mod I. This method is more natural if one is interested
in the geometry of VR(I) and conv(VR(I)) as it removes the dependence of the
method on the choice of a particular generating set of I. The only issue is if
the computation can be done in practice at the level of the ideal I and not
the input f1, . . . , fm.

Both methods yield a hierarchy of convex relaxations of conv(VR(I)) obtained
as the intersection of all half spaces {x : l(x) ≥ 0} as l(x) ranges over the linear
polynomials that are k-sos in the sense of the method. Since if l(x) is k-sos mod
{f1, . . . , fm} then it is also k-sos mod I, method (ii) yields a relaxation that is no
worse than that from method (i) for each value of k. On the other hand, method
(ii) requires the knowledge of a basis of R[x]/I as we will see below, which for some
problems may be hard to compute in practice. To see the computational differences
that can occur between the two methods, consult Remark 7.14.
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In this chapter we focus on method (ii). The kth iteration of (ii) yields a
closed convex set, called the kth theta body of I, defined as

THk(I) := {x ∈ R
n : l(x) ≥ 0 for all l linear and k-sos mod I}.

Clearly VR(I), and hence cl(conv(VR(I))), is contained in THk(I) for all k. Thus the
theta bodies of I form a hierarchy of closed convex approximations of conv(VR(I))
as follows:

TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ THk(I) ⊇ THk+1(I) ⊇ · · · ⊇ cl(conv(VR(I))).

An immediate question is when this hierarchy converges to cl(conv(VR(I))) either
finitely or asymptotically. Finite convergence allows an exact representation of
cl(conv(VR(I))) as a theta body which would be extremely useful if we can represent
and optimize over a theta body efficiently. We will show in Section 7.2.2 that each
THk(I) is the closure of a projected spectrahedron. This enables optimization
over a real variety using semidefinite programming. In Section 7.4, we will learn
the motivation for the name “theta bodies.” We begin with some background on
working modulo a polynomial ideal.

7.2.1 Sum of Squares Modulo an Ideal

Let I ⊆ R[x] be an ideal and VR(I) be its real variety. For two polynomials f, g ∈
R[x], if f − g ∈ I, then f(s) = g(s) for all s ∈ VR(I). If f − g ∈ I, then f and g
are said to be congruent mod I, written as f ≡ g mod I. Congruence mod I is an
equivalence relation on R[x]. The equivalence class of f is denoted as f + I, and the
set of equivalence classes is denoted as R[x]/I. The set R[x]/I is both an R-vector
space and a ring over R where addition, scalar multiplication, and multiplication
are defined as follows. Given f, g ∈ R[x] and λ ∈ R, (f + I) + (g+ I) = (f + g) + I,
λ(f + I) = λf + I, and (f + I)(g + I) = fg + I. We will denote vector space bases
of R[x]/I by B in this chapter. By the degree of an equivalence class f + I, we mean
the smallest degree of an element in the class. With this definition, we may assume
that the elements of B are listed in order of increasing degree. Further, for each
k ∈ N, the set Bk of all elements in B of degree at most k is then well-defined.

Computations in R[x]/I can be done via Gröbner bases of I. Recall that if
G is any reduced Gröbner basis of I, then a polynomial h lies in I if and only
if the normal form of h with respect to G is zero. Therefore, f ≡ g mod I if
and only if the normal form of f − g with respect to G is zero, or equivalently,
f and g have the same normal form with respect to G. This provides an algorithm
to check whether two polynomials are congruent mod I. The unique normal form
of all polynomials in the same equivalence class serves as a canonical representative
for this class given G. If M is the initial ideal of I corresponding to the reduced
Gröbner basis G, then recall that the standard monomials of M form an R-vector
space basis for R[x]/I. Therefore, the normal form of a polynomial with respect
to G can be written as an R-linear combination of the standard monomials of the
initial ideal M . The vector space R[x]/I has many other bases, some of which may
be better suited for computations than the standard monomial bases coming from
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an initial ideal of I. See Chapter 3 for a discussion of alternative bases of R[x] and
hence R[x]/I. In this chapter we will use only a standard monomial basis of R[x]/I.
A quick tour of the algebraic notions needed in this chapter can be found in the
appendix. For a thorough introduction to the theory of Gröbner bases and related
notions, we refer the reader to [6].

We now come to sum of squares polynomials modulo an ideal I, and the ques-
tion of how to check whether a polynomial f ∈ R[x] is k-sos mod I. A polynomial
f ∈ R[x] is sos mod I if f ≡

∑

h2
j mod I for some hj ∈ R[x], and k-sos mod I

if hj ∈ R[x]k for all j. Hence, the equivalence classes of polynomials that are sos
mod I (respectively, k-sos mod I) are precisely those in

Σ/I := {σ + I : σ ∈ Σ}

(respectively, Σ2k/I). It is worthwhile to note that many polynomials that are not
sos in R[x] can become sos mod an ideal I. For instance, the univariate linear
polynomial x is congruent to x2 mod the ideal 〈x − x2〉 ⊂ R[x].

Let [x]k denote the vector of all monomials in R[x]k in a fixed order, say degree
lexicographic. Recall from Chapter 3 that a polynomial f ∈ Σ2k if and only if there
exists a positive semidefinite matrix A, denoted A � 0, such that f = [x]Tk A[x]k.
The matrix A can be solved for using semidefinite programming and a Cholesky
factorization of it as A = V TV yields an sos expression

∑

h2
j for f , where hj(x)

is the inner product of the jth row of V and the vector of monomials [x]k. This
method can be adapted to check whether f is k-sos mod I as follows. The vector
[x]k can be replaced by the vector of monomials from Bk, denoted as [x]Bk

, since
R[x]k/I is spanned by Bk. Since the size of Bk is no larger than the size of a
basis of R[x]k, this can decrease the size of the unknown matrix A considerably,
making the final SDP much smaller than before. Setting up A as a symmetric
matrix of indeterminates Aij and multiplying out [x]TBk

A[x]Bk
, we get a polynomial

g ∈ R[x]2k. Let the normal forms of f and g with respect to a reduced Gröbner
basis G of I be f ′ and g′, respectively. Then since f ≡ f ′ and g ≡ g′ mod I and f ′

and g′ are fully reduced with respect to G, we have that f ≡ g mod I if and only if
f ′ = g′. Therefore, to check if f is k-sos mod I, we equate the coefficients of f ′ and
g′ for like monomials and check whether the resulting linear system in the Aij ’s has
a solution with A � 0.

Example 7.1. Consider the polynomial f(x, y) = x4 + y4 + 2x2y2 − x2 + y2 and
the principal ideal I = 〈f〉 ⊂ R[x, y]. The real variety VR(I), which is the set of real
zeros of f , is a Bernoulli lemniscate (shown in Figure 7.1) with foci (± 1√

2
, 0).

It is easy to check that the horizontal line y = 1√
8
is a bitangent to VR(I) and

that l(x, y) := −y + 1√
8
is nonnegative on VR(I). Since f has degree 4 and l has

degree 1, l cannot be 1-sos mod I but has a chance to be 2-sos mod I. We apply
the method described above to verify this.

The set {f} is a reduced Gröbner basis of I with respect to every term order.
The initial ideal of I under the total degree order with ties broken lexicographically
with x > y, is generated by x4. Hence a basis B for R[x, y]/I is given by the infinite
set of standard monomials of 〈x4〉 ⊆ R[x, y] which are all the monomials in x and y
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Figure 7.1. The lemniscate x4 + y4 + 2x2y2 − x2 + y2 = 0 with a bitangent.

that are not divisible by x4. In particular, B1 = {1, x, y}, B2 = {1, x, y, x2, xy, y2},
and [x]B2 = (1 x y x2 xy y2).

The general 2-sos polynomial mod I is therefore of the form

g =

















1
x
y
x2

xy
y2

















T



























a11 a12 a13 a14 a15 a16

a12 a22 a23 a24 a25 a26

a13 a23 a33 a34 a35 a36

a14 a24 a34 a44 a45 a46

a15 a25 a35 a45 a55 a56

a16 a26 a36 a46 a56 a66











































1
x
y
x2

xy
y2

















,

where A = (aij) � 0. Multiplying out the above expression we get that

g := a11 + 2a12x + 2a13y + (2a14 + a22)x
2 + (2a23 + 2a15)xy + (2a16 + a33)y

2

+ 2a24x
3 + (2a34 + 2a25)x

2y + (2a26 + 2a35)xy
2 + 2a36y

3 + a44x
4 + 2a45x

3y
+ (a55 + 2a46)x

2y2 + 2a56xy
3 + a66y

4.

We now reduce g by the Gröbner basis {f}, which means replacing every
occurrence of x4 with

−y4 − 2x2y2 + x2 − y2,

and obtain the normal form of g, which is

g′ := a11 + 2a12x + 2a13y + (2a14 + a22 + a44)x
2 + (2a23 + 2a15)xy + (2a16 + a33

− a44)y
2 + 2a24x

3 + (2a34 + 2a25)x
2y + (2a26 + 2a35)xy

2 + 2a36y
3 + 2a45x

3y
+ (a55 + 2a46 − 2a44)x

2y2 + 2a56xy
3 + (a66 − a44)y

4.

Since l(x, y) = −y + 1√
8
is already reduced with respect to {f}, if l is 2-sos

mod I, then l = g′, and hence to verify this, we need to check whether there exists
A � 0 such that a11 = 1√

8
, 2a13 = −1, and all other coefficients of g′ equal zero.

Writing out all the linear conditions, we need to check whether there exists a positive
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semidefinite matrix of the form
















1√
8

0 − 1
2 a14 a15 a16

0 a22 −a15 0 a25 a26
− 1

2 −a15 a33 −a25 −a26 0
a14 0 −a25 a44 0 a46
a15 a25 −a26 0 a55 0
a16 a26 0 a46 0 a44

















that satisfies the conditions

2a14 + a22 + a44 = 0, 2a16 + a33 − a44 = 0, a55 + 2a46 − 2a44 = 0.

Check that the matrix

A =

















2−3/2 0 −1/2 −2−3/2 0 −2−3/2

0 0 0 0 0 0
−1/2 0 21/2 0 0 0

−2−3/2 0 0 2−1/2 0 2−1/2

0 0 0 0 0 0

−2−3/2 0 0 2−1/2 0 2−1/2

















is positive semidefinite and satisfies the conditions given above. This matrix A
factors as A = V TV with

V =

[

−2−5/4 0 0 2−1/4 0 2−1/4

−2−5/4 0 21/4 0 0 0

]

,

and hence,

(

1√
8
− y

)

≡ 1

4
√
2

(

2x2 + 2y2 − 1
)2

+
√
2

(

y − 1√
8

)2

mod I.

In general, finding exact sos expressions, as above, is difficult. This particular sos
decomposition was found by Bruce Reznick using a series of tricks. He showed that

( 1√
8
− y) + 1√

2
((x2 + y2)2 − (x2 − y2))

= 1
4
√
2

(

2x2 + 2y2 − 1
)2

+
√
2
(

y − 1√
8

)2

.

In practice, one can use an SDP solver to find A. Using MATLAB, to do this
computation in YALMIP [17] we input the following code:

sdpvar a14 a15 a16 a22 a25 a26 a33 a44 a46 a55

A=[ 1/sqrt(8) 0 -1/2 a14 a15 a16;

0 a22 -a15 0 a25 a26;

-1/2 -a15 a33 -a25 -a26 0 ;

a14 0 -a25 a44 0 a46;

a15 a25 -a26 0 a55 0 ;

a16 a26 0 a46 0 a44];
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l1=2*a14 + a22 + a44;

l2=2*a16 + a33 - a44;

l3=a55 + 2*a46 -2*a44;

solvesdp([A>0,l1==0,l2==0,l3==0],0);

We ran this code with SeDuMi 1.1 as the underlying SDP solver in YALMIP. The
matrix can now be recovered by simply typing double(A) and we obtain

A =

















0.3536 0.0000 −0.5000 −0.4052 0.0000 −0.1985
0.0000 0.1034 0.0000 0.0000 −0.2924 0.0000
−0.5000 0.0000 1.1041 0.2924 0.0000 0.0000
−0.4052 0.0000 0.2924 0.7071 0.0000 0.2936
0.0000 −0.2924 0.0000 0.0000 0.8270 0.0000
−0.1985 0.0000 0.0000 0.2936 0.0000 0.7071

















,

in which the entries are shown up to four digits of precision. After factorizing A as
V TV we obtain the sos decomposition:

(

0.5946427499− 0.8408409925 y− 0.6814175403 x2− 0.3338138740 y2
)2

+ (0.3215587038 x− 0.9093207446 xy)
2

+
(

0.6301479392 y− 0.4452348146 x2− 0.4454261796 y2
)2

+
(

0.2110357686 x2− 0.6263671431 y2
)2

+ 0.0001357833655x2y2

+ 0.004928018144 y4,

which simplifies to

0.3536000000− y
+ 0.707(x4 + 2x2y2 + y4 − x2 + y2)
+ 10−11(8.089965190 x2y − 3.247827064 y3).

