# Sums of Squares with Multipliers: Advantages and Limitations 

Greg Blekherman ${ }^{1}$ João Gouveia ${ }^{2}$ James Pfeiffer ${ }^{3}$

${ }^{1}$ Georgia Tech<br>${ }^{2}$ Universidade de Coimbra<br>${ }^{3}$ University of Washington

October 1st - CWMINLP 2013 - Paris

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

Why?

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

Why?

$$
p(x)=\sum h_{i}(x)^{2}
$$

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

Why?

$$
p(x)=\sum h_{i}(x)^{2}=\sum_{i}\left\langle\hat{h}_{i}, \bar{x}\right\rangle^{2}
$$

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

Why?

$$
p(x)=\sum h_{i}(x)^{2}=\sum_{i}\left\langle\hat{h}_{i}, \bar{x}\right\rangle^{2}=\bar{x}^{t}\left(\sum \hat{h}_{i} \hat{h}_{i}^{t}\right) \bar{x}
$$

## Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

## SOS verification

Let $\operatorname{deg}(p(x))=2 d$ and $\bar{x}$ be the vector of monomials of degree up to d. $p(x)$ is a sos iff there is $A \succeq 0$ such that $p(x)=\bar{x}^{t} A \bar{x}$.

Why?

$$
p(x)=\sum h_{i}(x)^{2}=\sum_{i}\left\langle\hat{h}_{i}, \bar{x}\right\rangle^{2}=\bar{x}^{t}\left(\sum \hat{h}_{i} \hat{h}_{i}^{t}\right) \bar{x}
$$

Demanding a polynomial to be sos is a semidefinite constrain in the coefficients.

## Sums of Squares in global polynomial optimization

## Global Polynomial Optimization

$p_{\text {min }}=\min _{x \in \mathbb{R}^{n}} p(x)$

## Sums of Squares in global polynomial optimization

## Global Polynomial Optimization

$p_{\text {min }}=\min _{x \in \mathbb{R}^{n}} p(x)=\max \lambda$ s.t. $p(x)-\lambda$ is nonnegative.

## Sums of Squares in global polynomial optimization

## Global Polynomial Optimization

$p_{\text {min }}=\min _{x \in \mathbb{R}^{n}} p(x)=\max \lambda$ s.t. $p(x)-\lambda$ is nonnegative .

Deciding nonnegativity of a polynomial is hard, hence we relax it.

Global Polynomial Optimization Relaxation
$p_{\text {sos }}=\max \lambda$ s.t. $p(x)-\lambda$ is sos.

## Sums of Squares in global polynomial optimization

## Global Polynomial Optimization

$p_{\text {min }}=\min _{x \in \mathbb{R}^{n}} p(x)=\max \lambda$ s.t. $p(x)-\lambda$ is nonnegative .

Deciding nonnegativity of a polynomial is hard, hence we relax it.

Global Polynomial Optimization Relaxation
$p_{\text {sos }}=\max \lambda$ s.t. $p(x)-\lambda$ is sos.

It does not always work.

## Hierarchy of Sums of Squares



For Motzkin polytope $p_{\min }=0$ but $p_{\text {sos }}=+\infty$.

## Hierarchy of Sums of Squares



$$
M(x, y)=1+x^{4} y^{2}+y^{4} x^{2}-3 x^{2} y^{2}
$$

For Motzkin polytope $p_{\min }=0$ but $p_{\text {sos }}=+\infty$. However $\left(x^{2}+y^{2}\right)^{2} M(x, y)$ is a sum of squares, which is enough to guarantee nonnegativity.

## Hierarchy of Sums of Squares



$$
M(x, y)=1+x^{4} y^{2}+y^{4} x^{2}-3 x^{2} y^{2}
$$

For Motzkin polytope $p_{\min }=0$ but $p_{\text {sos }}=+\infty$. However $\left(x^{2}+y^{2}\right)^{2} M(x, y)$ is a sum of squares, which is enough to guarantee nonnegativity.

