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Sums of Squares

Checking if a polynomial is a sum of squares (sos) is easy

SOS verification
Let deg(p(x)) = 2d and x̄ be the vector of monomials of degree up to
d . p(x) is a sos iff there is A � 0 such that p(x) = x̄ tAx̄ .

Why?

p(x) =
∑

hi(x)2

=
∑

i

〈
ĥi , x̄

〉2
= x̄ t

(∑
ĥi ĥi

t)
x̄

Demanding a polynomial to be sos is a semidefinite constrain in the
coefficients.
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Sums of Squares in global polynomial optimization

Global Polynomial Optimization
pmin = minx∈Rn p(x)

= maxλ s.t. p(x)− λ is nonnegative.

Deciding nonnegativity of a polynomial is hard, hence we relax it.

Global Polynomial Optimization Relaxation
psos = maxλ s.t. p(x)− λ is sos.

It does not always work.
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Hierarchy of Sums of Squares

M(x , y) = 1 + x4y2 + y4x2 − 3x2y2

For Motzkin polytope pmin = 0 but psos = +∞.

However (x2 + y2)2M(x , y) is a sum of squares, which is enough to
guarantee nonnegativity.

This motivates a new hierarchy:

Global Polynomial Optimization Relaxation Hierarchy

psos,k = maxλ s.t. ‖x‖2k (p(x)− λ) is sos.
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Properties of this hierarchy

Good News
For all polynomials, psos,k → pmin.

Bad News
For some polynomials, psos,k 6= pmin for any k .

D(x , y , z,w) = x4y2w2 + y4z2w2 + x2z4w2 − 3x2y2z2w2 + z8

For Dsos,k > 0 for all k .

However (x2 + y2 + z2)D(x , y , z,w) is sos, which is enough.
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Free multiplier Hierarchy
Picking the right multiplier definitely helps.

So we might as well search
all of them:

Global Polynomial Optimization Relaxation Hierarchy v2.0
p∗sos,k = maxλ s.t. q(x)(p(x)− λ) is sos, and q(x) 6= 0 is sos.

Good News
For every polynomial there exists k such that pmin = p∗sos,k .

Bad News
Not an SDP anymore (not convex)

Not so Bad News
It is however a quasi-convex problem, hence still doable. It is also OK
for fixed λ.
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Copositive Matrices
Cone of Copositive Matrices
CoPn = {M ∈ Rn×n : M = M t , x tMx ≥ 0, ∀x ≥ 0}.

Copositive programming is an elegant and efficient way of stating hard
problems.
Checking copositivity is very hard.

Simple Copositivity Criteria
PSDn + NNn ⊆ CoPn.


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1
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Parrilo’s Hierarchy
For a symmetric matrix M consider the polynomial

pM(x) =


x1

2

x2
2

...
xn

2


t

M


x1

2

x2
2

...
xn

2

 .

M is copositive iff pM is nonnegative.

Parrilo’s hierarchy

Parr
n = {M ∈ Rn×n : M = M t , ‖x‖2r pM(x) is sos}.

Par1
n ⊆ Par2

n ⊆ · · · ⊆ CoPn

There is assimptotic convergence, but Parr
5 6= CoP5 for any r .
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Hierarchy with free multipliers

Parrilo’s hierarchy v2.0

Par∗,rn = {M ∈ Rn×n : M = M t , q(x)pM(x) is sos,q(x) 6= 0 is sos}.

Checking membership in Par∗,rn is relatively easy (semidefinite
programming).

However it is not even clear when is Par∗,rn convex.

Finite Convergence

For all n there exists r such that Par∗,rn = CoPn. In particular
Par∗,15 = CoP5.
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Constrained polynomial optimization

Constrained Problem
pmin = minx p(x) s.t. gi(x) = 0, i = 1, · · · , r .

An equivalent formulation

Constrained Problem
pmin = maxλ λ s.t. p(x)− λ ≥ 0 for all x s.t. gi(x) = 0, i = 1, · · · , r .

We can now apply sums of squares

Constrained Problem Relaxation
psos = maxλ λ s.t. p(x)− λ+

∑
qi(x)gi(x) is sos, for some qi .

Degree bounds are needed.
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Costrained polynomial optimization (continued)

Lasserre Hierarchy

pk
sos = maxλ λ s.t. p(x)− λ+

∑
qi(x)gi(x) is sos, for some polynomials

qi , with degree of p and qigi at most 2k .