This provides fairly strong computational evidence that l = 1√
8
− y is 2-sos mod I

even though it is not an exact 2-sos representation of l mod I.
The above approach becomes cumbersome as we search for higher and higher

degree sums of squares modulo an ideal. Luckily there are ways of using the existing
software to simplify our input. In our example, checking whether l is 2-sos modulo
I is the same as checking if there exists some λ ∈ R such that l(x, y) + λf(x, y) is
sos, which can be done via YALMIP with the following commands:

sdpvar x y lambda

f=x^4+y^4+2*x^2*y^2-x^2+y^2;

l=1/sqrt(8)-y;

F=sos(l+lambda*f);

solvesos(F,0,[],lambda);

sdisplay(sosd(F))

The last command will actually display a list of polynomials whose squares
sum up to (approximately) l(x, y) + λf(x, y). In our example, the following output
is obtained
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’-0.5919274724+0.8880*y+0.6222*x^2+0.3571*y^2’

’-0.03240303655-0.5699*y+0.4037*x^2+0.6602*y^2’

’-0.3036*x+0.8587*x*y’

’-0.0461010126-0.1559*y+0.3963*x^2-0.3792*y^2’

’9.2958e-05*x+3.2868e-05*x*y’

’3.789017278e-05+1.3396e-05*y+1.4209e-05*x^2+4.7355e-06*y^2’

which should be interpreted as saying that l(x, y) is the sum of squares of the
polynomials shown on each line. Note that the last two polynomials in the list
above again point to the fact that the software only provided reasonable evidence
that l(x, y) is 2-sos mod I.

The above computations also give a glimpse into the intertwining of algebraic
and numerical methods that is prevalent in convex algebraic geometry. The question
of whether a polynomial is a sum of squares modulo an ideal is purely algebraic.
However, the search for an sos expression is done via semidefinite programming
which is solved using numerical methods. The answer provided by these numerical
solvers is often not exact. Massaging the numerical information into a certifiable
answer can sometimes be an art.

Example 7.2. Consider the polynomial g(x, y) := y2(1− x2)− (x2 +2y− 1)2 and
the ideal I = 〈g(x, y)〉 defining the bicorn curve shown in Figure 7.2. It is clear
that y ≥ 0 over the curve. Instead of checking if y is k-sos mod I for some k (which
is never the case as we will see in the next section), it is in general more useful to
search for the smallest µ such that y + µ is k-sos mod I. That way, if y is not sos
mod I, we will at least obtain a valid inequality y+µ ≥ 0 on VR(I) which will then
be valid for THk(I). In general, y+µ is k-sos mod I if there exists some polynomial
h(x, y) of degree 2k− 4 such that (y+µ) + h(x, y)g(x, y) is sos. As before, this can
be checked easily using YALMIP.

k=2;

sdpvar x y mu

[h,c]=polynomial([x y],2*k-4);

g=y^2*(1-x^2)-(x^2+2*y-1)^2;

F=sos(y+mu-h*g);

solvesos(F,mu,[],[mu;c]);

Figure 7.2. A bicorn curve.
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By successively setting k to be 2, 3, and 4, we get that the minimum value of µ
(recovered using double(mu)) is 0.1776, 0.0370, and 0.0161, respectively. So while
µ is approaching 0, it seems that y is at least not 4-sos mod I.

7.2.2 Theta Bodies

We now come back to theta bodies of the ideal I and their representations. Recall
that the kth theta body of I is

THk(I) := {x ∈ R
n : l(x) ≥ 0 for all l linear and k-sos mod I}.

Given any polynomial, it is possible to check whether it is k-sos mod I using Gröbner
bases and semidefinite programming as seen in Section 7.2.1. The bottleneck in us-
ing the definition of THk(I) in practice is that it requires knowledge of all the linear
polynomials (infinitely many) that are k-sos mod I. To overcome this difficulty we
will now derive an alternative description of THk(I) as a projected spectrahedron
(up to closure) which enables computations via semidefinite programming.

We may assume that there are no linear polynomials in the ideal I since
otherwise, some variable xi is congruent to a linear combination of other variables
mod I, and we may work in a smaller polynomial ring. Therefore, R[x]1/I ∼= R[x]1
and {1 + I, x1 + I, . . . , xn + I} can be completed to a basis B of R[x]/I. Recall
the definition of degree of f + I. We will assume that each element in a basis
B = {fi+I} of R[x]/I is represented by a polynomial whose degree equals the degree
of its equivalence class, and that B is ordered so that deg(fi + I) ≤ deg(fi+1 + I).
Further, Bk denotes the ordered subset of B of degree at most k.

Definition 7.3. Let I ⊆ R[x] be an ideal. A basis B = {f0+I, f1+I, . . .} of R[x]/I
is a θ-basis if it has the following properties:

1. B1 = {1 + I, x1 + I, . . . , xn + I}.

2. If deg(fi + I), deg(fj + I) ≤ k, then fifj + I is in the R-span of B2k.

Our goal will be to first express the kth theta body THk(I) as the closure
of a certain set of linear functionals on the k-sos polynomials mod I. This will be
achieved in Theorem 7.6. In the case where I contains the polynomials x2

i − xi

for all i = 1, . . . , n, the closure can be removed (Theorem 7.8). Such ideals appear
in combinatorial optimization and hence this result will have an important role in
Section 7.4. After this, we use a θ-basis of the quotient ring R[x]/I to turn the
description of THk(I) in Theorem 7.6 to an explicit semidefinite representation.
This allows concrete computations and examples. We proceed toward Theorem 7.6.

In what follows, we identify a linear polynomial α + 〈a, x〉 ∈ R[x]1 with the
vector (α, a) ∈ R

n+1. Let Σk
1(I) := {f+I : f ∈ R[x]1, f k-sos mod I}. Then Σk

1(I)
is a cone in the vector space R[x]1/I ∼= R[x]1, and its dual cone Σk

1(I)
∗ lives in

(R[x]1/I)
∗ ∼= R[x]∗1 ∼= R

n+1. Thus,

Σk
1(I)

∗ = {(t, x) ∈ R× R
n : αt+ 〈a, x〉 ≥ 0 for all (α, a) ∈ Σk

1(I)}.
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Consider the hyperplane H := {(1, x) : x ∈ R
n} in R

n+1. We may think of H also
as H = {L ∈ (R[x]1/I)

∗ : L(1 + I) = 1}. It then follows immediately that

{1} × THk(I) = Σk
1(I)

∗ ∩H. (7.2)

Lemma 7.4. The hyperplane H intersects the relative interior of Σk
1(I)

∗.

Proof. A sufficient condition for a hyperplane L to intersect the relative interior of
a closed convex cone P is that cl(cone(relint(P ∩ L))) = P . If L does not intersect
the relative interior of P , then P ∩ L is contained in some proper face F of P
(possibly the empty face). Therefore, cl(cone(relint(P ∩ L))) is also contained in
this face which is a proper subset of P .

By (7.2), C := {(λ, λx) : λ ≥ 0, x ∈ relint(THk(I))} is the cone over the
relative interior of Σk

1(I)
∗∩H . We will show that cl(C) = Σk

1(I)
∗. Let (α, a) ∈ Σk

1(I)
and x ∈ relint(THk(I)). Then since x ∈ THk(I), 0 ≤ α + 〈a, x〉 = 〈(α, a), (1, x)〉
which implies that 0 ≤ 〈(α, a), (λ, λx)〉 for all λ ≥ 0. Hence C ⊆ Σk

1(I)
∗, and since

Σk
1(I)

∗ is closed, cl(C) ⊆ Σk
1(I)

∗.
Suppose Σk

1(I)
∗ 6⊆ cl(C). Then there exists (t, x) ∈ Σk

1(I)
∗\cl(C). Since the

constant polynomial 1 lies in Σk
1(I) and (t, x) ∈ Σk

1(I)
∗, t ≥ 0. Also, since cl(C)

is closed and there exists (s, y) ∈ C with s > 0, we can find a small enough ǫ > 0
such that (t, x) + ǫ(s, y) ∈ Σk

1(I)
∗\cl(C), and the first coordinate of (t, x) + ǫ(s, y)

is positive. Scaling this element, we may assume that there is an element (1, x) ∈
Σk

1(I)
∗\cl(C). Since (1, x) ∈ Σk

1(I)
∗, α + 〈a, x〉 ≥ 0 for all (α, a) ∈ Σk

1(I), which
implies that x ∈ THk(I) and hence (1, x) ∈ cl(C), which is a contradiction.

We will also need the following lemma which can be proved using standard
tools of convex geometry.

Lemma 7.5. Let P be a closed convex cone and Q be a convex subcone of P such
that cl(Q) = P . Then relint(P ) ⊆ Q, and for any affine hyperplane H passing
through the relative interior of P , P ∩H = cl(Q ∩H).

We now examine the cone Σk
1(I)

∗ more closely. Let Σk(I) denote the set of
all f + I such that f is k-sos mod I. Then Σk(I) = Σ2k/I is a cone in R[x]2k/I,
and Σk

1(I) = Σk(I)∩R[x]1/I. Therefore, the dual cone of Σk
1(I) in (R[x]/I)∗ is the

closure of the projection of Σk(I)∗ into (R[x]1/I)
∗ as explained in Section 2.1 of

Chapter 5. Hence we may identify Σk
1(I)

∗ with the closure of the set

Sk(I) := {(L(1 + I), L(x1 + I), . . . , L(xn + I)) : L ∈ Σk(I)∗}.

Further, define Qk(I) :=
{

(L(x1 + I), . . . , L(xn + I)) : L ∈ Σk(I)∗, L(1 + I) = 1
}

.
We will see shortly that Qk(I) is a projected spectrahedron, but first we establish
the connection between THk(I) and Qk(I).

Theorem 7.6. THk(I) = cl(Qk(I)).
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Proof. Since {1} ×Qk(I) = Sk(I) ∩H , we have {1} × cl(Qk(I)) = cl(Sk(I) ∩H).
Since cl(Sk(I)) = Σk

1(I)
∗, it follows from (7.2) that {1} × THk(I) = cl(Sk(I)) ∩H .

Therefore, the theorem will follow if we can show that

cl(Sk(I)) ∩H = cl(Sk(I) ∩H).

By Lemma 7.5, this equality holds if H intersects Sk(I) in its relative in-
terior. Again, by Lemma 7.5, relint(Σk

1(I)
∗) ⊆ Sk(I). Lemma 7.4 showed that H

intersects the relative interior of Σk
1(I)

∗ and hence the relative interior of Sk(I).

We now focus on an important situation where the closure is not needed in
Theorem 7.6. In many cases in practice, we are interested in finding the convex hull
of a set S ⊆ R

n that may not be presented as the real variety of an ideal. However,
the approximation THk(I) of conv(S) is defined with respect to an ideal I whose
real variety is S. In this case, the canonical choice for such an ideal is the vanishing
ideal of S, denoted as I(S), which consists of all polynomials in R[x] that vanish
on S. The real radical of an ideal I ⊆ R[x] is the ideal

R
√
I =

{

f ∈ R[x] : f2m +
∑

g2i ∈ I,m ∈ N, gi ∈ R[x]
}

,

and the ideal I is said to be real radical if I = R
√
I. The real Nullstellensatz [21]

states that I is real radical if and only if I = I(VR(I)). This is the analogue of
Hilbert’s Nullstellensatz for real algebraic varieties. Computing any ideal I such that
VR(I) = S might be hard, and in general, computing I(S), given S, might also be
hard. However, in many cases of practical interest, I(S) is available. A large source
of such examples is combinatorial optimization, where S is usually a finite set of
0/1 points for which a generating set for I(S) can be computed using combinatorial
arguments. We will see several such examples in Section 7.4. If S is a subset of
{0, 1}n and I = I(S), then Theorem 7.6 can be improved to Theorem 7.8. We first
prove a lemma.

Lemma 7.7. Let J be any ideal that contains x2
i − xi for all i = 1, . . . , n. Then

1 + J is in the relative interior of Σk(J) = {f + J : f is k-sos mod J〉.

Proof. Let I := 〈x2
i − xi for all i = 1, . . . , n〉. We will first show that 1 + I is in

the relative interior of Σk(I) ⊆ R[x]2k/I. The cone Σk(J) is a projection of Σk(I)
since I ⊆ J , and hence, if 1 + I ∈ relint(Σk(I)), then 1 + J ∈ relint(Σk(J)). 1 + I
is in the relative interior of Σk(I), which is a cone in the vector space R[x]2k/I.