This motivates a new hierarchy:

## Global Polynomial Optimization Relaxation Hierarchy

$p_{\text {sos }, k}=\max \lambda$ s.t. $\|x\|^{2 k}(p(x)-\lambda)$ is sos.

## Properties of this hierarchy

## Good News

For all polynomials, $p_{\text {sos }, k} \rightarrow p_{\text {min }}$.

## Properties of this hierarchy

Good News<br>For all polynomials, $p_{\text {sos }, k} \rightarrow p_{\text {min }}$.

## Bad News

For some polynomials, $p_{\text {sos }, k} \neq p_{\text {min }}$ for any $k$.

## Properties of this hierarchy

## Good News

For all polynomials, $p_{\mathrm{sos}, k} \rightarrow p_{\text {min }}$.

## Bad News

For some polynomials, $p_{\text {sos }, k} \neq p_{\text {min }}$ for any $k$.

$$
D(x, y, z, w)=x^{4} y^{2} w^{2}+y^{4} z^{2} w^{2}+x^{2} z^{4} w^{2}-3 x^{2} y^{2} z^{2} w^{2}+z^{8}
$$

For $D_{\text {sos }, k}>0$ for all $k$.

## Properties of this hierarchy

## Good News

For all polynomials, $p_{\mathrm{sos}, k} \rightarrow p_{\text {min }}$.

## Bad News

For some polynomials, $p_{\mathrm{sos}, k} \neq p_{\text {min }}$ for any $k$.

$$
D(x, y, z, w)=x^{4} y^{2} w^{2}+y^{4} z^{2} w^{2}+x^{2} z^{4} w^{2}-3 x^{2} y^{2} z^{2} w^{2}+z^{8}
$$

For $D_{\text {sos }, k}>0$ for all $k$.
However $\left(x^{2}+y^{2}+z^{2}\right) D(x, y, z, w)$ is sos, which is enough.

## Free multiplier Hierarchy

Picking the right multiplier definitely helps.

## Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
$p_{\mathrm{sos}, k}^{*}=\max \lambda$ s.t. $q(x)(p(x)-\lambda)$ is sos, and $q(x) \neq 0$ is sos.

## Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
$p_{\mathrm{sos}, \mathrm{k}}^{*}=\max \lambda$ s.t. $q(x)(p(x)-\lambda)$ is sos, and $q(x) \neq 0$ is sos.

## Good News

For every polynomial there exists $k$ such that $p_{\min }=p_{\mathrm{sos}, k}^{*}$.

## Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
$p_{\mathrm{sos}, k}^{*}=\max \lambda$ s.t. $q(x)(p(x)-\lambda)$ is sos, and $q(x) \neq 0$ is sos.

## Good News

For every polynomial there exists $k$ such that $p_{\min }=p_{\mathrm{sos}, k}^{*}$.

## Bad News <br> Not an SDP anymore (not convex)

## Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
$p_{\mathrm{sos}, k}^{*}=\max \lambda$ s.t. $q(x)(p(x)-\lambda)$ is sos, and $q(x) \neq 0$ is sos.

## Good News

For every polynomial there exists $k$ such that $p_{\min }=p_{\mathrm{sos}, k}^{*}$.

## Bad News <br> Not an SDP anymore (not convex)

## Not so Bad News

It is however a quasi-convex problem, hence still doable. It is also OK for fixed $\lambda$.

## Copositive Matrices

Cone of Copositive Matrices
$\mathrm{CoP}_{n}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, x^{t} M x \geq 0, \forall x \geq 0\right\}$.

## Copositive Matrices

## Cone of Copositive Matrices

$\mathrm{CoP}_{n}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, x^{t} M x \geq 0, \forall x \geq 0\right\}$.
Copositive programming is an elegant and efficient way of stating hard problems.

