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Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy
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SOS verification

Let deg(p(x)) = 2d and x be the vector of monomials of degree up to
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Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

SOS verification

Let deg(p(x)) = 2d and x be the vector of monomials of degree up to
d. p(x) is a sos iff there is A = 0 such that p(x) = x!Ax.

Why?

,D(X) = Zh;(X)z = Z <hA,',)_(>2 = )_(t (Z hA,'hA,'t) X

1

Demanding a polynomial to be sos is a semidefinite constrain in the
coefficients.
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Global Polynomial Optimization

Sums of Squares in global polynomial optimization
Pmin = MiNyecrn P(X)
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Sums of Squares in global polynomial optimization

Global Polynomial Optimization

Pmin = MiNxern P(X) = Max A s.t. p(x) — A is nonnegative.
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Sums of Squares in global polynomial optimization

Global Polynomial Optimization

Pmin = MiNxern P(X) = Max A s.t. p(x) — A is nonnegative. J

Deciding nonnegativity of a polynomial is hard, hence we relax it.

Global Polynomial Optimization Relaxation
Psos = Max A s.t. p(x) — A is sos. J
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Sums of Squares in global polynomial optimization

Global Polynomial Optimization

Pmin = MiNxern P(X) = Max A s.t. p(x) — A is nonnegative. J

Deciding nonnegativity of a polynomial is hard, hence we relax it.

Global Polynomial Optimization Relaxation
Psos = Max A s.t. p(x) — A is sos. J

It does not always work.
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Hierarchy of Sums of Squares

M(x,y) =1+ x*y? + y*x? — 3x2y2
For Motzkin polytope pmin = 0 but psps = +0c.
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Hierarchy of Sums of Squares
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M(x,y) =1+ x4y2 4 y*x% — 3x2y?

For Motzkin polytope pmin = 0 but psps = +0c.

However (x2 + y2)2M(x, y) is a sum of squares, which is enough to
guarantee nonnegativity.
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Hierarchy of Sums of Squares

M(x,y) =1+ x4y2 4 y*x% — 3x2y?

For Motzkin polytope pmin = 0 but psps = +0c.
However (x2 + y2)2M(x, y) is a sum of squares, which is enough to
guarantee nonnegativity.

This motivates a new hierarchy:

Global Polynomial Optimization Relaxation Hierarchy J

Psos.k = Max A s.t. [[x[|2K(p(x) — A) is sos.
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Properties of this hierarchy
Good News

For all polynomials, psos k — Pmin-
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Properties of this hierarchy

Good News
For all polynomials, psos k — Pmin-

Bad News

For some polynomials, psos xk # Pmin for any k.

D(x,y.,z, w) = x*V2w? + y*Z2w? + x22*w? — 3x3y2 w2 + 28
Vi 2, y y y

For Dsos x > 0 for all k.
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Properties of this hierarchy

Good News
For all polynomials, psos k — Pmin-

Bad News
For some polynomials, psos xk # Pmin for any k.

D(x,y.,z, w) = x*V2w? + y*Z2w? + x22*w? — 3x3y2 w2 + 28
Vi 2, y y y

For Dsos x > 0 for all k.

However (x2 + y? 4 z2)D(x, y, z, w) is sos, which is enough.

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 5/22




Free multiplier Hierarchy

Picking the right multiplier definitely helps.
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Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search
all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
Paos.k = Max A s.t. g(x)(p(x) — A) is sos, and g(x) # O is sos.
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Free multiplier Hierarchy

Picking the right multiplier definitely helps. So we might as well search
all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
Paos.k = Max A s.t. g(x)(p(x) — A) is sos, and g(x) # O is sos.

Good News
For every polynomial there exists k such that pmin = PZos «-

Bad News
Not an SDP anymore (not convex)

Not so Bad News

It is however a quasi-convex problem, hence still doable. It is also OK
for fixed .

v
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Copositive Matrices

Cone of Copositive Matrices

CoPp,={McR™" : M= M xMx >0, Vx > 0}.
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Copositive Matrices

Cone of Copositive Matrices
CoPp,={McR™" : M= M xMx >0, Vx > 0}. J

Copositive programming is an elegant and efficient way of stating hard
problems.

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 7/22



Copositive Matrices

Cone of Copositive Matrices
CoPp,={McR™" : M= M xMx >0, Vx > 0}. J

Copositive programming is an elegant and efficient way of stating hard
problems.