We will show that for any polynomial p ∈ R[x]2k, (1 + ǫp) + I ∈ Σk(I) for
some ǫ > 0. Since we are working modulo I, we may assume that every monomial
in p is square-free. Further, since every monomial is a square modulo I, it suffices
to show that (1− ǫq)+I ∈ Σk(I) for any square-free monomial q of degree at most
2k and some ǫ > 0. Write q = q1q2 for some square-free monomials q1, q2 of degree
at most k. Now note that

(1 − q2)
2 = 1− 2q2 + q22 ≡ 1− q2 mod I, and

(1− q1 + q2)
2 = 1 + q21 + q22 − 2q1 + 2q2 − 2q1q2 ≡ 1− q1 + 3q2 − 2q1q2 mod I.
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Therefore, (1 − q1 + q2)
2 + 3(1 − q2)

2 + q21 ≡ 4 − 2q1q2 = 4 − 2q mod I. Since
q1, q2 ∈ R[x]k, it follows that (4− 2q)+I ∈ Σk(I), which implies that (1− q

2 )+I ∈
Σk(I).

Theorem 7.8. If S ⊆ {0, 1}n and I = I(S), then THk(I) = Qk(I).

Proof. Since S ⊆ {0, 1}n, its vanishing ideal I = I(S) contains x2
i − xi for all

i = 1, . . . , n, and so by Lemma 7.7, 1 + I is in the relative interior of Σk(I).
Hence, Σk

1(I)
∗ = Sk(I). (No closure operation is needed by [24, Corollary 16.4.2].)

Therefore,

{1} × THk(I) = Σk
1(I)

∗ ∩H = Sk(I) ∩H = {1} ×Qk(I),

and the result follows.

We have thus far seen that the kth theta body THk(I) is the closure of Qk(I).
However, this description is still abstract and in order to work with theta bodies
in practice, we now give an explicit (coordinate based) description of Qk(I) using
a basis of R[x]/I which will make it transparent that Qk(I) is the projection of
a spectrahedron. This involves the theory of moments and moment matrices as
explained below.

Fix a θ-basis B = {fi + I} of R[x]/I and define [x]Bk
to be the column vector

formed by all the elements of Bk in order. Then [x]Bk
[x]TBk

is a square matrix
indexed by Bk and its (i, j)-entry is equal to fifj + I. By hypothesis, the entries of
[x]Bk

[x]TBk
lie in the R-span of B2k. Let { λl

i,j } be the unique set of real numbers

such that fifj + I =
∑

fl+I∈B2k
λl
i,j(fl + I).

Definition 7.9. Let I, B, and { λl
i,j } be as above. Let y be a real vector indexed

by B2k with y0 = 1, where y0 is the first entry of y, indexed by the basis element
1 + I. The kth reduced moment matrix MBk

(y) of I is the real matrix indexed by
Bk whose (i, j)-entry is [MBk

(y)]i,j =
∑

fl+I∈B2k
λl
i,jyl.

We now give examples of reduced moment matrices. For simplicity, we often
write f for f + I. Also, in this chapter we consider only monomial bases of R[x]/I
(i.e., fi is a monomial for all fi + I ∈ B) which we can obtain via Gröbner basis
theory. In this case, [x]Bk

is a vector of monomials and we identify the vector [x]Bk

with the vector of monomials that represent the elements of Bk. The method is to
compute a reduced Gröbner basis of I and take B to be the equivalence classes of
the standard monomials of the corresponding initial ideal. If the reduced Gröbner
basis is with respect to a total degree ordering, then the second condition in the
definition of a θ-basis is satisfied by B.

Example 7.10. Consider the ideal I generated by f := (x+ 1)x(x− 1)2. Clearly,
VR(I) = {−1, 0, 1} with a double root at 1, and conv(VR(I)) = [−1, 1]. The poly-
nomial f = x4 − x3 − x2 + x is the unique element in every reduced Gröbner basis
of I with 〈x4〉 as initial ideal. The standard monomials of this initial ideal are
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1, x, x2, x3, and hence B = {1 + I, x + I, x2 + I, x3 + I} is a θ-basis for R[x]/I.
The biggest reduced moment matrix we could construct is MB3(y), whose rows and
columns are indexed by B3 = B.

We have [x]B3 = (1 x x2 x3) and

[x]B3 [x]
T
B3

=









1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6









,

which is entrywise equivalent mod I to









1 x x2 x3

x x2 x3 x3 + x2 − x
x2 x3 x3 + x2 − x 2x3 − x
x3 x3 + x2 − x 2x3 − x 2x3 + x2 − 2x









.

We now linearize using y = (1, y1, y2, y3) and obtain

MB3(y) =









1 y1 y2 y3

y1 y2 y3 y3 + y2 − y1

y2 y3 y3 + y2 − y1 2y3 − y1

y3 y3 + y2 − y1 2y3 − y1 2y3 + y2 − 2y1









.

The reduced moment matrices MB1(y) and MB2(y) are the upper left 2 × 2
and 3× 3 principal submatrices of MB3(y).

Example 7.11. Consider the ideal I = 〈x4 − y2 − z2, x4 + x2 + y2 − 1〉. Using a
computer algebra package such as Macaulay2 [10] one can calculate a total degree
reduced Gröbner basis of I as follows:

Macaulay2, version 1.3

i1 : R = QQ[x,y,z,Weights => {1,1,1}];

i2 : I = ideal(x^4-y^2-z^2, x^4+x^2+y^2-1);

i3 : G = gens gb I

o3 = | x2+2y2+z2-1 4y4+4y2z2+z4-5y2-3z2+1 |

which says that this Gröbner basis consists of the two polynomials

x2 + 2y2 + z2 − 1 and 4y4 + 4y2z2 + z4 − 5y2 − 3z2 + 1.

A basis for the quotient ring R[x, y, z]/I is given by the standard monomials of the
initial ideal 〈x2, y4〉, which gives the following partial bases:

B1 = {1, x, y, z},
B2 = B1 ∪ {xy, y2, xz, yz, z2},
B3 = B2 ∪ {xy2, y3, xyz, y2z, xz2, yz2, z3},
B4 = B3 ∪ {xy3, xy2z, y3z, xyz2, y2z2, xz3, yz3, z4}.
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Linearizing the elements of B4, we get the following table:

1 x y z xy y2 xz yz z2 xy2 y3 xyz y2z xz2 yz2 z3

1 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

xy3 xy2z y3z xyz2 y2z2 xz3 yz3 z4

y16 y17 y18 y19 y20 y21 y22 y23.

We can now calculate various reduced moment matrices. For instance,

MB2(y) =





























1 y1 y2 y3 y4 y5 y6 y7 y8
T1 y4 y6 T2 y9 T3 y11 y13

y5 y7 y9 y10 y11 y12 y14
y8 y11 y12 y13 y14 y15

T4 y16 T5 y17 y19
T6 y17 y18 y20

T7 y19 y21
y20 y22

y23





























,

where we have filled in only the upper triangular region. The unknowns T1, T2, . . .
stand for the following expressions:

T1 = −2y5 − y8 + 1,
T2 = −2y10 − y14 + y2,
T3 = −2y12 − y15 + y3,

T4 = y20 +
y23

2 − 3y5

2 − 3y8

2 + 1
2 ,

T5 = −2y18 − y22 + 1,

T6 = −y20 − y23

4 + 5y5

4 + 3y8

4 − 1
4 ,

T7 = −2y20 − y23 + y8.

The Ti’s can be calculated using Macaulay2 by first finding the normal form of the
needed monomial with respect to the Gröbner basis that was calculated and then
linearizing using the yi’s. For instance, T2 is the linearization of the normal form
of x2y, which by the calculation below, is −2y3 − yz2 + y.

i6 : x^2*y%G

3 2

o6 = - 2y - y*z + y

The reduced moment matrix MBk
(y) can also be defined in terms of linear

functionals on R[x]2k/I. For a vector y = (yb) ∈ R
B2k , define Ly ∈ (R[x]2k/I)

∗

as Ly(b) := yb for all b ∈ B2k. Then every L ∈ (R[x]2k/I)
∗ is equal to Ly for

y = (L(b) : b ∈ B2k) ∈ R
B2k . If y ∈ R

B2k , let y0 := y1+I , yi := yxi+I for i = 1, . . . , n.
Further, let πRn be the projection map that sends y ∈ R

B2k to (y1, . . . , yn) ∈ R
n.
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Lemma 7.12.

1. For a vector y ∈ R
B2k with y0 = 1, the entry of MBk

(y) indexed by bi, bj ∈ Bk

is Ly(bibj).

2. MBk
(y) � 0⇔ Ly(f

2 + I) ≥ 0 for all f + I ∈ R[x]k/I.

Proof. The first part follows from the definition of MBk
(y) and Ly. For f + I ∈

R[x]k/I, let f̂ be the unique vector in R
Bk such that f+I =

∑

bi∈Bk
f̂ibi. Therefore,

f2 + I =
∑

bi,bj∈Bk
f̂if̂j(bibj) which implies that

Ly(f
2 + I) =

∑

bi,bj∈Bk

f̂if̂jLy(bibj) = f̂TMBk
(y)f̂ .

Therefore, MBk
(y) � 0⇔ Ly(f

2 + I) ≥ 0 for all f + I ∈ R[x]k/I.

Putting all this together, we obtain the following specific semidefinite rep-
resentation of Qk(I), and hence THk(I) up to closure. We will use this explicit
coordinate based description of THk(I) in the the calculations below.

Theorem 7.13. The kth theta body of I, THk(I), is the closure of

Qk(I) = πRn

{

y ∈ R
B2k : MBk

(y) � 0, y0 = 1
}

.

Proof. Recall that Qk(I) is the set
{

(L(x1 + I), . . . , L(xn + I)) :
L(g + I) ≥ 0 for all g + I ∈ Σ2k/I,
L(1 + I) = 1

}

.

Equivalently, Qk(I) is the set
{

(L(b) : b ∈ B1\{1 + I}) :
L(f2 + I) ≥ 0 for all f + I ∈ R[x]k/I,
L(1 + I) = 1

}

.

By Lemma 7.12 (2), it then follows that

Qk(I) = πRn

{

y ∈ R
B2k : MBk

(y) � 0, y0 = 1
}

=: QBk
(I).

When working with a specific basis B, we use QBk
(I) instead of Qk(I) to make

the choice of basis clear. In the examples that follow, please bear in mind that this
abuse of notation is simply to keep track of which θ-basis of R[x]/I was used in
the explicit semidefinite representation of Qk(I). The proof of Theorem 7.13 shows
that any θ-basis of R[x]/I can be used to coordinatize Qk(I).

Example 7.10 continued. We write down QBk
(I) for k = 1, 2, 3 for the ideal

I = 〈(x+1)x(x− 1)2〉 from Example 7.10. Using the matrix MB3(y) (with y0 = 1)
that was already computed we see that

QB1(I) = {y1 : ∃(y1, y2) ∈ R
2 s.t. y2 ≥ y21},
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Figure 7.3. The spectrahedra {y ∈ R
B2k : y0 = 1,MBk

(y) � 0} for
k = 1, 2, 3 for I = 〈(x + 1)x(x− 1)2〉 and their projections to the y1-axis.

which is the projection onto the y1-axis of the convex hull of the parabola y2 = y21 .
Therefore, QB1(I) = R and hence TH1(I) = R, which is a trivial relaxation of
conv(VR(I)) = [−1, 1].

The body QB2(I) = {y1 : ∃y ∈ R
3 s.t. MB2(y) � 0}. We know the exact form

of the moment matrices so we can use YALMIP to find cl(QB2(I)), by minimizing
x and −x over that body.

sdpvar y1 y2 y3

M=[1 y1 y2;

y1 y2 y3;

y2 y3 y3+y2-y1];

solvesdp(M>0,y1);

double(y1)

solvesdp(M>0,-y1);

double(y1)

We then get cl(QB2(I)) ≈ [−1.0000, 1.0417], and we will later see that it is actually
exactly [−1, 2524 ].

To finish, we compute QB3(I) = {y1 : ∃y ∈ R
3 s.t. MB3(y) � 0}. This is the

projection onto the y1-coordinate of the spectrahedron in R
3 described by all the
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Figure 7.4. The variety of Example 7.11 and its first theta body.

Figure 7.5. The second theta body from Example 7.11.

inequalities obtained from the condition MB3(y) � 0. This body is the convex hull
of the moment vectors (x, x2, x3) evaluated at x = −1, 0, 1, which is the triangle
with vertices (−1, 1,−1), (0, 0, 0), (1, 1, 1). Projecting onto the y1-coordinate, we get
cl(QB3(I)) = [−1, 1]. See Figure 7.3 for QBi

(I), i = 1, 2, 3, and their spectrahedral
preimages.

Example 7.11 continued. We now draw a few theta bodies of the ideal

I = 〈x4 − y2 − z2, x4 + x2 + y2 − 1〉

from Example 7.11, where we calculated the second reduced moment matrixMB2(y).
This allows us to write down QB1(I) and QB2(I).

From the Gröbner basis of I that we computed, we see that the polynomial
x2 +2y2 + z2− 1 is in I. We will see in Example 7.36 that the first theta body of I
is the ellipsoid {(x, y, z) ∈ R

3 : x2 +2y2 + z2 ≤ 1}. This ellipsoid along with VR(I)
(the two black rings) is shown in Figure 7.4. The second theta body is shown in
Figure 7.5 and it appears to equal conv(VR(I)).