## Copositive Matrices

## Cone of Copositive Matrices

$\mathrm{CoP}_{n}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, x^{t} M x \geq 0, \forall x \geq 0\right\}$.
Copositive programming is an elegant and efficient way of stating hard problems.
Checking copositivity is very hard.

## Copositive Matrices

Cone of Copositive Matrices
$\mathrm{CoP}_{n}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, x^{t} M x \geq 0, \forall x \geq 0\right\}$.
Copositive programming is an elegant and efficient way of stating hard problems.
Checking copositivity is very hard.

## Simple Copositivity Criteria $\mathrm{PSD}_{n}+\mathrm{NN}_{n} \subseteq \mathrm{CoP}_{n}$.

## Copositive Matrices

Cone of Copositive Matrices
$\mathrm{CoP}_{n}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, x^{t} M x \geq 0, \forall x \geq 0\right\}$.
Copositive programming is an elegant and efficient way of stating hard problems.
Checking copositivity is very hard.

## Simple Copositivity Criteria $\mathrm{PSD}_{n}+\mathrm{NN}_{n} \subseteq \mathrm{CoP}_{n}$.

$$
\left[\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right]
$$

## Parrilo's Hierarchy

For a symmetric matrix $M$ consider the polynomial

$$
p_{M}(x)=\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}{ }^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]^{t} M\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]
$$

## Parrilo's Hierarchy

For a symmetric matrix $M$ consider the polynomial

$$
p_{M}(x)=\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}{ }^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]^{t} M\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}{ }^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]
$$

$M$ is copositive iff $p_{M}$ is nonnegative.

## Parrilo's Hierarchy

For a symmetric matrix $M$ consider the polynomial

$$
p_{M}(x)=\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}{ }^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]^{t} M\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]
$$

$M$ is copositive iff $p_{M}$ is nonnegative.

## Parrilo's hierarchy

$$
\operatorname{Par}_{n}^{r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t},\|x\|^{2 r} p_{M}(x) \text { is } \operatorname{sos}\right\} .
$$

## Parrilo's Hierarchy

For a symmetric matrix $M$ consider the polynomial

$$
p_{M}(x)=\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}{ }^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]^{t} M\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{2}^{2} \\
\vdots \\
x_{n}{ }^{2}
\end{array}\right]
$$

$M$ is copositive iff $p_{M}$ is nonnegative.

## Parrilo's hierarchy

$$
\operatorname{Par}_{n}^{r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t},\|x\|^{2 r} p_{M}(x) \text { is } \operatorname{sos}\right\} .
$$

$$
\operatorname{Par}_{n}^{1} \subseteq \operatorname{Par}_{n}^{2} \subseteq \cdots \subseteq \mathrm{CoP}_{n}
$$

There is assimptotic convergence, but $\operatorname{Par}_{5}^{r} \neq \mathrm{CoP}_{5}$ for any $r$.

## Hierarchy with free multipliers

## Parrilo's hierarchy v2.0

$\operatorname{Par}_{n}^{*, r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, q(x) p_{M}(x)\right.$ is sos, $q(x) \neq 0$ is sos $\}$.

## Hierarchy with free multipliers

## Parrilo's hierarchy v2.0

$\operatorname{Par}_{n}^{*, r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, q(x) p_{M}(x)\right.$ is sos, $q(x) \neq 0$ is sos $\}$.

Checking membership in $\mathrm{Par}_{n}^{*, r}$ is relatively easy (semidefinite programming).

## Hierarchy with free multipliers

## Parrilo's hierarchy v2.0

$\operatorname{Par}_{n}^{*, r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, q(x) p_{M}(x)\right.$ is sos, $q(x) \neq 0$ is sos $\}$.

Checking membership in $\mathrm{Par}_{n}^{*, r}$ is relatively easy (semidefinite programming).

However it is not even clear when is $\mathrm{Par}_{n}^{*, r}$ convex.

