Geometry of Sums of Squares Relaxations

João Gouveia¹ Tim Netzer²

¹ University of Washington

²University of Leipzig

14th July '10 / SIAM Annual Meeting

Optimization over semialgebraic sets

Goal

Optimize a linear objective function over

$$S = {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0}$$

where the g_i are polynomials over \mathbb{R} .

Optimization over semialgebraic sets

Goal

Optimize a linear objective function over

$$S = \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0\}$$

where the g_i are polynomials over \mathbb{R} .

It is NP-hard

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Optimization over semialgebraic sets

Goal

Optimize a linear objective function over

$$S = \{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0\}$$

where the g_i are polynomials over \mathbb{R} .

- It is NP-hard
- We use a hierarchy of relaxations instead

Nonnegativity over semialgebraic sets

We start by relaxing nonnegativity over S.

Nonnegativity over semialgebraic sets

We start by relaxing nonnegativity over S.

A classic way of certifying nonnegativity of a polynomial p over S is to provide a representation

$$p(\mathbf{x}) = \sigma_0(\mathbf{x}) + \sum_{i=1}^k \sigma_k(\mathbf{x}) g_i(\mathbf{x})$$

where the σ_i are sums of squares of polynomials.

(日) (日) (日) (日) (日) (日) (日)

Nonnegativity over semialgebraic sets

We start by relaxing nonnegativity over S.

A classic way of certifying nonnegativity of a polynomial p over S is to provide a representation

$$p(\mathbf{x}) = \sigma_0(\mathbf{x}) + \sum_{i=1}^k \sigma_k(\mathbf{x}) g_i(\mathbf{x})$$

where the σ_i are sums of squares of polynomials.

We will denote by Σ_d^S the set of all polynomials that have such a representation with deg($\sigma_i g_i$) $\leq 2d$ for all *i*.

Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S). Note that

Convex Hull

$$\overline{\operatorname{conv}(S)} = \bigcap_{\substack{\ell \text{ linear }, \ell \mid S \ge 0}} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}.$$

Convex Hulls of semialgebraic sets

We want to use this tool to approximate conv(S). Note that

Convex Hull

$$\overline{\operatorname{conv}(S)} = \bigcap_{\substack{\ell \text{ linear }, \ell|_{S} \ge 0}} \{ \mathbf{x} \in \mathbb{R}^{n} : \ell(\mathbf{x}) \ge 0 \}.$$

We can therefore relax it by

Lasserre Bodies

$$\mathcal{L}_{d}(\mathcal{S}) = \bigcap_{\ell \text{ linear }, \ell \in \Sigma_{d}^{\mathcal{S}}} \{ \mathbf{x} \in \mathbb{R}^{n} : \ell(\mathbf{x}) \geq 0 \}$$

which we call the *d*-th Lasserre Relaxation of *S*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Some remarks

• There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.
- In particular one can optimize over these Lasserre bodies.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.
- In particular one can optimize over these Lasserre bodies.
- But it is not necessarily easy.

- There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.
- In particular one can optimize over these Lasserre bodies.
- But it is not necessarily easy.
- From the definition $\overline{\operatorname{conv}(S)} \subseteq \mathcal{L}_d(S) \subseteq \mathcal{L}_{d-1}(S)$ for all d.

(日) (日) (日) (日) (日) (日) (日)

- There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.
- In particular one can optimize over these Lasserre bodies.
- But it is not necessarily easy.
- From the definition $\overline{\operatorname{conv}(S)} \subseteq \mathcal{L}_d(S) \subseteq \mathcal{L}_{d-1}(S)$ for all d.
- If S is compact we have assymptotic convergence.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- There is a (more famous) definition of the Lasserre relaxation using moments. When *S* has nonempty interior they match.
- In particular one can optimize over these Lasserre bodies.
- But it is not necessarily easy.
- From the definition $\overline{\operatorname{conv}(S)} \subseteq \mathcal{L}_d(S) \subseteq \mathcal{L}_{d-1}(S)$ for all d.
- If S is compact we have assymptotic convergence.
- When is the convergence (not) finite?

Technical Lemma

To verify that we don't have finite convergence in a particular case we will use a well-known result:

Theorem

If S has non-empty interior, Σ_d^S is closed for all d.

Technical Lemma

To verify that we don't have finite convergence in a particular case we will use a well-known result:

Theorem

If S has non-empty interior, Σ_d^S is closed for all d.

In geometrical terms this implies the following lemma:

Lemma

If *S* has non-empty interior and ℓ is a linear polynomial that is non-negative over $\mathcal{L}_d(S)$, then $\ell \in \Sigma_d^S$.

which we can use to give a certificate of $\mathcal{L}_d(S) \neq \overline{\operatorname{conv}(S)}$.