Remark 7.14. This example shows the difference between Lasserre’s method to
convexify VR(I) and the reduced moment method that underlies theta bodies. Recall
that in step k of Lasserre’s method, the relaxation of conv(VR(I)) that is com-
puted is the common intersection of all half spaces l(x) ≥ 0 containing VR(I) and
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Figure 7.6. The second Lasserre relaxation for Example 7.11.

l(x) = σ(x) +
∑m

i=1 gi(x)fi(x), where σ(x) is a k-sos polynomial and gi(x)fi(x) ∈
R[x]2k. Using the software package Bermeja [25] we can draw the second relaxation
in Lasserre’s method which is shown in Figure 7.6.

Now that we have seen several examples of theta bodies of ideals, we give a
few comments and examples to point out some of the subtleties involved. We start
with an example to show that QBk

(I) may not be closed, which emphasizes the
need to take its closure to get THk(I).

Example 7.15. Consider the principal ideal I = 〈x2
1x2 − 1〉 ⊂ R[x1, x2]. Then

conv(VR(I)) = {(s1, s2) ∈ R
2 : s2 > 0}, which is not a closed set. Any linear

polynomial that is nonnegative over VR(I) is of the form αx2 + β, where α, β ≥ 0.
Since αx2 + β ≡ (

√
αx1x2)

2 + (
√
β)2 mod I, TH2(I) = cl(conv(VR(I))).

The set B =
⋃

k∈N{xk
1 + I, xk

2 + I, x1x
k
2 + I} is a θ-basis for R[x1, x2]/I for

which

B4 = {1, x1, x2, x
2
1, x1x2, x

2
2, x1x

2
2, x

3
1, x

3
2, x1x

3
2, x

4
1, x

4
2}+ I.

The reduced moment matrix MB2(y) for y = (1, y1, . . . , y11) ∈ R
B4 is

1 x1 x2 x2
1 x1x2 x2

2

1
x1

x2

x2
1

x1x2

x2
2

















1 y1 y2 y3 y4 y5
y1 y3 y4 y6 1 y7
y2 y4 y5 1 y7 y8
y3 y6 1 y9 y1 y2
y4 1 y7 y1 y2 y10
y5 y7 y8 y2 y10 y11

















.

If MB2(y) � 0, then the principal minor indexed by x1 and x1x2 implies that
y2y3 ≥ 1, and so in particular, y2 6= 0 for all y ∈ QB2(I). However, since QB2(I) ⊇
conv(VR(I)) = {(s1, s2) ∈ R

2 : s2 > 0}, it must be that QB2(I) = conv(VR(I)),
which shows that QB2(I) is not closed.

We will see in the next section that when S is a finite set of points in R
n,

the ideal I = I(S) of all polynomials that vanish on S, has the property that
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THl(I) = conv(VR(I)) = conv(S) for a finite l that depends on I. However, since
conv(S) ⊆ QBl

(I) ⊆ THl(I), we also get that QBl
(I) is closed. Even in this case,

QBk
(I) may not be closed for some k < l.

Example 7.16. Consider the finite set of points S = {(±t, 1/t2) : t = 1, . . . , 7}
lying on the curve x2

1x2 = 1. Then

I(S) = 〈x2
1x2 − 1, (x2

1 − 1)(x2
1 − 4)(x2

1 − 9)(x2
1 − 16)(x2

1 − 25)(x2
1 − 36)(x2

1 − 49)〉.

This is a zero-dimensional ideal, and a basis for R[x1, x2]/I(S) is given by

B = {1, x1, x2, x
2
1, x1x2, x

2
2, x1x

2
2, x

3
1, x

3
2, x1x

3
2, x

4
1, x

4
2, x

5
1, x1x

4
2}+ I.

In particular, B4 is the same as the B4 in Example 7.15 and the initial ideal of I(S)
whose standard monomials are the monomials in B is generated by {x2

1x2, x
5
2, x

6
1}.

Therefore, MB2(I(S)) and QB2(I(S)) agree with those in Example 7.15, which im-
plies that QB2(I(S)) is not closed.

Another natural question is whether the theta bodies of different ideals with
the same real variety can have drastically different behaviors, especially with respect
to convergence to the convex hull of the variety. For instance, an ideal I and its
real radical R

√
I have the same real variety and I ⊆ R

√
I, THk(

R
√
I) ⊆ THk(I)

for all k.

Theorem 7.17. Fix an ideal I. Then there exists a function Ψ : N→ N such that
THΨ(k)(I) ⊆ THk(

R
√
I) for all k.

We refer the reader to [9, Section 2.2] for a proof. The main message to take
away from this result is that whether or not the theta body hierarchy of an ideal
converges to cl(conv(VR(I))) is determined by the real variety of I. In particular,
whether the theta body sequence of an ideal converges to cl(conv(VR(I))) in finitely
many steps, or not, is determined by R

√
I.

7.2.3 Possible Extensions

The focus of this chapter is on polynomial equations, and sums of squares relax-
ations. However, all this theory can potentially be adapted to work in some more
complicated cases. In this section we give examples of some constructions that give
a flavor of possible extensions. Similar constructions were also seen in Chapter 6,
and we refer to [22] for a more systematic study of the types of techniques we will
see below (in a slightly different setting).

Example 7.18. The theta body sequence can be modified to deal with poly-
nomial inequalities, using Lasserre’s ideas. Given an ideal I and some polyno-
mials g1, . . . , gt, we might want to find the convex hull of the semialgebraic set
S = {x ∈ VR(I) : g1(x) ≥ 0, . . . , gt(x) ≥ 0}. To do this we use shifted reduced
moment matrices in addition to the reduced moment matrices of I.
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Figure 7.7. Sum of squares approximation to the half-lemniscate of Gerono.

Recall that to obtain the kth reduced moment matrix MBk
(y) of I, we would

take the matrix [x]Bk
[x]TBk

, write it in terms of a basis B of R[x]/I, and linearize
using the new variables y with y0 = 1. To define the shifted reduced moment matrix
MBk

(g ∗ y) (with respect to g), we take the matrix g(x)[x]Bk
[x]TBk

and do precisely
as before.

Consider for example the ideal I =
〈

x4 − x2 + y2
〉

of the lemniscate of Gerono,
together with the inequality x ≥ 0. The semialgebraic set S in this case is the right
half-lemniscate shown in Figure 7.7. The second reduced moment matrix of I is
given by





















1 x y w0
2 w1

1 w2
0

x w0
2 w1

1 w0
3 w1

2 w2
1

y w1
1 w2

0 w1
2 w2

1 w3
0

w0
2 w0

3 w1
2 w0

2 − w2
0 w1

3 w2
2

w1
1 w1

2 w2
1 w1

3 w2
2 w3

1

w2
0 w2

1 w3
0 w2

2 w3
1 w4

0





















,

where wj
i is the linearization of xiyj . The combinatorial moment matrix shifted by

x and truncated at k = 1 is






x w0
2 w1

1

w0
2 w0

3 w1
2

w1
1 w1

2 w2
1






.

If we force both matrices to be positive semidefinite and project over the x, y coordi-
nates, we get an approximation of the convex hull of the right half of the lemniscate,
as shown in Figure 7.7. By increasing the truncation parameter of the reduced mo-
ment matrix and the shifted moment matrix we get better approximations to the
convex hull.

Note that in this example we are essentially searching for certificates of non-
negativity of the form l(x, y) ≡ σ0(x, y) + xσ1(x, y) mod I, where σ0 and σ1 are
2-sos and 1-sos, respectively.
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Example 7.19. Consider the teardrop curve given by p(x, y) := x4 − x3 + y2 = 0.
We will see in Corollary 7.45 that the singularity at the origin will prevent the theta
bodies of 〈p〉 from converging in a finite number of steps to the convex hull of the
curve. We can, however, get rid of that problem by strengthening the hierarchy in
a simple way. Recall that the second theta body in this case will be obtained as the
closure of the set of all points (x, y) ∈ R

2 for which there exists a positive definite
matrix of the form



















1 x y w0
2 w1

1 w2
0

x w0
2 w1

1 w0
3 w1

2 w2
1

y w1
1 w2

0 w1
2 w2

1 w3
0

w0
2 w0

3 w1
2 w0

3 − w2
0 w1

3 w2
2

w1
1 w1

2 w2
1 w1

3 w2
2 w3

1

w2
0 w2

1 w3
0 w2

2 w3
1 w4

0



















,

where wj
i is a variable that linearizes the monomial xiyj , and so the rows and

columns are indexed by {1, x, y, x2, xy, y2}. One can in this case strengthen the
condition by adding a new row and column to the matrix, indexed not by a monomial
but by the fraction y

x that we linearize as w1
−1. We then use the same strategy as

before, of linearizing all resulting products modulo the relation x4 = x3− y2 (which

allows us to get rid of w4,0) and the relations y2

x = x2 − x3 and y2

x2 = x− x2 (which
eliminates two more variables). This new pseudomoment matrix is given by

M(x, y, w) =

























1 x y w0
2 w1

1 w2
0 w1

−1

x w0
2 w1

1 w0
3 w1

2 w2
1 y

y w1
1 w2

0 w1
2 w2

1 w3
0 w0

2 − w0
3

w0
2 w0

3 w1
2 w0

3 − w2
0 w1

3 w2
2 w1

1

w1
1 w1

2 w2
1 w1

3 w2
2 w3

1 w2
0

w2
0 w2

1 w3
0 w2

2 w3
1 w4

0 w3
−1

w1
−1 y w0

2 − w0
3 w1

1 w2
0 w3

−1 x− w0
2

























.

Since the original moment matrix is a submatrix of M(x, y, w), the body Q =
{(x, y) : ∃w s.t. M(x, y, w) � 0} must be contained in TH2(〈p〉), and a simple
numeric computation seems to show that Q actually matches the convex hull of the
real variety VR(p), as we can see in Figure 7.8. In this figure we see a comparison
of the second theta body and Q, drawn numerically using YALMIP. The fact that
Q seems to be exact is related to the fact that we can now use the term x

y to get

sos certificates. For example, x = x2 + (xy )
2 modulo the new identities that we

introduced.

Exercise 7.20. Let I =
〈

x2
〉

.

1. Show that x is not k-sos mod I for any k.

2. Show that for any ε > 0, the polynomial x+ ε is 1-sos mod I.

3. Describe TH1(I).
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Figure 7.8. In the darker color we see TH2(〈p〉), while in the lighter color
we see the strengthening Q as defined in Example 7.19. In black we see the variety
itself.

Figure 7.9. Lemniscate of Gerono.

Exercise 7.21. Using YALMIP or other software, find the smallest ǫ such that
x+ ǫ is 2-sos modulo the ideal I =

〈

x4 − x3 + y2
〉

. What about 3-sos? What about
4-sos?

Exercise 7.22. The lemniscate of Gerono is given by the equation x4−x2+y2 = 0
shown in Figure 7.9. Using YALMIP give an approximate 2-sos decomposition of
x+ 1 modulo the equation of the curve. Can you find an exact one?

Exercise 7.23. Using reduced moment matrices, give semidefinite descriptions of
the following bodies:

1. QB2(I) for the ideal of the lemniscate of Gerono.

2. QB1(I) and QB2(I) where I =
〈

y2 − x− 1, x2 − y − 1
〉

.

3. QB1(I) where I is the vanishing ideal of the vertices of the 0/1 cube in R
3.
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Exercise 7.24. Let I be the vanishing ideal of a finite set of points in R
n.

1. Prove that p(x) is nonnegative over VR(I) if and only if it is a sum of squares
modulo the ideal I.

2. Using the above fact, prove that for B, a θ-basis of R[x]/I, the spectrahedron
{y ∈ R

B : MB(y) � 0, y0 = 1} is the simplex whose vertices are the vectors
(fi(s) : fi + I ∈ B) as s varies over the finitely many points in VR(I).

7.3 Convergence of Theta Bodies

One of the main questions after defining a sequence of approximations to a convex
set is if they actually approximate the set, and further, if some approximation in
the sequence is guaranteed to coincide with the set. In this section we examine
conditions under which the sequence of theta bodies of an ideal I converges, either
finitely or asymptotically, to conv(VR(I)).

Definition 7.25. Let I ⊂ R[x] be an ideal.

1. The theta body sequence of I converges to cl(conv(VR(I))) if

∞
⋂

k=1

THk(I) = cl(conv(VR(I))).

2. For a finite integer k, the ideal I is THk-exact if THk(I) = cl(conv(VR(I))).

3. If I is THk-exact for a finite integer k, then we say that the theta body se-
quence of I converges to cl(conv(VR(I))) in finitely many steps. If the theta
body sequence of I converges to cl(conv(VR(I))) but there is no finite k for
which I is THk-exact, then we say that the theta body sequence of I converges
asymptotically to cl(conv(VR(I))).