Checking copositivity is very hard.

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 7/22



Copositive Matrices

Cone of Copositive Matrices
CoPp,={McR™" : M= M xMx >0, Vx > 0}. J

Copositive programming is an elegant and efficient way of stating hard
problems.

Checking copositivity is very hard.
Simple Copositivity Criteria
PSD, + NN, C CoP,,. J

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 7/22



Copositive Matrices

Cone of Copositive Matrices
CoPp,={McR™" : M= M xMx >0, Vx > 0}. J

Copositive programming is an elegant and efficient way of stating hard
problems.

Checking copositivity is very hard.
Simple Copositivity Criteria
PSD, + NN, C CoP,,. J

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 7/22



Parrilo’s Hierarchy

For a symmetric matrix M consider the polynomial

t
X12 X12
X22 X22
pu(x)=| . | M| .
an Xn2
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Parrilo’s Hierarchy

For a symmetric matrix M consider the polynomial

t
X2 X2
X22 X22

pu(x)=| . | M| .
X2 Xp2

M is copositive iff py, is nonnegative.
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For a symmetric matrix M consider the polynomial

t
X2 X2
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X2 Xp2

M is copositive iff py, is nonnegative.

Parrilo’s hierarchy
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Parrilo’s Hierarchy

For a symmetric matrix M consider the polynomial

t
X2 X2
X22 X22

pu(x)=| . | M| .
X2 Xp2

M is copositive iff py, is nonnegative.

Parrilo’s hierarchy
Par, = {M € R™" : M= M, ||x|[¥py(x)is sos}. J

Par! C Par2 C ... C CoP,

There is assimptotic convergence, but Parg # CoPs for any r.
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Hierarchy with free multipliers

Parrilo’s hierarchy v2.0

Pary” = {M e R™" . M= M, q(x)pu(x)is sos, q(x) # 0is sos}.
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Hierarchy with free multipliers

Parrilo’s hierarchy v2.0
Pary = {M e R™" : M= M, g(x)pu(x) is sos, g(x) # 0 is sos}. J

Checking membership in Par};" is relatively easy (semidefinite
programming).
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Hierarchy with free multipliers

Parrilo’s hierarchy v2.0
Pary” = {M e R™" . M = M, q(x)pu(x)issos,q(x) # 0 is sos}. J

Checking membership in Par};" is relatively easy (semidefinite
programming).

However it is not even clear when is Par}," convex.

Finite Convergence

For all n there exists r such that Par),” = CoP,,. In particular
Par§’1 = CoPs.
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Constrained polynomial optimization
Constrained Problem

Pmin = minxp(X) S.t. g,‘(X) = O’ | = 1,. - T
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Constrained polynomial optimization

Constrained Problem
pmin:minxp(X) S.t. g,‘(X):O7 I:1’ .. J

An equivalent formulation

Constrained Problem
Pmin = Maxy As.t. p(x) — A >0forall xs.t. g((x)=0,i=1,---,r. J
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Constrained Problem
pmin:minxp(X) S.t. g,‘(X):O7 I:1’ .. J

An equivalent formulation

Constrained Problem
Pmin = Maxy As.t. p(x) — A >0forall xs.t. g((x)=0,i=1,---,r. J

We can now apply sums of squares

Constrained Problem Relaxation
Psos = Max) As.t. p(x) — A+ > qi(x)gi(x) is sos, for some q;. J

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 10/22



Constrained polynomial optimization

Constrained Problem
pmin:minxp(X) S.t. g,‘(X):O7 I:1’ .. J

An equivalent formulation

Constrained Problem
Pmin = Max, As.t. p(x) — A > O0forall xs.t. g;(x)=0,i=1,---,r. J

We can now apply sums of squares

Constrained Problem Relaxation
Psos = Max) As.t. p(x) — A+ > qi(x)gi(x) is sos, for some q;. J

Degree bounds are needed.
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Costrained polynomial optimization (continued)

Lasserre Hierarchy

Pl = maxy A s.t. p(x) — A+ 3 gi(x)gi(x) is sos, for some polynomials
gi, with degree of p and g;g; at most 2k.
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Costrained polynomial optimization (continued)

Lasserre Hierarchy

Pl = maxy A s.t. p(x) — A+ 3 gi(x)gi(x) is sos, for some polynomials
gi, with degree of p and g;g; at most 2k.