## Hierarchy with free multipliers

## Parrilo's hierarchy v2.0

$\operatorname{Par}_{n}^{*, r}=\left\{M \in \mathbb{R}^{n \times n}: M=M^{t}, q(x) p_{M}(x)\right.$ is $\operatorname{sos}, q(x) \neq 0$ is sos $\}$.

Checking membership in $\mathrm{Par}_{n}^{*, r}$ is relatively easy (semidefinite programming).

However it is not even clear when is $\mathrm{Par}_{n}^{*, r}$ convex.

## Finite Convergence

For all $n$ there exists $r$ such that $\mathrm{Par}_{n}^{*, r}=\mathrm{CoP}_{n}$. In particular $\mathrm{Par}_{5}^{*, 1}=\mathrm{CoP}_{5}$.

## Constrained polynomial optimization

## Constrained Problem

$p_{\text {min }}=\min _{x} p(x)$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

## Constrained polynomial optimization

## Constrained Problem

$p_{\min }=\min _{x} p(x)$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

An equivalent formulation

## Constrained Problem

$p_{\text {min }}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda \geq 0$ for all $x$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

## Constrained polynomial optimization

## Constrained Problem

$p_{\min }=\min _{x} p(x)$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

An equivalent formulation

## Constrained Problem

$p_{\text {min }}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda \geq 0$ for all $x$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

We can now apply sums of squares
Constrained Problem Relaxation
$p_{\text {sos }}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda+\sum q_{i}(x) g_{i}(x)$ is sos, for some $q_{i}$.

## Constrained polynomial optimization

## Constrained Problem

$p_{\min }=\min _{x} p(x)$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

An equivalent formulation

## Constrained Problem

$p_{\text {min }}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda \geq 0$ for all $x$ s.t. $g_{i}(x)=0, i=1, \cdots, r$.

We can now apply sums of squares
Constrained Problem Relaxation
$p_{\text {sos }}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda+\sum q_{i}(x) g_{i}(x)$ is sos, for some $q_{i}$.

Degree bounds are needed.

## Costrained polynomial optimization (continued)

Lasserre Hierarchy
$p_{\text {sos }}^{K}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda+\sum q_{i}(x) g_{i}(x)$ is sos, for some polynomials $q_{i}$, with degree of $p$ and $q_{i} g_{i}$ at most $2 k$.

## Costrained polynomial optimization (continued)

## Lasserre Hierarchy

$p_{\text {sos }}^{k}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda+\sum q_{i}(x) g_{i}(x)$ is sos, for some polynomials $q_{i}$, with degree of $p$ and $q_{i} g_{i}$ at most $2 k$.

Again we can adapt this hierarchy to use multipliers
Lasserre Hierarchy v 2.0
$p_{\mathrm{sos}}^{j, k}=\max _{\lambda} \lambda$ s.t.

$$
(1+q(x))(p(x)-\lambda)+\sum q_{i}(x) g_{i}(x)
$$

is sos, for some polynomials $q_{i}$, with degree of $p$ and $q_{i} g_{i}$ at most $2 k$ and $q(x)$ a sum of squares of degree at most $2 j$.

## Costrained polynomial optimization (continued)

## Lasserre Hierarchy

$p_{\text {sos }}^{K}=\max _{\lambda} \lambda$ s.t. $p(x)-\lambda+\sum q_{i}(x) g_{i}(x)$ is sos, for some polynomials $q_{i}$, with degree of $p$ and $q_{i} g_{i}$ at most $2 k$.

Again we can adapt this hierarchy to use multipliers
Lasserre Hierarchy v 2.0
$p_{\mathrm{sos}}^{j, k}=\max _{\lambda} \lambda$ s.t.

$$
(1+q(x))(p(x)-\lambda)+\sum q_{i}(x) g_{i}(x)
$$

is sos, for some polynomials $q_{i}$, with degree of $p$ and $q_{i} g_{i}$ at most $2 k$ and $q(x)$ a sum of squares of degree at most $2 j$.

Same advantages and disadvantage as before.

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250
$$

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208
$$

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$.