We will see in Section 7.3.1 that if VR(I) is finite, then there is always some
finite k for which I is THk-exact. However, tight bounds on k for which I is THk-
exact are not known in general. The best scenario is when I is TH1-exact. We
characterize finite varieties whose real radical ideal is TH1-exact. Recall from the
discussion following Theorem 7.17 that there is no loss of generality in passing to
the real radical of I in discussing convergence.

When VR(I) is infinite, much less is understood about the convergence of
the theta body sequence of I. In Section 7.3.2 we explain what we know about
this case. The best general result is that when VR(I) is compact, the theta body
sequence is guaranteed to converge to cl(conv(VR(I))) asymptotically. However,
finite convergence, and even convergence in the first step are sometimes possible for
infinite varieties, although no characterization is known in either case. We show that
certain singularities can prevent finite convergence when the variety is compact.
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7.3.1 Finite Real Varieties

Theorem 7.26. Let I be an ideal such that VR(I) is finite; then there exists some
k such that THk(I) = conv(VR(I)).

Proof. First note that by Theorem 7.17 we just need to prove the existence of
such a k for J = R

√
I. Let VR(I) := {P1, . . . , Pm} ⊂ R

n and, for each Pi, let qi
be a polynomial such that qi(Pi) = 1 and qi(Pj) = 0 for j 6= i. Then given any
polynomial f(x) that is nonnegative on VR(I) we have that

f(x)−
m
∑

j=1

(

√

f(Pj)qj(x)

)2

vanishes at all Pi, and hence it belongs to J , and f is sos modulo J . So all non-
negative polynomials on VR(J) are sos modulo J , which in particular implies that
each of them is nonnegative over some THk(J). Since the convex hull of VR(I)
is a polytope, it is cut out by a finite number of linear inequalities. Pick k large
enough for all these linear inequalities to be valid on THk(J) simultaneously. Then
conv(VR(I)) = THk(J).

Clearly, Theorem 7.26 implies that when VC(I) is finite, the ideal I is THk-
exact for some finite k. When the ideal I is also radical, finite convergence of
its theta body sequence to the convex hull of the variety was proved by Parrilo
(see Theorem 2.4 in [16]). Having established finite convergence of the theta body
sequence of I when VR(I) is finite, one can ask the more ambitious question of when
such an I is TH1-exact. This is the most useful and computationally practical case
of finite convergence. If the ideal defining a finite set of points is always assumed to
be the vanishing ideal of the variety (and hence real radical), we can give a complete
geometric characterization of when they are TH1-exact. We will need the following
fact about real radical ideals.

Lemma 7.27 ([8]). If I ⊂ R[x] is a real radical ideal, then a linear inequality
l(x) ≥ 0 is valid for THk(I) if and only if l(x) is k-sos modulo I.

In order to characterize real radical ideals with finite real varieties, we need a
new definition.

Definition 7.28. Given a polytope P , we say that P is 2-level if for each facet F
of P and its affine span HF , all vertices of P are either in F or in a unique translate
of HF .

Example 7.29. In R
3, up to affine equivalence there are five three-dimensional

2-level polytopes, shown in the upper part of Figure 7.10. It is easy to see that a
2-level polytope must be affinely equivalent to a 0/1-polytope. In the bottom of
Figure 7.10 we show the three remaining 0/1-polytopes (up to affine equivalence)
with a face that fails to verify the 2-level condition highlighted.
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Figure 7.10. The top row contains all 0/1 three-dimensional 2-level poly-
topes (up to affine equivalence). The bottom row contains all 0/1 three-dimensional
polytopes (up to affine equivalence) that are not 2-level.

Theorem 7.30. Let I be real radical with S := VR(I) finite. Then I is TH1-exact
if and only if S is the set of vertices of a 2-level polytope.

Proof. Assume without loss of generality that S spans the entire space and let
f1(x) ≥ 0, . . . , fm(x) ≥ 0 be a minimal list of linear inequalities describing P :=
conv(S), i.e., each fi corresponds to a facet Fi of P and is zero on that facet. By
Lemma 7.27, I is TH1-exact if and only if all fi are 1-sos mod I, since every affine
linear polynomial that is nonnegative on S is a nonnegative linear combination of
the fi’s.

If I is TH1-exact, for each i = 1, . . . ,m, we have fi(x) ≡
∑

(hk(x))
2 mod I,

where all hk are linear. But since fi vanishes on S ∩ Fi so must all hk and
therefore, since they are linear, they must vanish on the affine space generated
by Fi. This means that they are actually just scalar multiples of fi and we have
fi(x) ≡ λ(fi(x))

2 mod I, for some nonnegative λ. In particular, all points P ∈ S
must satisfy either fi(P ) = 0 or fi(P ) = 1/λ proving the 2-level condition.

Suppose now that P is 2-level. Then for each fi, all points P ∈ S must satisfy
fi(P ) = 0 or fi(P ) = λi, for some fixed λi > 0. But then fi(fi − λi) vanishes on
S, and therefore belongs to I. This implies fi ≡ (1/λi)f

2
i mod I and fi is 1-sos

modulo I.

Theorem 7.30 will turn out to be very useful in the context of combinatorial
optimization as we will see in the next section. Polytopes with integer vertices
that are 2-level are called compressed polytopes in the literature [34, 35] and play an
important role in other research areas. Being 2-level is a highly restrictive condition
that immediately gives us much information on the polytope. Since all the vertices
of a 2-level polytope in R

n can be assumed to be 0/1 vectors, it is clear that they
have at most 2n vertices. It was shown in [8] that they also have at most 2n facets
which is not obvious. There are many infinite families of 2-level polytopes such as
simplices, hypercubes, cross polytopes, and hypersimplices.
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Figure 7.11. Cusp and its convex hull.

7.3.2 Infinite Real Varieties

We begin by showing that unlike for finite varieties, the theta body approximations
can fail drastically when VR(I) is infinite. The following simple example is adapted
from Example 1.3.2 in [21].

Example 7.31. Consider the ideal I =
〈

x2 − y3
〉

defining the cusp in Figure 7.11.
The closure of the convex hull of this curve is the upper half-plane, so the only linear
inequalities valid on the curve are of the form lε(x, y) = y+ε, where ε ≥ 0. Suppose
there exists some lε with an sos certificate modulo I, then lε(x, y) ≡

∑

pi(x, y)
2

mod I for some polynomials pi. Note that any polynomial p has a unique standard
form of the type a(y)+xb(y) modulo this ideal, which we can obtain by reducing all
multiples of x2, using the fact that x2 ≡ y3 mod I. Two polynomials are the same
modulo the ideal if they have the same standard form. Since lε(x, y) is already in
this form, we can simply reduce the right-hand side in the congruence relation to its
standard form too. Suppose each pi = ai(y) + xbi(y). Then it is easy to check that

∑

pi(x, y)
2 ≡

∑

(ai(y)
2 + y3bi(y)

2) +
∑

(2xai(y)bi(y)) mod I.

Since the right-hand side is in standard form, to be congruent to lε it must be the
same as lε. Looking at the maximum degree of y in the first sum on the right, we
see that it is smaller than two only if the ai’s are all constants and the bi’s are all
zero, since the highest degree terms cannot all cancel. In particular we get y+ε is a
constant, which is clearly a contradiction. This proves that THk(I) = R

2 for all k,
and the theta bodies are completely ineffective in approximating conv(VR(I)). In
fact, the same proof would work for any curve of the form x2 − p(y) where p has
odd degree.

However, despite the existence of “badly behaved”varieties such as the one
presented above, there is a large, very interesting class of infinite real varieties
where such behavior never occurs, namely, compact varieties.

Theorem 7.32. Let I be an ideal such that VR(I) is compact. Then the theta body
sequence of I converges to the convex hull of the variety VR(I) in the sense that

∞
⋂

k=1

THk(I) = conv(VR(I)).
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Figure 7.12. Strophoid curve and its convex hull.

This is an immediate consequence of Schmudgën’s Positivstellensatz (see Chap-
ter 3). To see the connection, just consider any set of generators {g1, . . . , gt} for I
and the semialgebraic set S = {x ∈ R

n : ±g1 ≥ 0, . . .± gt ≥ 0} = VR(I). When ap-
plied to S, Schmudgën’s Positivstellensatz guarantees that every linear polynomial
that is strictly positive over VR(I) is sos modulo I.

Example 7.33. The existence of varieties as in Example 7.31 does not imply that
for all unbounded varieties we have problems with the theta body sequence. Con-
sider the strophoid curve given by p(x, y) := (1 − y)x2 − (1 + y)y2 = 0, shown in
Figure 7.12. The closure of the convex hull of this variety is the band B defined by
−1 ≤ y ≤ 1. We claim that TH2(I) = B. To show this it is enough to prove that
both 1− y and 1 + y are 2-sos modulo I, which is true since

1± y =

(

1± 1

2
y − 1

2
y2

)2

+
1

4

(

∓y − y2
)2

+
1

2
(xy − x)

2
+

1

2
(y − 1)p(x, y).

In what follows we concentrate our efforts on the compact case, where asymp-
totic convergence of the theta body sequence is guaranteed. The next natural
question when VR(I) is infinite but compact is whether we can understand when
the theta body sequence converges in finitely many steps to cl(conv(VR(I))). Fi-
nite convergence would prove that conv(VR(I)) is the projection of a spectrahedron,
which is an important feature of a convex semialgebraic set as seen in Chapter 6.
There is no complete understanding of this situation, but in the remainder of this
section, we discuss the known results.

TH1-exactness. We begin by discussing the strongest scenario within finite con-
vergence, namely TH1-exactness of an ideal. In spite of the strength of this property,
there are surprisingly many interesting examples of such ideals with infinite real va-
rieties. We begin by taking a general look at the notion of TH1-exactness for all
ideals. Roughly speaking, TH1-exact ideals are those whose quadratic elements are
enough to describe their convex geometry, a statement that will be made precise
shortly. We start with a small lemma concerning convex quadrics.

Lemma 7.34. If p ∈ R[x] is a convex quadric polynomial, then 〈p〉 is TH1-exact.
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Proof. This result will follow from Proposition 7.41, where we will show that the
first theta body of any quadric is simply the convex hull of its graph intersected
with the x-plane. This intersection is precisely conv(p) if p is convex.

We now give an alternative characterization of TH1(I) for any ideal I.

Proposition 7.35. For any ideal I ⊆ R[x], TH1(I) equals the intersection of
conv(VR(p)) as p varies over all convex quadrics in I.

Proof. The inclusion TH1(I) ⊆ conv(VR(p)) for all convex quadrics p ∈ I is
easy, since a linear inequality is valid over the second set if and only if it is 1-sos
modulo 〈p〉, which immediately implies that it is 1-sos modulo I and therefore valid
on TH1(I). For the second inclusion note that if l(x) is 1-sos mod I, then

l(x) = σ(x) + g(x),

where σ is a sum of squares and g is a quadric in I. But note that −∇2g =
∇2σ � 0 which implies −g is a convex quadric in I, and l(x) is 1-sos modulo 〈−g〉.
Therefore, l(x) ≥ 0 is valid on conv(VR(−g)) and hence also valid on the intersection
of conv(VR(p)) as p varies over all convex quadrics in I.

Example 7.36. Consider the ideal I =
〈

x4 − y2 − z2, x4 + x2 + y2 − 1
〉

that we
introduced in Example 7.11. This is the intersection of two quartic surfaces in R

3.
The Gröbner basis computation we did then shows that there exists a single quadric
in this ideal (up to scalar multiplication), which is the polynomial −1+x2+2y2+z2.
Therefore, TH1(I) equals the ellipsoid {(x, y, z) ∈ R

3 : x2 + 2y2 + z2 ≤ 1}, as seen
in Figure 7.4.

Proposition 7.35 can sometimes be used to prove TH1-exactness.

Example 7.37. Consider the ideal I = 〈x2 + y2 + z2 − 4, (x− 1)2 + y2 − 1〉, from
Example 7.47. Note that the quadratic polynomials p1 = (x − 1)2 + y2 − 1 and
p2 = 2x+ z2 − 4 belong to I. Write I1 = 〈p1〉 and I2 = 〈p2〉. Then we claim that

conv(VR(I)) = conv(VR(I1)) ∩ conv(VR(I2)),

and therefore I is TH1-exact. To see this note that the variety VR(I) can be writ-
ten as

{(x,±
√

1− (x− 1)2,±
√
4− 2x) : 0 ≤ x ≤ 2}.