Again we can adapt this hierarchy to use multipliers
Lasserre Hierarchy v 2.0

"
Phigs = Max \ s.t.

(1+q(x) ‘|‘qu )9i(x)

is sos, for some polynomials g;, with degree of p and q;g; at most 2k
and g(x) a sum of squares of degree at most 2j.
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Costrained polynomial optimization (continued)

Lasserre Hierarchy

Pl = maxy A s.t. p(x) — A+ 3 gi(x)gi(x) is sos, for some polynomials
gi, with degree of p and g;g; at most 2k.

Again we can adapt this hierarchy to use multipliers
Lasserre Hierarchy v 2.0

"
Phigs = Max \ s.t.

(1+q(x) "‘Zch )9i(x)

is sos, for some polynomials g;, with degree of p and q;g; at most 2k
and g(x) a sum of squares of degree at most 2j.

Same advantages and disadvantage as before.
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Example
Consider the teardrop curve given by x* — x® + y2 = 0.

P
T~/
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Consider the teardrop curve given by x* — x3 + y2 =0

P
T~/

Let p(x) = x
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Let p(x) = x then
p2,s = —0.1250,
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Example

Consider the teardrop curve given by x* — x3 + y2 = 0.

P2 = —0.1250, p3. = —0.0208, pf,s = —0.0092,

Let p(x) = x then

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 12/22



Example

Consider the teardrop curve given by x* — x3 + y2 = 0.

P
T~/

P2 = —0.1250, p3. = —0.0208, pf,s = —0.0092,

Let p(x) = x then

However p;gfs = Pmin = 0.
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Example

Consider the teardrop curve given by x* — x3 + 2 = 0.

P
T~/

P2 = —0.1250, p3. = —0.0208, pf,s = —0.0092,

Let p(x) = x then

However pl2 = pmin = 0. In fact

2

x2 . x = x*+ y? modulo /.
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Example

Consider the teardrop curve given by x* — x3 + 2 = 0.

P
T~/

P2 = —0.1250, p3. = —0.0208, pf,s = —0.0092,

Let p(x) = x then

However pl2 = pmin = 0. In fact

2

x2 . x = x*+ y? modulo /.

Multipliers make the relaxations less sensitive to singularities.
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The n-cube
We are interested in the n-cube:
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The n-cube
We are interested in the n-cube:

Ch={0,1}"={xeR": x2—x;=0,i=1,---,n}.

Cube C3

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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Level T,
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The n-cube
We are interested in the n-cube:

Ch={0,1}"={xeR": x2—x;=0,i=1,---,n}.

‘,::::ff_’“w

Level T3

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.

Theorem

If Tx is not a local extreme of p over R” (seen as a polynomial in >_ x;)
then P > Phos ", Where r = [(deg p)/2].
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.

Theorem

If Tx is not a local extreme of p over R” (seen as a polynomial in >_ x;)

then P > Phos ", Where r = [(deg p)/2].

This means that if the minimizer of p is “simple enough” and is close to
the central levels of the cube, we need high level sos relaxations.
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Notes on the result

The proof reduces to this lemma.
Lemma

If p has degree d and vanishes at 7, with d < k < n— d then

p=(k=> x)q mod I,
with deg q < deg p.
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Notes on the result

The proof reduces to this lemma.

Lemma
If p has degree d and vanishes at 7, with d < k < n— d then

p=(k=> x)q mod I,

with deg q < deg p.

This is a divisibility result. Surprisingly, the only proof we know uses
representation theory.
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Sketch of Proof:

Consider the action of S, in R[/].
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Consider the action of S, in R[/]. It decomposes:

Rilk= R0 @& Ry & R[l2 & - & R[]
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rk = R0 ® R[l=1 @& R[]z @© --- & R[]
2l 2 2l 2

Hn,O Hn,O Hn,O T Hn,O
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hp25 ‘e Hp—25

Hn_k.x
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rilk= Rl-o @ R[-1 & R[> &

I 2 2l
Hn,O Hn,O Hn,O
©® ©®
Hp—1 1 Hp_1 1
©®
Hp_22

Let M; be the first copy of H,_; ; to appear,
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rilk= R[fl-o @ Rlflz1 & R[fl.2 & -+ @ R[]
2l 2 2l 2

Hno Hno Hno e Hno
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hn—2,2 T Hn—2,2

Hn—k k

Let M; be the first copy of H,,_;; to appear, then

K
Rk =P Me k= Y x)Ma--a&k-> x) N

J=0
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

R[lk= R0 @ R[]=y @& R[l—2 & - & R[]
2l 2 2l 2

Hn.o Hno Hn.o e Hno
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hn—2,2 T Hn—2,2

Hn—k k

Let M; be the first copy of H,,_;; to appear, then

K
Rk =P Me k= Y x)Ma--a&k-> x) N

/=0
and is enough to check that M; does not vanish at Ty.



Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

max p(x) = > (1 = x;)x;s.t. x € Cp
i#]
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Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

max p(x) = > (1 = x;)x;s.t. x € Cp
i#]

Laurent has proved that Lasserre relaxations are of limited use.

Laurent
For n =2k 41, pls > Pmax- J
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Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

max p(x) = > (1 = x;)x;s.t. x € Cp
i#]

Laurent has proved that Lasserre relaxations are of limited use.

Laurent
For n =2k 41, pls > Pmax- J

Note that p attains its maximum in C, at Ty and Ty ¢, which are not
local maxima of p over R".

First corollary of main result 1
FOI‘ n=2k + 1, psosk_17k > pmax. J
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Application 2 - Global Optimization
Let p be any polynomial in R".
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Application 2 - Global Optimization
Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem)

For some /, K, Pas = Prin-
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Application 2 - Global Optimization
Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, p& = prin-

We also expect that these /, k should be very high. However there
were no examples for such behavior.
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Application 2 - Global Optimization

Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, p& = prin-

We also expect that these /, k should be very high. However there
were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Prmin 75 Psos " -
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Application 2 - Global Optimization

Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, p& = prin-

We also expect that these /, k should be very high. However there
were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Prmin 75 Psos " -

This is proven by a perturbed extension of the polynomial on the
previous example.

p=> (1-x)x
i#]
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Application 2 - Global Optimization

Let p be any polynomial in R".
Artin (Hilbert’s 17th Problem) J

For some /, k, psos Prin-

We also expect that these /, k should be very high. However there
were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Prmin 75 Psos " -

This is proven by a perturbed extension of the polynomial on the
previous example.

p= Z Xj-i—s

i#
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Application 2 - Global Optimization

Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, p& = prin-

We also expect that these /, k should be very high. However there
were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Prmin ?é Psos " -

This is proven by a perturbed extension of the polynomial on the
previous example.

p=> (1-x)x+e+A> (x%—x)
i
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary

polynomial programming. Luckily we also can show some upper
bounds.

Blekherman, Gouveia, Pfeiffer Sums of squares with multipliers CWMINLP 2013 19/22



Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary

polynomial programming. Luckily we also can show some upper
bounds.

Theorem
Let p be a non constant quadratic polynomial in R2<+1_ then
Prin = A2 (over the cube).
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary
polynomial programming. Luckily we also can show some upper
bounds.

Theorem
Let p be a non constant quadratic polynomial in R2<+1_ then
Prin = A2 (over the cube).

The proof is based in dimension counting.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max p,(x) = Y wj(1 = Xj)x;s.t. X € Cn,
i

where wj is the weight of edge {/, /}.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut
max p,(x) = Y wj(1 = Xj)x;s.t. X € Cn,

i
where wj is the weight of edge {/, /}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)
If n =2k +1, (p.)min = (p.)5&! for all weights. J
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut
max p,(x) = Y wj(1 = Xj)x;s.t. X € Cn,

i
where wj is the weight of edge {/, /}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)
If n =2k + 1, (P.)min = (P.,)555" for all weights.

A weaker version can now be proved.

Corollary of main result 2

If n =2k + 1, (0.)min = (P.,)555 *+2 for all weights.

J
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Open Questions

@ Show that for every r there exists n such that Par}," # CoP,,.
(Adapt the polynomial we have?)
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Open Questions

@ Show that for every r there exists n such that Par}," # CoP,,.
(Adapt the polynomial we have?)

@ Convexity of Par;".

@ How to use Par;;” in general copositive programming.
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Open Questions

@ Show that for every r there exists n such that Par}," # CoP,,.
(Adapt the polynomial we have?)

@ Convexity of Par;".

@ How to use Par;;” in general copositive programming.

@ Any progress on sos/sdp hardness of matching.
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The End

Thank You
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