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

## Example

Consider the teardrop curve given by $x^{4}-x^{3}+y^{2}=0$.


Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

Multipliers make the relaxations less sensitive to singularities.

## The n-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Cube $C_{3}$

## The $n$-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Cube $C_{3}$
$S_{n}$ acts on $C_{n}$ by permuting coordinates, and if $p$ is symmetric, it will be completely characterized by its evaluation at the levels $T_{k}$ of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

## The $n$-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Level $T_{0}$
$S_{n}$ acts on $C_{n}$ by permuting coordinates, and if $p$ is symmetric, it will be completely characterized by its evaluation at the levels $T_{k}$ of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

## The $n$-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Level $T_{1}$
$S_{n}$ acts on $C_{n}$ by permuting coordinates, and if $p$ is symmetric, it will be completely characterized by its evaluation at the levels $T_{k}$ of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

## The $n$-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Level $T_{2}$
$S_{n}$ acts on $C_{n}$ by permuting coordinates, and if $p$ is symmetric, it will be completely characterized by its evaluation at the levels $T_{k}$ of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

## The $n$-cube

We are interested in the $n$-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\} .
$$



Level $T_{3}$
$S_{n}$ acts on $C_{n}$ by permuting coordinates, and if $p$ is symmetric, it will be completely characterized by its evaluation at the levels $T_{k}$ of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

## Main Result 1 - Bad news

Let $p$ be a symmetric square-free polynomial attaining its minimum over $C_{n}$ at level $T_{k}$, with $\operatorname{deg} p \leq k \leq n / 2$.

## Main Result 1 - Bad news

Let $p$ be a symmetric square-free polynomial attaining its minimum over $C_{n}$ at level $T_{k}$, with $\operatorname{deg} p \leq k \leq n / 2$.

## Theorem

If $T_{k}$ is not a local extreme of $p$ over $\mathbb{R}^{n}$ (seen as a polynomial in $\sum x_{i}$ ) then $p_{\text {min }}>p_{\text {sos }}^{k-r, k}$, where $r=\lceil(\operatorname{deg} p) / 2\rceil$.

## Main Result 1 - Bad news

Let $p$ be a symmetric square-free polynomial attaining its minimum over $C_{n}$ at level $T_{k}$, with $\operatorname{deg} p \leq k \leq n / 2$.

## Theorem

If $T_{k}$ is not a local extreme of $p$ over $\mathbb{R}^{n}$ (seen as a polynomial in $\sum x_{i}$ ) then $p_{\min }>p_{\mathrm{sos}}^{k-r, k}$, where $r=\lceil(\operatorname{deg} p) / 2\rceil$.

This means that if the minimizer of $p$ is "simple enough" and is close to the central levels of the cube, we need high level sos relaxations.

## Notes on the result

The proof reduces to this lemma.

## Lemma

If $p$ has degree $d$ and vanishes at $T_{k}$ with $d \leq k \leq n-d$ then

$$
p=\left(k-\sum x_{i}\right) q \bmod I_{n},
$$

with $\operatorname{deg} q<\operatorname{deg} p$.

## Notes on the result

The proof reduces to this lemma.

## Lemma

If $p$ has degree $d$ and vanishes at $T_{k}$ with $d \leq k \leq n-d$ then

$$
p=\left(k-\sum x_{i}\right) q \bmod I_{n},
$$

with $\operatorname{deg} q<\operatorname{deg} p$.

This is a divisibility result. Surprisingly, the only proof we know uses representation theory.

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$.