Lemma (Obstruction Lemma)

• Let
$$S = \{ \mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0 \}$$
,

Lemma (Obstruction Lemma)

• Let
$$S = {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0},$$

• L a line in \mathbb{R}^n s.t. int $(S \cap L) \neq \emptyset$ relative to L,

Lemma (Obstruction Lemma)

• Let
$$S = {\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0},$$

- L a line in \mathbb{R}^n s.t. int $(S \cap L) \neq \emptyset$ relative to L,
- $a \in S$ be in the relative boundary of $\overline{\operatorname{conv}(S)} \cap L$.

Lemma (Obstruction Lemma)

• Let
$$S = { \mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) \ge 0, \dots, g_k(\mathbf{x}) \ge 0 },$$

- L a line in \mathbb{R}^n s.t. int $(S \cap L) \neq \emptyset$ relative to L,
- $a \in S$ be in the relative boundary of $\overline{\operatorname{conv}(S)} \cap L$.

If for all g_i s.t. $\underline{g_i(a)} = 0$ we have $\nabla g_i(a) \perp L$ then, for all d, we have $\mathcal{L}_d(S) \neq \overline{\text{conv}(S)}$.

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sketch of proof

Assume a = 0, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sketch of proof

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, ..., 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, ..., k\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sketch of proof

Assume a = 0, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, ..., 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, ..., k\}.$

• Note that
$$\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$$
-axis.

Sketch of proof

S

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, ..., 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, ..., k\}.$

• Note that
$$\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$$
-axis.

Let *i* ∈ *I* if *g_i*(0) = 0 and *i* ∈ *J* otherwise. By hypothesis (*g_i*^{*})'(0) = *g_i*^{*}(0) = 0 for *i* ∈ *I*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sketch of proof

s

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, ..., 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, ..., k\}.$

• Note that $\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$ -axis.

•
$$(g_i^*)'(0) = g_i^*(0) = 0$$
 for $i \in I$.

S

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, ..., 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, ..., k\}.$

• Note that
$$\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$$
-axis.

•
$$(g_i^*)'(0) = g_i^*(0) = 0$$
 for $i \in I$.

• Suppose
$$\ell(x) = x$$
 was valid in $\mathcal{L}_d(S^*)$:

$$\ell(\mathbf{x}) = \sigma_0 + \sum_{i \in I} \sigma_i \mathbf{g}_i^* + \sum_{j \in J} \sigma_j \mathbf{g}_j^*,$$

by evaluating at 0, $\sigma_0(0) = \sigma_j(0) = 0$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

S

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, \dots, 0)$$
, and
 $\mathcal{S}^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, \dots, k\}.$

• Note that
$$\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$$
-axis.

•
$$(g_i^*)'(0) = g_i^*(0) = 0$$
 for $i \in I$.

•
$$\sigma_0(0) = \sigma_j(0) = 0$$
 for all $j \in J$.

• Suppose $\ell(x) = x$ was valid in $\mathcal{L}_d(S^*)$:

$$\ell(\mathbf{x}) = \sigma_0 + \sum_{i \in I} \sigma_i \mathbf{g}_i^* + \sum_{j \in J} \sigma_j \mathbf{g}_j^*,$$

by evaluating at 0, $\sigma_0(0) = \sigma_j(0) = 0$.

s

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, \dots, 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, \dots, k\}.$

• Note that $\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$ -axis.

•
$$(g_i^*)'(0) = g_i^*(0) = 0$$
 for $i \in I$.

•
$$\sigma_0(0) = \sigma_j(0) = 0$$
 for all $j \in J$.

• Suppose $\ell(x) = x$ was valid in $\mathcal{L}_d(S^*)$:

$$\mathsf{I} = (\sigma_0)' + \sum_{l=1,\dots,k} ((\sigma_l)' g_l^* + \sigma_l (g_l^*)'),$$

s

а

Assume $a = \mathbf{0}$, $L = x_1$ -axis, $S \cap L \subseteq \mathbb{R}_+$.

• Let
$$g_i^*(x) = g_i(x, 0, \dots, 0)$$
, and
 $S^* = \{x \in \mathbb{R} : g_i^*(x) \ge 0, i = 1, \dots, k\}.$

• Note that $\mathcal{L}_d(S^*) \subseteq \mathcal{L}_d(S) \cap x_1$ -axis.

•
$$(g_i^*)'(0) = g_i^*(0) = 0$$
 for $i \in I$.