Again we can adapt this hierarchy to use multipliers

Lasserre Hierarchy v 2.0

pj,k
sos = maxλ λ s.t.

(1 + q(x))(p(x)− λ) +
∑

qi(x)gi(x)

is sos, for some polynomials qi , with degree of p and qigi at most 2k
and q(x) a sum of squares of degree at most 2j .

Same advantages and disadvantage as before.
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Example

Consider the teardrop curve given by x4 − x3 + y2 = 0.

Let p(x) = x then

p2
sos = −0.1250, p3

sos = −0.0208, p4
sos = −0.0092, ...

However p1,2
sos = pmin = 0. In fact

x2 · x = x4 + y2 modulo I.

Multipliers make the relaxations less sensitive to singularities.
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The n-cube
We are interested in the n-cube:

Cn = {0,1}n = {x ∈ Rn : x2
i − x i = 0, i = 1, · · · ,n}.

Cube C3

Sn acts on Cn by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels Tk of the cube:

Tk = {x ∈ Cn :
∑

x i = k}.
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over Cn at level Tk , with deg p ≤ k ≤ n/2.

Theorem
If Tk is not a local extreme of p over Rn (seen as a polynomial in

∑
xi )

then pmin > pk−r ,k
sos , where r = d(deg p)/2e.

This means that if the minimizer of p is “simple enough” and is close to
the central levels of the cube, we need high level sos relaxations.
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Notes on the result

The proof reduces to this lemma.

Lemma
If p has degree d and vanishes at Tk with d ≤ k ≤ n − d then

p = (k −
∑

xi)q mod In,

with deg q < deg p.

This is a divisibility result. Surprisingly, the only proof we know uses
representation theory.
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Sketch of Proof:
Consider the action of Sn in R[I]k .

It decomposes:

R[I]k = R[I]=0 ⊕ R[I]=1 ⊕ R[I]=2 ⊕ · · · ⊕ R[I]=k

∼ = ∼ = ∼ = ∼ =

Hn,0 Hn,0 Hn,0 · · · Hn,0
⊕ ⊕ ⊕

Hn−1,1 Hn−1,1 · · · Hn−1,1
⊕ ⊕

Hn−2,2 · · · Hn−2,2
. . .

...
Hn−k ,k

Let Mj be the first copy of Hn−j,j to appear,

then

R[I]k =
k⊕

j=0

Mj ⊕ (k −
∑

xi)Mj ⊕ · · · ⊕ (k −
∑

xi)
k−jMj

and is enough to check that Mj does not vanish at Tk .
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Application 1 - MaxCut
Recall that the maxcut problem over Kn can be reduced to

Binary polynomial formulation of MaxCut

max p(x) =
∑
i 6=j

(1− x i)x j s.t. x ∈ Cn

Laurent has proved that Lasserre relaxations are of limited use.

Laurent
For n = 2k + 1, pk

sos > pmax.

Note that p attains its maximum in Cn at Tk and Tk+1, which are not
local maxima of p over Rn.

First corollary of main result 1

For n = 2k + 1, psos
k−1,k > pmax.
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Application 2 - Global Optimization
Let p be any polynomial in Rn.

Artin (Hilbert’s 17th Problem)

For some l , k , pl,k
sos = pmin.

We also expect that these l , k should be very high. However there
were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R2k+1 for which
pmin 6= pk−2,k

sos .

This is proven by a perturbed extension of the polynomial on the
previous example.

p =
∑
i 6=j

(1− xi)xj + ε+ A
∑

i

(xi
2 − xi)

2
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary
polynomial programming. Luckily we also can show some upper
bounds.

Theorem
Let p be a non constant quadratic polynomial in R2k+1, then
pmin = pk+1,k+2

sos (over the cube).

The proof is based in dimension counting.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max pω(x) =
∑
i 6=j

ωij(1− x i)x j s.t. x ∈ Cn,

where ωij is the weight of edge {i , j}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)

If n = 2k + 1, (pω)min = (pω)k+1
sos for all weights.

A weaker version can now be proved.

Corollary of main result 2

If n = 2k + 1, (pω)min = (pω)k+1,k+2
sos for all weights.
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Open Questions

Show that for every r there exists n such that Par∗,rn 6= CoPn.
(Adapt the polynomial we have?)

Convexity of Par∗,rn .

How to use Par∗,rn in general copositive programming.

Any progress on sos/sdp hardness of matching.
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The End

Thank You
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