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$. It decomposes:

$$
\mathbb{R}[]_{k}=\mathbb{R}[/]_{=0} \oplus \mathbb{R}[I]_{=1} \oplus \mathbb{R}[I]_{=2} \oplus \oplus \cdots c \mid \mathbb{R}[]_{=k}
$$

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
\oplus
\end{array} \\
& H_{n-1,1} \\
& H_{n-1,1} \\
& \text {... } \\
& H_{n-2,2} \\
& H_{n-2,2} \\
& H_{n-k, k}
\end{aligned}
$$

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
{ }_{H n-1,1}
\end{array} \\
& \begin{array}{c}
H_{n, 0} \\
\stackrel{\oplus}{H_{n-1,1}} \\
\stackrel{\oplus}{H_{n-2,2}}
\end{array} \\
& \begin{array}{lc}
\ldots & H_{n, 0} \\
& \oplus \\
\cdots & H_{n-1,1} \\
\cdots & H_{n-2,2}
\end{array} \\
& \vdots \\
& H_{n-k, k}
\end{aligned}
$$

Let $M_{j}$ be the first copy of $H_{n-j, j}$ to appear,

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
\stackrel{\oplus}{H_{n-1,1}}
\end{array} \\
& \begin{array}{cccc}
H_{n, 0} & & \cdots & H_{n, 0} \\
\oplus & & \cdots & { }^{\oplus} \\
H_{n-1,1} & & \cdots & H_{n-1,1} \\
{ }_{\oplus}{ }^{+1} & & \cdots & H_{n-2,2} \\
H_{n-2,2} & & & \vdots \\
& \ddots & & H_{n-k, k}
\end{array}
\end{aligned}
$$

Let $M_{j}$ be the first copy of $H_{n-j, j}$ to appear, then

$$
\mathbb{R}[I]_{k}=\bigoplus_{j=0}^{k} M_{j} \oplus\left(k-\sum x_{i}\right) M_{j} \oplus \cdots \oplus\left(k-\sum x_{i}\right)^{k-j} M_{j}
$$

## Sketch of Proof:

Consider the action of $S_{n}$ in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{array}{ccccccc}
\mathbb{R}[I]_{k}= & \mathbb{R}[/]_{=0} & \oplus & \mathbb{R}[/]_{=1} & \oplus & \mathbb{R}[I]_{=2} & \oplus \\
2 \| & \cdots \| & \oplus & \mathbb{R}[/]_{=k} \\
H_{n, 0} & H_{n, 0} & H_{n, 0} & & \cdots & H_{n, 0} \\
& \oplus & \oplus & & & \oplus \\
& H_{n-1,1} & H_{n-1,1} & & \cdots & H_{n-1,1} \\
& & \oplus & & & \oplus \\
& & H_{n-2,2} & & \cdots & H_{n-2,2} \\
& & & \ddots & & \vdots \\
& & & & & & H_{n-k, k}
\end{array}
$$

Let $M_{j}$ be the first copy of $H_{n-j, j}$ to appear, then

$$
\mathbb{R}[I]_{k}=\bigoplus_{j=0}^{k} M_{j} \oplus\left(k-\sum x_{i}\right) M_{j} \oplus \cdots \oplus\left(k-\sum x_{i}\right)^{k-j} M_{j}
$$

and is enough to check that $M_{j}$ does not vanish at $T_{k}$.

## Application 1 - MaxCut

Recall that the maxcut problem over $K_{n}$ can be reduced to
Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

## Application 1 - MaxCut

Recall that the maxcut problem over $K_{n}$ can be reduced to

## Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lasserre relaxations are of limited use.

## Laurent

For $n=2 k+1, p_{\text {sos }}^{k}>p_{\max }$.

## Application 1 - MaxCut

Recall that the maxcut problem over $K_{n}$ can be reduced to

## Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lasserre relaxations are of limited use.

## Laurent

For $n=2 k+1, p_{\text {sos }}^{k}>p_{\text {max }}$.
Note that $p$ attains its maximum in $C_{n}$ at $T_{k}$ and $T_{k+1}$, which are not local maxima of $p$ over $\mathbb{R}^{n}$.

First corollary of main result 1
For $n=2 k+1, p_{\text {sos }}{ }^{k-1, k}>p_{\text {max }}$.