In particular for each fixed x we get four points, and the rectangle they form must
be contained in the convex hull of VR(I). This means

{(x, y, z) ∈ R
3 : |y| ≤

√

1− (x− 1)2, |z| ≤
√
4− 2x, 0 ≤ x ≤ 2} ⊆ conv(VR(I)),

but it is clear that this set can be rewritten as

{(x, y, z) ∈ R
3 : y2 ≤ 1− (x− 1)2, z2 ≤ 4− 2x} = conv(VR(I1)) ∩ conv(VR(I2)),

which contains conv(VR(I)), so we get the intended equality.
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An important open question concerning TH1-exactness of varieties comes from
oriented Grassmannians and illustrates that the TH1 relaxation can be surprisingly
powerful. For the purposes of this discussion, we define the oriented Grassmannian

Gk,n to be the set of all oriented k-subspaces of Rn, embedded in R
(nk) by taking

Plücker coordinates, i.e., by picking an oriented basis of the space, writing the
vectors as an n × k matrix, and taking all k × k minors and scaling them by a

positive scalar to a point on the sphere S(
n

k)−1.
The ideal Ik,n, generated by all the quadratic relations among the k×k minors

of an n × k matrix, is called the Plücker ideal. The Grassmann variety is then
the compact real variety of the ideal I = In,k +

〈

1− ‖x‖2
〉

, so it makes sense to
approximate it with theta bodies. It is unknown whether all Grassmann varieties
are TH1-exact, in fact even the G3,6 case is unknown, but numerical simulations
seem to say it is, at least for the relatively small examples for which numerical
computations are doable. Unpublished work by Sanyal and Rostalski [26] makes
connections between TH1-exactness of these ideals and some classical open questions
of Harvey and Lawson on calibrated geometries [12].

Exactness in one step for principal ideals. Principal ideals are the simplest
ideals with infinite varieties. However, even in this case, TH1-exactness is not to be
expected. In fact, if p has degree d and 2k < d, THk(p) is the full ambient space Rn,
since any k-sos linear inequality would verify l(x) = σ(x) + g(x) with degree of the
sums of squares σ less than or equal to 2k. But the degree of g ∈ I must be at
least d so there would be no cancellation of the highest degree and the sum could
never be a linear polynomial. An interesting question in this case is whether and
when the first meaningful theta body would equal conv(VR(p)) when I = 〈p〉. We
will focus on the following problem: given a polynomial p of degree 2k, decide if 〈p〉
is THk-exact. In this generality there is a simple necessary criterion, but we have
to introduce a few definitions in order to state it.

Definition 7.38. Consider a polynomial p ∈ R[x1, . . . , xn] and define p̃ = x0 −
p(x1, . . . , xn) ∈ R[x0, x1, . . . , xn]. Consider the convex set C = conv(VR(p̃)), which
is simply the convex hull of the graph of p, and define the shadow area of p, denoted
by sh(p), as the intersection of C with the plane x0 = 0.

This shadow area clearly contains conv(VR(p)) since it is convex and contains
the variety. However we can easily establish a more interesting inclusion.

Proposition 7.39. For p ∈ R[x] of degree 2k, sh(p) ⊆ THk(〈p〉). In particular
if sh(p) strictly contains the closure of the convex hull of VR(p), then 〈p〉 is not
THk-exact.

Proof. Let l(x) be k-sos modulo 〈p〉, i.e., l(x) = σ(x) + λp(x) where σ is a sum
of squares of degree at most 2k and λ ∈ R. Then l(x) − λp(x) = σ(x) implies
l(x) − λp(x) ≥ 0 everywhere and therefore l̃(x0, x) := l(x) − λx0 is valid over
VR(〈p̃〉) and hence over its convex hull too. But by intersecting with x0 = 0 we
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Figure 7.13. Scarabaeus curve and its third theta body.

get that l(x) ≥ 0 must be valid on sh(p). From the definition of THk(I) it follows
immediately that sh(p) ⊆ THk(I) as intended.

Despite the simplicity of the criterion, it is a handy tool to prove that a princi-
pal ideal is not exact at the first step, without relying on numerical approximations.

Example 7.40. Consider the scarabaeus curve given by

p(x, y) := (x2 + y2)(x2 + y2 + 4x)2 − (x2 − y2)2 = 0.

A simple numerical computation with an SDP solver shows us that TH3(〈p〉) does
not match the convex hull of the curve, as can be seen in Figure 7.13. To provide
a short exact proof, one just has to point out that p(−4, 0) = 256 and p(1, 0) = 24,
and since the point (47 , 0, 0) lies in the segment between (−4, 0, 256) and (1, 0, 24),
the point ξ = (47 , 0) must be contained in sh(p) and therefore in TH3(〈p〉). It
is, however, easy to calculate that the maximum value that x attains on the
curve is (−50 + 11

√
22)/27 ≈ 0.06, which implies that the convex hull must not

contain ξ.

In some very special cases we can actually say a bit more about the first
meaningful theta body.

Proposition 7.41. Let p be a polynomial in n variables and degree 2d. Then

1. if n = 1, sh(p) = THd(〈p〉);

2. if d = 1, sh(p) = TH1(〈p〉);

3. if n = 2 and d = 2, sh(p) = TH2(〈p〉).

Proof. We just have to prove that in these cases sh(p) ⊇ THd(〈p〉). To do this
let l(x) > 0 be a valid linear inequality over sh(p). This means that the line
L = {(x0, x) : x0 = 0, l(x) = 0} does not intersect C = conv(VR(〈p̃〉)). By the



main
2012/11/1
page 325

✐

✐

✐

✐

✐

✐

✐

✐

7.3. Convergence of Theta Bodies 325

Figure 7.14. On the left we see the cardioid p(x) = 0 and its convex hull.
On the right we see the graph of p, its intersection with the plane z = 0 and the
ellipsoidal region where the graph and the boundary of its convex hull differ.

separation theorem for convex sets we can therefore take a hyperplane H that
strictly separates L and C. Since H does not touch the graph of p, it depends
on x0, and since it does not touch L, it must be parallel to it. Therefore we have
a hyperplane of the form l′(x0, x) := x0 + λ(l(x) − ε) = 0, with λ 6= 0, ε > 0.
Since p̃(x0, x) = x0 − p(x), this means that σ(x) := p(x) + λ(l(x) − ε) is always
nonnegative or always nonpositive. Without loss of generality assume it is always
nonnegative (which implies λ > 0). Since the degree and number of variables of
this polynomial fall under Hilbert’s result (see Chapter 4), σ(x) is a sum of squares.
Hence, l(x) = σ(x)/λ + ε − p(x)/λ is d-sos modulo the ideal, which implies that
l(x) ≥ 0 is valid over THd(〈p〉), proving the inclusion.

Example 7.42. We use the above result to prove TH2-exactness of the following
principal ideal. Consider

p(x, y) = (x2 + y2 + 2x)2 − 4(x2 + y2)

defining a cardioid, and the function

q(x, y) =







p(x, y) if (x+ 1)2 + y2 ≥ 3,

8x− 4 if (x+ 1)2 + y2 < 3.

One can check that q is smooth and convex by noticing that p(x, y) = ((x+1)2+y2−
3)2+8x−4 and by looking at its Hessian. Furthermore, the convex hull of the graph
of p is just the region above the graph of q. Therefore sh(p) = {(x, y) : q(x, y) ≤ 0},
and we can see in Figure 7.14 that sh(p) is the convex hull of the cardioid.

Even for one-variable polynomials this result is interesting.
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Figure 7.15. Graph of the polynomial x − x2 − x3 + x4, its convex hull,
and intersection with the x-axis.

Example 7.43. Consider the polynomial p(x) = x− x2 − x3 + x4. In Figure 7.15
we can see that this polynomial is not TH2-exact, and why that happens. The
double root at x = 1 forces the convex hull of the graph to include some points
to the right of x = 1. In fact one can compute precisely the double tangent that
defines the boundary of the convex hull and show that TH2(〈p〉) =

[

−1, 2524
]

.

Singularities and convergence. We now return to the more general question
of finite convergence of the theta body sequence for an ideal with an infinite real
variety. There is no complete understanding of the obstructions to finite conver-
gence, but we now show that if VR(I) has certain types of singularities, then finite
convergence is not possible.

Given an ideal I and a point P on the real variety of I, we define the normal
space NP (I) to be the linear space {∇f(P ) : f ∈ I}.

Proposition 7.44. Let l(x) be an affine polynomial such that l(P ) = 0 for some
P in VR(I). If ∇l 6∈ NP (I), then l is not a sum of squares modulo I.

Proof. Suppose l is a sum of squares. Then

l(x) = σ(x) + g(x) (7.3)

for some sum of squares σ and some polynomial g ∈ I. By evaluating at P we
get that σ(P ) = 0, which immediately implies ∇σ(P ) = 0. By differentiating (7.3)
we get

∇l = ∇σ(x) +∇g(x), (7.4)

and by evaluating at P we get that ∇l = ∇g(P ) ∈ NP (I).

If I is real radical we can say even more.

Corollary 7.45. If I is real radical and l(x) ≥ 0 is a linear inequality valid on
VR(I) with l(P ) = 0 at a point P ∈ VR(I) such that ∇l 6∈ NP (I), then I is not
THk-exact for any k.
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Figure 7.16. TH2(I), TH3(I), TH4(I), and TH5(I): all contain the origin
in their interior.

Proof. This follows from the previous proposition and Lemma 7.27.

Example 7.46. Let p(x, y) = (x2 + y2)2 − (x + 5y)x2 and I = 〈p〉. This ideal
defines a bifolium with a singularity at the origin, which implies N(0,0)(I) = {(0, 0)}.
Furthermore the linear inequality x + 5y ≥ 0 is valid on the variety and holds
with equality at the origin. Since (1, 5) 6∈ N(0,0)(I) we immediately have that this
inequality does not hold for any theta body relaxation of this ideal. In Figure 7.16
we can see THk(I) for k = 2, 3, 4, 5, and see that in fact the inequality does not
hold for any of them.

Corollary 7.45 essentially tells us that certain singularities of the ideal I that
are in the boundary of the convex hull of VR(I) affect the convergence of the theta
bodies of I. For a point P ∈ VR(I), the expected dimension of the normal space
NP (I) is the codimension of VR(I). A reasonable notion of a singularity of I is a
point P ∈ VR(I) for which NP (I) has smaller dimension than expected. The next
example will show that just the existence of singularities of I on the boundary of
conv(VR(I)) is not enough for Corollary 7.45 to apply.

Example 7.47. Consider the variety VR(I) in R
3 defined by the ideal

I = 〈x2 + y2 + z2 − 4, (x− 1)2 + y2 − 1〉.

As seen in Figure 7.17, this variety looks like a curved figure-eight and has a
singularity at the point p = (2, 0, 0), which belongs to the boundary of conv(VR(I)).
This happens since NP (I) = R{(1, 0, 0)} has dimension one, smaller than the codi-
mension of the variety, which is two. However, (2, 0, 0) does not cause problems
for the convergence of theta bodies since the only linear polynomial that is zero at
p and nonnegative on VR(I) is the polynomial 2 − x, whose gradient is in NP (I).
Indeed, the first theta body of I already equals conv(VR(I)), as we will see in
Example 7.37.
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Figure 7.17. The curved eight variety and its convex hull.

A better, more refined, way of looking at singularities was introduced by
Omar and Osserman in [23]. They introduce a stronger notion of nonnegativity
over varieties that yields a stronger necessary condition for finite convergence of the
theta body hierarchy. As a byproduct they prove the following result.

Theorem 7.48. Let f(x) be a polynomial such that there exists some positive
integer n and an R-algebra homomorphism ϕ : R[x]/I → R[ε]/ 〈εn〉 for which
ϕ(f) = a0 + a1ε + · · · + an−1ε

n−1. If the first nonzero (leading) coefficient ai
is negative, then f is not a sum of squares modulo I.

Proof. Just note that homomorphisms send sums of squares to sums of squares, and
sums of squares in R[ε]/ 〈εn〉 always have their leading coefficient nonnegative.

Again this immediately gives us a new criterion.

Corollary 7.49. Let I be a real radical ideal and l(x) ≥ 0 a linear inequality valid
on VR(I). If there exists an R-algebra homomorphism ϕ : R[x]/I → R[ε]/ 〈εn〉 for
which ϕ(l) has negative leading coefficient, then I is not THk-exact for any k.

This corollary is much stronger than Corollary 7.45, and examples showing
the difference are presented in [23]. In our next example we just show that we can
recover Corollary 7.45 from Corollary 7.49 for the variety in Example 7.46 but, in
fact, we can do so for any variety just by considering maps to R[ε]/

〈

ε2
〉

.

Example 7.50. Let p(x, y) = (x2+y2)2−(x+5y)x2 and I = 〈p〉 as in Example 7.46.
Then the map ϕ : R[x, y]/I → R[ε]/

〈

ε2
〉

defined by ϕ(x) = ϕ(y) = −ε is well
defined, since ϕ(p) = 0. However, ϕ(x+5y) = −6ε has a negative leading coefficient
despite x + 5y ≥ 0 being valid on the variety. Hence, 〈p〉 is not THk-exact for
any k.