•
$$\sigma_0(0) = \sigma_j(0) = 0$$
 for all $j \in J$.

• Suppose $\ell(x) = x$ was valid in $\mathcal{L}_d(S^*)$:

$$1 = (\sigma_0)' + \sum_{l=1,...,k} ((\sigma_l)' g_l^* + \sigma_l (g_l^*)'),$$

by evaluating at 0, 1 = 0. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Singularities

Corollary

If *S* has non-empty interior and there exists a point $a \in S$ that is on the boundary of conv(*S*) s.t. all g_i verifying $g_i(a) = 0$ are singular at *a*, then we have $\mathcal{L}_d(S) \neq \text{conv}(S)$ for all *d*.

Singularities

Corollary

If *S* has non-empty interior and there exists a point $a \in S$ that is on the boundary of conv(S) s.t. all g_i verifying $g_i(a) = 0$ are singular at *a*, then we have $\mathcal{L}_d(S) \neq conv(S)$ for all *d*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Faces of a convex set

Definition

 A face of a convex set S is a convex subset F ⊆ S s.t. if a, b ∈ S and]a, b[∩F ≠ Ø then a, b ∈ F.

Faces of a convex set

- A face of a convex set S is a convex subset F ⊆ S s.t. if a, b ∈ S and]a, b[∩F ≠ Ø then a, b ∈ F.
- A face *F* is said to be exposed if there exists an hyperplane *H* such that $F = H \cap S$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Faces of a convex set

- A face of a convex set S is a convex subset F ⊆ S s.t. if a, b ∈ S and]a, b[∩F ≠ Ø then a, b ∈ F.
- A face *F* is said to be exposed if there exists an hyperplane *H* such that $F = H \cap S$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Faces of a convex set

- A face of a convex set S is a convex subset F ⊆ S s.t. if a, b ∈ S and]a, b[∩F ≠ Ø then a, b ∈ F.
- A face *F* is said to be exposed if there exists an hyperplane *H* such that $F = H \cap S$.

Faces of a convex set

- A face of a convex set S is a convex subset F ⊆ S s.t. if a, b ∈ S and]a, b[∩F ≠ Ø then a, b ∈ F.
- A face *F* is said to be exposed if there exists an hyperplane *H* such that $F = H \cap S$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Non-exposed faces

Corollary (Netzer-Plaumann-Schweighofer)

Suppose S is convex and has non-empty interior. If S has a non-exposed face then $\mathcal{L}_d(S) \neq \overline{\operatorname{conv}(S)}$ for all d.

Non-exposed faces

Corollary (Netzer-Plaumann-Schweighofer)

Suppose S is convex and has non-empty interior. If S has a non-exposed face then $\mathcal{L}_d(S) \neq \overline{\operatorname{conv}(S)}$ for all d.

 $g_1(x,y) = y - x^3, \ g_2(x,y) = y, \ g_3(x,y) = x + 1, \ g_4(x,y) = 1 - y$

Questions from NPS

Question 1

Can $\mathcal{L}_d(S)$ have non-exposed faces?

Questions from NPS

Question 1

Can $\mathcal{L}_d(S)$ have non-exposed faces?

Yes.

Questions from NPS

Question 1

Can $\mathcal{L}_d(S)$ have non-exposed faces?

Yes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Questions from NPS

Question 1

Can $\mathcal{L}_d(S)$ have non-exposed faces?

Yes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Questions from NPS

Question 2

If we drop convexity of S and just assume conv(S) has non-exposed faces can we reach the same conclusion?

$$g(x, y) = -x^{4} - y^{4} - 2x^{2}y^{2} + 4X^{2}$$

$$I_{\alpha} = 1 - \cos(\alpha) - \cos(\alpha)x - \sin(\alpha)Y$$

$$(8 - 8\cos(\alpha))I_{\alpha} = g(x, y) + (x^{2} + y^{2} - 2 + 2\cos(\alpha))^{2} + (2\sqrt{1 - \cos(\alpha)}(y - \sin(\alpha)))^{2} + (2\sqrt{-\cos(\alpha)}(x - \cos(\alpha) + 1))^{2}$$

Open Questions

Question 1

What other obstructions exist to the finite convergence of the Lasserre hierarchy?

Open Questions

Question 1

What other obstructions exist to the finite convergence of the Lasserre hierarchy?

Question 2

Give an example of a smooth, convex, basic semialgebraic set with no non-exposed faces such that the Lasserre hierarchy does not converge finitely. Is there such an example?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Positive Polynomials and Projections of Spectrahedra, João Gouveia and Tim Netzer, *arXiv:0911.2750*

Thank You