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\text {sos }}^{l, k}=p_{\text {min }}$.
We also expect that these I, $k$ should be very high. However there were no examples for such behavior.

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.
We also expect that these $I, k$ should be very high. However there were no examples for such behavior.

## Second corollary of main result 1

For any $k$ there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\min } \neq p_{\mathrm{sos}}^{k-2, k}$.

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.
We also expect that these $I, k$ should be very high. However there were no examples for such behavior.

## Second corollary of main result 1

For any $k$ there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\min } \neq p_{\mathrm{sos}}^{k-2, k}$.

This is proven by a perturbed extension of the polynomial on the previous example.

$$
p=\sum_{i \neq j}\left(1-x_{i}\right) x_{j}
$$

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.
We also expect that these $I, k$ should be very high. However there were no examples for such behavior.

## Second corollary of main result 1

For any $k$ there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\text {min }} \neq p_{\mathrm{sos}}^{k-2, k}$.

This is proven by a perturbed extension of the polynomial on the previous example.

$$
p=\sum_{i \neq j}\left(1-x_{i}\right) x_{j}+\varepsilon
$$

## Application 2 - Global Optimization

Let $p$ be any polynomial in $\mathbb{R}^{n}$.

## Artin (Hilbert's 17th Problem)

For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.
We also expect that these $I, k$ should be very high. However there were no examples for such behavior.

## Second corollary of main result 1

For any $k$ there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\text {min }} \neq p_{\mathrm{sos}}^{k-2, k}$.

This is proven by a perturbed extension of the polynomial on the previous example.

$$
p=\sum_{i \neq j}\left(1-x_{i}\right) x_{j}+\varepsilon+A \sum_{i}\left(x_{i}^{2}-x_{i}\right)^{2}
$$

## Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

## Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

Theorem
Let $p$ be a non constant quadratic polynomial in $\mathbb{R}^{2 k+1}$, then $p_{\text {min }}=p_{\text {sos }}^{k+1, k+2}$ (over the cube).

## Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

## Theorem

Let $p$ be a non constant quadratic polynomial in $\mathbb{R}^{2 k+1}$, then $p_{\text {min }}=p_{\text {sos }}^{k+1, k+2}$ (over the cube).

The proof is based in dimension counting.

## Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n},
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.

## Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.
The negative result proved by Laurent has an opposed positive conjecture.

## Conjecture (Laurent)

If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\mathrm{sos}}^{k+1}$ for all weights.

## Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.
The negative result proved by Laurent has an opposed positive conjecture.

## Conjecture (Laurent)

If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\text {sos }}^{k+1}$ for all weights.
A weaker version can now be proved.
Corollary of main result 2
If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\text {sos }}^{k+1, k+2}$ for all weights.

## Open Questions

- Show that for every $r$ there exists $n$ such that $\operatorname{Par}_{n}^{*, r} \neq \operatorname{CoP}_{n}$. (Adapt the polynomial we have?)


## Open Questions

- Show that for every $r$ there exists $n$ such that $\operatorname{Par}_{n}^{*, r} \neq \operatorname{CoP}_{n}$. (Adapt the polynomial we have?)
- Convexity of $\operatorname{Par}_{n}^{*, r}$.


## Open Questions

- Show that for every $r$ there exists $n$ such that $\operatorname{Par}_{n}^{*, r} \neq \operatorname{CoP}_{n}$. (Adapt the polynomial we have?)
- Convexity of $\operatorname{Par}_{n}^{*, r}$.
- How to use $\mathrm{Par}_{n}^{*, r}$ in general copositive programming.


## Open Questions

- Show that for every $r$ there exists $n$ such that $\operatorname{Par}_{n}^{*, r} \neq \operatorname{CoP}_{n}$. (Adapt the polynomial we have?)
- Convexity of $\operatorname{Par}_{n}^{*, r}$.
- How to use $\mathrm{Par}_{n}^{*, r}$ in general copositive programming.
- Any progress on sos/sdp hardness of matching.


## The End

## Thank You