One should keep in mind that singularities are not necessarily the only things
that prevent finite convergence of the theta body sequence to cl(conv(VR(I))). For
compact smooth curves and surfaces, Scheiderer proved that nonnegativity and
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Figure 7.18. Serpentine curve and the closure of its convex hull.

sums of squares modulo the ideal are equivalent [28, 29]. However, even in these
cases, it is an open question if one can bound the degree needed to represent every
nonnegative affine polynomial as a sum of squares modulo the ideal. Thus there
might be examples of smooth curves and surfaces with no finite convergence of the
theta body hierarchy to conv(VR(I)). The only cases where we know a little more
is when the genus of the curve is one.

Proposition 7.51 (Theorem 2.1 [30]). If VR(I) is a smooth curve of genus 1
with at least one nonreal point at infinity, then I is THk-exact for some k.

Genus zero curves can be rationally parametrized which allows semidefinite
representations of their convex hulls by means of sums of squares, as seen in [13].
However such constructions do not automatically translate to finite convergence
of the theta body sequence to the convex hull of the curve, even in the smooth
case.

For varieties of dimension greater than two, there always exist nonnegative
polynomials that are not sums of squares modulo any ideal that defines them, even
in the smooth compact case, as seen in [27]. It is therefore very natural to expect
examples of smooth compact varieties with no finite convergence of the theta body
hierarchy, but we do not know a concrete example at this point.

Exercise 7.52. Consider the serpentine curve given by p(x) := y(x2 + 1)− x = 0,
depicted in Figure 7.18. The closure of its convex hull is the band cut out by the
inequalities −1/2 ≤ y ≤ 1/2. Show that the ideal I = 〈p〉 is TH2-exact by giving
an exact expression of 1− 2y and 1 + 2y as 2-sos polynomials modulo I.

Exercise 7.53. Using Proposition 7.35 show that the first theta body of the
vanishing ideal of the points {(0, 0), (1, 0), (0, 1), (2, 2)} is cut out by precisely two
polynomial inequalities, and write them explicitly.

Exercise 7.54. Consider the ideal I =
〈

y2 − x5, z − x3
〉

. The inequality z ≥ 0 is
valid on the variety VR(I).

1. Can we use Proposition 7.44 to prove that z is not k-sos modulo I for any k?

2. Use Theorem 7.48 to prove that z is not k-sos modulo I for any k.
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Exercise 7.55. Similarly to our definition of 2-level polytope, we can define a
k-level polytope to be one where given a facet F , and the affine plane HF that it
spans, all vertices of the polytope are contained either in HF or in one of k − 1
parallel translates of HF . Prove that if S is the set of vertices of a (k + 1)-level
polytope then the vanishing ideal of S, I(S), is THk-exact.

Exercise 7.56. Consider the univariate quartic polynomial p(x) = x4−3x3+3x2−
3x+ 2 which has two real roots, 1 and 2. Compute TH2(〈p〉) exactly. Is the ideal
TH2-exact?

Exercise 7.57. Consider the bifolium given by p(x, y) := (x2+y2)2−yx2 = 0. This
curve has a singularity at the origin, which is also on the boundary of its convex
hull and satisfies the conditions of Corollary 7.45, and hence we know that its theta
body hierarchy does not converge. Using the same ideas as in Example 7.19, add

to the second moment matrix of I = 〈p〉 a row and a column indexed by y2

x . Plot
the resulting approximation and compare it with the convex hull of the curve.

7.4 Combinatorial Optimization

In this final section, we focus on combinatorial optimization where a typical problem
involves optimizing a linear function over all combinatorial objects of a certain kind.
Many of these problems are modeled using graphs and can sometimes be studied
combinatorially. However, a more systematic approach is to model these problems
as integer or linear programs, which puts an emphasis on the underlying geometry.
These models work as follows. The combinatorial objects of interest are typically
defined as subsets of the ground set [n] := {1, 2, . . . , n} and the object T ⊆ [n] is
recorded via its characteristic vector χT ∈ {0, 1}n defined as χT

i = 1 if i ∈ T and
χT
i = 0 otherwise. This creates a simple bijection between the objects and certain

elements of {0, 1}n. Then, for a vector c ∈ R
n, maximizing

∑

i∈T ci over all the
objects {T } is equivalent to maximizing

∑

cixi over the characteristic vectors {χT }
which in turn is equivalent to maximizing

∑

cixi over conv({χT }) which is a 0/1
polytope by construction. (Recall that a 0/1 polytope in R

n is the convex hull of
vectors in {0, 1}n.) In principle this is a linear program but the difficulty is that
no description of conv({χT }) is usually known, and one resorts to relaxations of
conv({χT }) over which ∑

cixi is maximized to obtain an upper bound on the value
of max{〈c, x〉 : x ∈ conv({χT })}.

The theory of integer programming offers general methods to construct poly-
hedral relaxations of conv({χT }) by first finding a polytope whose integer points
are precisely {χT }. See [31, Chapter 23] for linear programming–based methods.
Polyhedral relaxations can sometimes be found using combinatorial arguments that
depend explicitly on the structure of the problem. Automatic methods for con-
structing relaxations have also come about from lift-and-project methods that find
a sequence of polyhedral or spectrahedral relaxations of conv({χT }). Some exam-
ples of lift-and-project methods besides, the theta body method described in this
chapter, can be found in [2, 14, 20, 33] (see also [15]). Theta bodies construct
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relaxations of conv(VR(I)) for an ideal I. In the special case of the combinatorial
optimization model described above, the starting point is the finite set {χT } which
is a finite algebraic variety, and we typically take its vanishing ideal as the ideal
whose theta bodies are to be computed. As we saw in Section 7.3.1, these real
radical ideals are always THk-exact for some finite k. We take a closer look at some
combinatorial optimization problems whose theta bodies have been explored.

7.4.1 Stable Sets in a Graph

An example that is at the heart of the history of theta bodies is the maximum
stable set problem in an undirected graph G = ([n], E) with vertex set [n] and edge
set E. A stable set in G is a set U ⊆ [n] such that for all i, j ∈ U , {i, j} 6∈ E. The
maximum stable set problem seeks the stable set of largest cardinality in G, the
size of which is the stability number, α(G), of G.

The maximum stable set problem can be modeled as follows. For each sta-
ble set U ⊆ [n], let χU ∈ {0, 1}n be its characteristic vector defined as χU

i = 1 if
i ∈ U and χU

i = 0 otherwise. Let SG ⊆ {0, 1}n be the set of characteristic vectors
of all stable sets in G. Then STAB(G) := conv(SG) is called the stable set poly-
tope of G and the maximum stable set problem is, in theory, the linear program
max{∑n

i=1 xi : x ∈ STAB(G)} with optimal value α(G). However, STAB(G) is
not known a priori, and so one resorts to relaxations of it over which to optimize
∑n

i=1 xi.
Polyhedral relaxations of STAB(G) can be constructed from combinatorial

arguments. For instance, a well-known relaxation is the polytope

FRAC(G) := {x ∈ R
n : xi + xj ≤ 1 for all {i, j} ∈ E, xi ≥ 0 for all i ∈ [n]},

where the constraint xi + xj ≤ 1 for {i, j} ∈ E comes from the fact that both
endpoints of an edge cannot be in a stable set. It can be checked that STAB(G) is
exactly the convex hull of the integer points in FRAC(G). The polytope FRAC(G)
and several tighter polyhedral relaxations of STAB(G) have been studied extensively
in the literature; see [11, Chapter 9].

Since the set SG is an algebraic variety, the theta bodies of its vanishing ideal
offer convex relaxations of STAB(G). This vanishing ideal is:

IG := 〈x2
i − xi for all i ∈ [n], xixj for all {i, j} ∈ E〉 ⊂ R[x1, . . . , xn].

For U ⊆ [n], let xU :=
∏

i∈U xi. From the generators of IG it follows that if
f ∈ R[x], then f ≡ g mod IG where g is in the R-span of the set of monomials
{xU : U is a stable set in G}. In particular,

B := {xU + IG : U stable set in G}

is a θ-basis of R[x]/IG (containing 1 + IG, x1 + IG, . . . , xn + IG). This implies that
Bk = {xU + IG : U stable set in G, |U | ≤ k}, and for xUi + IG, x

Uj + IG ∈ Bk,
their product is xUi∪Uj + IG, which is 0 + IG if Ui ∪ Uj is not a stable set in G.
This product formula allows us to compute MBk

(y), where we index the element
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xU + IG ∈ Bk by the set U . Since SG ⊆ {0, 1}n and I(G) is the vanishing ideal of
SG, by Theorems 7.8, we have that

THk(IG) =























y ∈ R
n :

∃M � 0, M ∈ R
|Bk|×|Bk| such that

M∅∅ = 1,
M∅{i} = M{i}∅ = M{i}{i} = yi
MUU ′ = 0 if U ∪ U ′ is not stable in G
MUU ′ = MWW ′ if U ∪ U ′ = W ∪W ′























.

In particular, indexing the one-element stable sets by the vertices of G,

TH1(IG) =















y ∈ R
n :

∃M � 0,M ∈ R
(n+1)×(n+1) such that

M00 = 1,
M0i = Mi0 = Mii = yi ∀ i ∈ [n]
Mij = 0 for all {i, j} ∈ E















.

Example 7.58. LetG = ([5], {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}) be a 5-cycle. The
vanishing ideal of the characteristic vectors of stable sets in G is

IG = 〈x1x2, x2x3, x3x4, x4x5, x1x5, x
2
i − xi for all i = 1, . . . , 5〉,

and a θ-basis for R[x]/IG is given by

B = {1, x1, x2, x3, x4, x5, x1x3, x1x4, x2x4, x2x5, x3x5}+ IG.

Let y ∈ R
10 be the vector of variables whose coordinates are indexed by B in the

given order and with y0 = 1. Then

TH1(IG) =
{

y ∈ R
5 : ∃y6, . . . , y10 s.t. MB1(y) � 0

}

,

where

MB1(y) =

















1 y1 y2 y3 y4 y5
y1 y1 0 y6 y7 0
y2 0 y2 0 y8 y9
y3 y6 0 y3 0 y10
y4 y7 y8 0 y4 0
y5 0 y9 y10 0 y5

















.

Note that xi ≡ x2
i and 1 − xi ≡ (1 − xi)

2 mod IG for any graph G, so TH1(IG) is
always contained in the [0, 1] cube.

The first example of an SDP relaxation of a combinatorial optimization prob-
lem was the theta body of a graph G = ([n], E) constructed by Lovász in [18] while
studying the Shannon capacity of graphs. The theta body of G, denoted as TH(G),
is a relaxation of STAB(G) that was originally defined as the intersection of the
infinitely many half spaces that arise from the orthonormal representations of G.
Several equivalent definitions can be found in [18] and [11, Chapter 9]. However,
none of them point to an obvious generalization of the construction to other discrete
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optimization problems. In [20], Lovász and Schrijver observe that TH(G) can be
formulated via semidefinite programming exactly as the formulation for TH1(IG)
shown above. This is still specialized to the stable set problem. Then in [19], Lovász
observes that, in fact, TH(G) is cut out by all linear polynomials that are 1-sos mod
the ideal IG. For the stable set problem, this fact can be proven without all the
machinery introduced in this paper. This connection leads naturally to the defini-
tion of THk(IG) for any positive integer k and more generally THk(I) for any ideal
I ⊆ R[x] and any k. Problem 8.3 in [19] (roughly) asks to characterize all ideals
I ⊆ R[x] such that cl(conv(VR(I))) equals TH1(I) or more generally, THk(I). It
was this problem that motivated us to study theta bodies in general and develop
the methods in this chapter.

Example 7.59. Let us return to the example Example 7.58. When Lovász intro-
duced the theta body of a graph G, he also introduced the concept of theta number
of a graph, ϑ(G) (c.f. Chapter 2). This is just the number

max

{

n
∑

i=1

xi : x ∈ TH(G) = TH1(IG)

}

,

which is an upper bound (and approximation) for the stability number α(G) of
a graph. We can now easily compute ϑ(C5), the theta number of the 5-cycle,
numerically using YALMIP, since we have the precise structure of the reduced
moment matrix.

y=sdpvar(1,10);

M=[1 y(1) y(2) y(3) y(4) y(5) ;

y(1) y(1) 0 y(6) y(7) 0 ;

y(2) 0 y(2) 0 y(8) y(9) ;

y(3) y(6) 0 y(3) 0 y(10);

y(4) y(7) y(8) 0 y(4) 0 ;

y(5) 0 y(9) y(10) 0 y(5) ];

obj=y(1)+y(2)+y(3)+y(4)+y(5);

solvesdp(M>=0,-obj);

double(obj)

This will return the answer ϑ(C5) ≈ 2.361. Note that α(C5) = 2, so we do get an
upper approximation as expected, but it is clear that IC5 is not TH1-exact.

A particular reason for Lovász’s interest in [19, Problem 8.3] was due to the
fact that STAB(G) = TH(G) if and only if G is a perfect graph [11, Corollary 9.3.27].
Recall that a graph is perfect if and only if it has no induced odd cycle of length at
least five or its complement [4]. Since TH(G) = TH1(IG) for all graphs G, it follows
that IG is TH1-exact if and only if G is perfect. The pentagon in Example 7.58
is not perfect, which justifies our observation that its ideal IG is not TH1-exact.
Chvátal and Fulkerson had shown that STAB(G) = QSTAB(G) if and only if G is
a perfect graph where

QSTAB(G) :=

{

x ∈ R
n : xi ≥ 0 for all i ∈ [n],

∑

i∈K
xi ≤ 1 for all cliques K in G

}

.
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A clique in G is a complete subgraph in G. Since every edge in G is a clique,
FRAC(G) ⊇ QSTAB(G) ⊇ STAB(G) in general. A hexagon is perfect, in which
case, FRAC(G) = QSTAB(G) since the only cliques in G are its edges. Therefore,
for the hexagon, STAB(G) = TH(G) = TH1(IG) = QSTAB(G) = FRAC(G). Since
IG is TH1-exact if and only if G is perfect, by Theorem 7.30, we also have that
STAB(G) is 2-level if and only if G is perfect.

The above discussion leads naturally to the question of which graphs G have
the property that IG is TH2-exact, or more generally, THk-exact. These problems
are open at the moment, although isolated examples of THk-exact ideals are known
for specific values of k > 1. In practice it is quite difficult to find examples of
graphs G for which IG is not TH2-exact although such graphs have to exist unless
P = NP . Recent results of Au and Tunçel prove that if G is the line graph of the
complete graph on 2n+ 1 vertices, then the smallest k for which IG is THk-exact
grows linearly with n [1].

7.4.2 A General Framework

The stable set problem and many others in combinatorial optimization can be mod-
eled as arising from a simplicial complex. A simplicial complex or independence
system, ∆, with vertex set [n], is a collection of subsets of [n], called the faces of
the ∆, such that whenever S ∈ ∆ and T ⊂ S, then T ∈ ∆. The Stanley–Reisner
ideal of ∆ is the ideal J∆ generated by the square-free monomials xi1xi2 · · ·xik such
that {i1, i2, . . . , ik} ⊆ [n] is not a face of ∆. If I∆ := J∆ + 〈x2

i − xi : i ∈ [n]〉,
then VR(I∆) = {s ∈ {0, 1}n : support(s) ∈ ∆}. The support of a vector v ∈ R

n

is the set {i ∈ [n] : vi 6= 0}. Further, for T ⊆ [n], if xT :=
∏

i∈T xi, then
B := {xT + I∆ : T ∈ ∆} is a θ-basis of R[x]/I∆. This implies that the kth theta
body of I∆ is

THk(I∆) = πRn{y ∈ R
B2k : MBk

(y) � 0, y0 = 1}.

Since B is in bijection with the faces of ∆ and x2
i − xi ∈ I∆ for all i ∈ [n], the theta

body can be written explicitly as

THk(I∆) =























y ∈ R
n :

∃M � 0, M ∈ R
|Bk|×|Bk| such that

M∅∅ = 1,
M∅{i} = M{i}∅ = M{i}{i} = yi,
MUU ′ = 0 if U ∪ U ′ 6∈ ∆,
MUU ′ = MWW ′ if U ∪ U ′ = W ∪W ′























.

If the dimension of ∆ is d − 1 (i.e., the largest faces in ∆ have size d), then I∆ is
THd-exact since all elements of B have degree at most d and hence the last possible
theta body THd(I∆) must coincide with conv(VR(I∆)) as VR(I∆) is finite. However,
in many examples, I∆ could be THk-exact for a k much smaller than d.

In the case of the stable set problem on G = ([n], E), ∆ is the set of all stable
sets in G. This is a simplicial complex with vertex set [n] whose nonfaces are the sets
T ⊆ [n] containing a pair i, j ∈ [n] such that {i, j} ∈ E. Hence the minimal non-
faces (by set inclusion) are precisely the edges of G and so J∆ = 〈xixj : {i, j} ∈ E〉.
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Then I∆ = J∆+〈x2
i−xi : i ∈ [n]〉, which is precisely the ideal IG from Section 7.4.1,

and the remaining facts about the θ-basis B used in Section 7.4.1 and the structure
of the theta bodies of IG follow from the general set up described above.

An example from combinatorial optimization that does not follow the simpli-
cial complex framework is the maximum cut problem of finding the largest size cut
in a graph. Recall that a cut in G is the collection of edges that go between the two
parts of a partition of the vertices of G. Note that a subset of a cut is not necessarily
a cut and hence the set of cuts in a graph do not form a simplicial complex. In
[7] the theta body hierarchy for the maximum cut problem, and more generally for
binary matroids, is studied. In this case, a θ-basis for the ideal in question is not
obvious as in the simplicial complex model.

7.4.3 Triangle-free Subgraphs in a Graph

We finish the chapter with a second example from combinatorial optimization that
fits the simplicial complex model. A subgraph H of a graph G = ([n], E) is triangle-
free if it does not contain a triangle (K3, the complete graph on 3 vertices). Given
weights on the edges of G, the triangle-free subgraph problem in G asks for a triangle-
free subgraph of G of maximum weight. If all the edge weights are one, then the
problem seeks a triangle-free subgraph in G with the most number of edges. The
triangle-free subgraph problem is known to be NP-hard [36] and is relevant in various
contexts within optimization.

The integer programming formulation of the triangle-free subgraph problem
optimizes the linear function

∑

e∈E wexe, where we is the weight on edge e ∈ E, over
the characteristic vectors {χH : H is triangle-free in G}. This is equivalent to max-
imizing

∑

e∈E wexe over

Ptf(G) := conv{χH : H is triangle-free in G},

the triangle-free subgraph polytope of G. Note that Ptf(G) is a full-dimensional 0/1
polytope in R

E . The triangle-free subgraph polytope of a graph has been studied by
various authors (see, for instance, [3, 5]), and a number of facet defining inequalities
of the polytope are known, although a full inequality description is not known or
expected.

Taking ∆ to be the simplicial complex on E consisting of all triangle-free
subgraphs in G, and Itf(G) := I∆, we have that

VR(Itf(G)) = {χH : H is triangle-free in G}.

Hence the theta bodies of Itf(G) provide convex relaxations of the triangle-free
subgraph polytope Ptf(G). From the general framework in Section 7.4.2, B =
{xH+Itf(G) : H triangle-free in G} is a θ-basis of R[x]/Itf(G). Therefore, the rows
and columns ofMBk

(y) are indexed by the triangle-free subgraphs in G with at most
k edges. For ease of exposition, let us denote the entry of MBk

(y) corresponding
to row indexed by xH1 and column indexed by xH2 by MBk

(y)H1H2
, let H1 ∪ H2

denote the subgraph of G whose edge set is the union of the edge sets of H1 and H2,
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and yH denote the entry of y ∈ R
B corresponding to the basis element xH + Itf(G).

Then

THk(Itf(G)) =















y ∈ R
E :

∃M � 0, M ∈ R
|Bk|×|Bk| such that

M∅∅ = 1,

MH1H2 =

{

0 if H1 ∪H2 has a triangle
yH1∪H2 otherwise















.

Since all subgraphs of G with at most two edges are triangle-free, and B1 =
{1 + Itf(G)} ∪ {xe + Itf(G) : e ∈ E}, TH1(Itf(G)) is exactly the same as the first
theta body of the ideal 〈x2

e − xe : e ∈ E〉 which is TH1-exact by Theorem 7.30.
Hence TH1(Itf(G)) = [0, 1]E, and Itf(G) is TH1-exact if and only if every subgraph
of G is triangle-free, or equivalently, G is triangle-free.

For graphs G that contain triangles, the second theta body of Itf(G) is more
interesting as triples and quadruples of edges in G can contain triangles which forces
some of the entries in MB2(y) to be zero.

Example 7.60. Suppose G = K3 with edges labeled 1, 2, 3. Then Ptf(G) is the
convex hull of all 0/1 vectors in R

3 except (1, 1, 1) which is the first polytope shown
in the second row of polytopes in Figure 7.10. This polytope is TH2-exact since

B2 = {1, x1, x2, x3, x1x2, x1x3, x2x3}+ Itf(G) = B.

Denoting y ∈ R
B2 , with first entry one, to be y = (1, y1, y2, y3, y12, y13, y23), we

have that

MB2(y) =





















1 y1 y2 y3 y12 y13 y23
y1 y1 y12 y13 y12 y13 0
y2 y12 y2 y23 y12 0 y23
y3 y13 y23 y3 0 y13 y23
y12 y12 y12 0 y12 0 0
y13 y13 0 y13 0 y13 0
y23 0 y23 y23 0 0 y23





















.

Hence the triangle-free subgraph polytope of K3 has the spectrahedral description
Ptf(G) = {(y1, y2, y3) : MB2(y) � 0}.

Several families of facet inequalities for the triangle-free subgraph polytope
of a graph can be found in the literature, and a complete facet description of
Ptf(G) for an arbitrary graph is unknown. An easy class of facets of Ptf(G) come
from the obvious fact that in any triangle in G at most two edges can be in a
triangle-free subgraph. Mathematically, if a, b, c ∈ E induce a triangle in G, then
2− xa − xb − xc ≥ 0 is a valid inequality for Ptf(G). We now show that this in-
equality is valid for TH2(Itf(G)). First check that

(1− xc − xaxb) ≡ (1− xc − xaxb)
2 mod Itf(G)

and also

(1− xa − xb + xaxb) ≡ (1− xa − xb + xaxb)
2 mod Itf(G).
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Figure 7.19. 5-wheel, partial 5-wheel, and Petersen graph.

This implies that 2− xa − xb − xc = (1− xa − xb + xaxb) + (1− xc − xaxb) is 2-sos
mod Itf(G) and hence 2− xa − xb − xc ≥ 0 is valid for TH2(Itf(G)).

Exercise 7.61. We saw in Example 7.59 how to compute ϑ(G) numerically for a
graph G. Find ϑ(G) for the graphs in Figure 7.19.

1. G a 5-wheel;

2. G the 5-wheel with two missing nonconsecutive rays;

3. G the Petersen graph.

Exercise 7.62. Compute the value of ϑ(G) for the 5-cycle exactly. (Hint: take
advantage of the symmetries of the graph.)

Exercise 7.63. Prove that for any graph G, TH1(IG) ⊆ QSTAB(G). Note that it
is enough to prove that xi and 1−∑

i∈C xi are 1-sos mod IG for all vertices i and
all cliques C.

Exercise 7.64. It is known that the stable set polytope of C2k+1, the odd cycle of
2k + 1 nodes, is defined by the inequalities xi ≥ 0 for all i ∈ [2k + 1], xi + xj ≤ 1
for all {i, j} ∈ E, which by the previous exercise are 1-sos mod IG, and the single
odd cycle inequality

∑

xi ≤ k [32, Corollary 65.12a].

1. Show that C5 is TH2-exact.

2. Show that C2k+1 is TH2-exact for all k.

Exercise 7.65. In Exercise 7.55 we have shown that the vanishing ideal of the set of
vertices of a (k+1)-level polytope is THk-exact. We also have seen in Theorem 7.30
that the reverse implication is true for k = 1: if a real radical ideal is TH1-exact,
then its variety must be the set of vertices of a 2-level polytope. Using what we
know of the theta body approximations to the stable set polytope, show that the
reverse implication (THk-exact ⇒ k-level) fails for k ≥ 2.

Exercise 7.66. The triangle-free subgraph problem is closely related to another
important problem in combinatorial optimization, the K3-cover subgraph problem.
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A subgraph of G is said to be a K3-cover if it contains at least an edge of every
triangle of G. What is the relation between a maximum triangle-free subgraph
and a minimum K3-cover? How is that reflected in the polytopes underlying those
combinatorial problems?

Exercise 7.67. A (2k + 1)-odd wheel is the graph on 2k + 2 vertices with 2k + 1
of the vertices forming a 2k + 1-cycle and the last vertex connected to each of the
vertices of the cycle. Such a wheel yields the inequality

∑

e∈EW xe ≤ 3k+1 that is
valid for the triangle-free subgraph polytope of G. For example, an induced 5-wheel
in a graph gives the inequality

x12 + x23 + x34 + x45 + x15 + x16 + x26 + x36 + x46 + x56 ≤ 7,

which is valid for the triangle-free subgraph polytope of the graph.

1. Use YALMIP to see that the 5-wheel and 7-wheel inequalities appear to be
2-sos mod Itf(G), where G is the corresponding wheel.

2. Can you express them exactly as 2-sos modulo the ideals?

3. Can you prove that all odd wheel inequalities are 2-sos modulo its ideal?

Exercise 7.68. Another version of the triangle-free subgraph problem is vertex-
based. Given a subset of nodes of G we say it is triangle-free if its induced subgraph
is triangle-free. This also falls into the simplicial complex model, so we know how
to construct reduced moment matrices. Using the first theta body, compute an
approximation for the maximum triangle-free subset of nodes of the 4-wheel.
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