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Let M be a m by n nonnegative matrix. A semidefinite
factorization of M of size k is a set of k x k positive semidefinite
matrices Ay, ---,An and By, - - B, such that M = (A;, B;).
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(s 9] 1 0 1
[ 1 V*] 1 1 1

The smallest size of a semidefinite factorization is denoted by
positive semidefinite rank of M, rank,sq (M)



Basic Properties

Properties
The psd rank is:
(i) invariant under transpositions or nonnegative scalings;
(il) subadditive;
(iii) at least ~ v/2rank;
(iv) at most the smallest dimension of the matrix;
(v) -
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How does the rank function look like? (continued)
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(Algebraic) geometry of the rank

Scaling Lemma

If M has a psd factorization of size k, it has one where the
factors have trace bounded by /k||M|[1 1.

Another Scaling Lemma [Briét-Dadush-Pokutta 2013]

If M has a psd factorization of size k, it has one where the
factors have largest eigenvalue bounded by \/k||M|| .

Proposition
The rankpsq function is lower semicontinuous.

Proposition
Pr.gk :={M € RE*Y | rankpsq (M) < k}

is a closed semialgebraic set inside the rank < (“3") variety.

Even in the case (3, 3, 2) the precise description is not easy.
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Geometric Motivation

Given a polytope P described as a convex hull of n points and a
polyhedron Q described by m inequalities with P C Q we
define Sp o C R1*™ as the evaluation of the inequalities of Q at
the points of P.

Theorem (Semidefinite Yannakakis Theorem)

rankopsd (Sp,q) < k if and only if there is a convex set C with an
sdp representation of size k such that P C C C Q.

Lemma (Gillis-Glineur 12)

All nonnegative matrices of rank n+ 1 can be seen as
generalized slack matrices of polyhedra of dimension n.
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M = Sp.o with { P = conv{(1,0),(0,1),(1,1)}
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Example

1
Lets look again at matrix M = | 1
1

1
0
1

)
S|

M=Sha with{ P = conv{(1,0),(0,1),(1,1)}

Q={(x.y):1>0,x>0,y>0}"

rankpsq (M) = 2

DA



Example

Lets look again at matrix M =

M = Sp g with { P = conv{(1,

rankpsg (M) = 2
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Computing Semidefinite Rank
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Low (usual) rank cases

Rank 1
rank (M) = 1 < rankpsq (M) =1

Rank 2
rank (M) = 2 = rankpsq (M) =2

Rank 3
rank (M) = 3 = rankpsq (M) > 2

Can we say more for rank 37

Let M, be the (rank 3) slack matrix of a regular n-gon then
rankpsq (Mp) — +o0.
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Checking semidefinite rank 2
If rank (M) > 3 then rankpsq (M) > 2, so we need only to study
rank 3 matrices.

Lemma
Let M = Spq with rank (M) = 3 then rankpsq (M) = 2 if and only
if there is an ellipse E with P C E C Q.

Convex Formulation
Let P = conv(xy,---,x,) and Q = {x : Gx < h} then
rankpsq (Spq) = 2 iff there exist A, b, ¢ such that:

1. Ax0, trace(A) =1
T
X A bl |X .
[ 2B <o

. [A b o g'/2 .
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Example

1+a 1+b 1—a 1-b
1—-a 1+b 14+a 1-0b
1-a 1-b 1+a 1+0b
i+a 1—-b 1—a 1+0b

3 ifa+b%>1
rankpsg M = ¢ 2 if0 < &+ b? < 1
1 ifa=b=0
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General case

A similar geometric picture holds more generally, and can be
used to show general complexity results.

Theorem

Let M € R7*™ with rank (M) = (“}7).
Deciding if rankysg (M) = k can be solved in time (nm)9(<°).

In particular for fixed k it is solvable in polynomial time.

Open complexity problems:
» Is there a polynomial time algorithm to decide if
rankpsq (M) < k for fixed k > 37
» What is the complexity of computing rankpsqg ?

» Is deciding rankysq (M) < min{p, g} for a p x q matrix
NP-hard?
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A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.
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Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

(1)

+1 0
2 1

+v2 +1

We define rank (M) = min{rank (V/M)}.

Proposition
rank (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsq (M) < rank (M).
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How does the square root rank function look like?

1 y x
LetA=1|y 1 y|. rankpsq (A) € {1,2, }
x y 1

rank (A) <2
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Example: The Prime Matrices

Let ny,no, n3, ... be 2n; — 1 is the jth odd prime. Define a k x k
matrix Q such that Q; = n; + n; — 1.

Q=

NOoh~ W

oo oA

© NOoO O,
(oo}

rank (QF) = 2 = rankpsq (QF) = rank 4 (QF) = 2.

However rank ~(Q) = k.
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Further bad news on the square-root rank

Complexity
Computing Square-Root Rank is NP-Hard.

1 0 0 a?]
0 1 .0 a&°
rank\[ Co-. . | =n iff {ay, ..., an} can be partitioned
1 a2
11 1 0|
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What works for square root rank

0/1 matrices
If M € {0,1}™ then rankysq (M) < rank (M) < rank (M).

Theorem [Barvinok 2012]
If M has at most k distinct entries, rankpsq (M) < (“~"%70 (M)

Psd minimal polytopes
P a d-dimensional polytope, then rankgsq (Sp) > d 4 1 with
equality if and only if rank ~(Sp) = d + 1.
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PSD minimal polytopes

R? characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a
quadrilateral.

R3 characterization

A 3-dimensional polytope is sdp-minimal iff it is @ combinatorial
simplex, bisimplex, quadrilateral pyramid, triangular prism
or if it is a biplanar octahedra or a biplanar cuboid.

Kostya’s talk for more news on that.
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We can define rankgsd, by allowing complex psd matrices as

factors. It is easy to show

rank geg(M) < rankpsq (M) < 2rank soq(M).

The best we actually know

Theorem [Lee-Wei-de Wolf 14]
For the n x n derangement matrix M, we have

rankpsq (My) ~ v2rank S4(M).

Can the gap be 27
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Rational psd rank

We could also define rankgSd by restricting to rational factors. It

is clear that rankgsd(M) > rank psq(M), and we can show the
inequality to be possibly strict.

002101
100 2 01
012001
1200 01

M=1902110
100210
012010
120010

- 11
psd minimal = rank one factors = o 1 cannot appear.
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Given M with rankysq (M) = k consider SF(M) the set of its
fgk x k psd factorizations:

SF(M) = {(A1,-+ ,An, By -+ ,Bm) € PSD]"" : My = (A;, B}) Vi, j}.

Forany L € GL(k) itis easy to see
(A1, ,Bm) e SF(M) < (LTA(L,--- ,L7'ByuL™T) € SF(M)

so GL(k) acts on this set.

To Fi(M) := SF(M)/GL(k) we call the space of
factorizations of M.
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Recall that M =
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0
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1

] has rankpsq (M) = 2.
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Example

Recall that M =

What is Fo(M)?

to o) o

with a € [1/2,1].

— — —

—_ O =

0
1
1

] has rankpsq (M) = 2.
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Geometry of the space of factorizations

Given P C Q, let Cx(P, Q) be the set of PSDj-representable
sets C suchthat P C C C Q.

The generalized Yannakakis theorem tells us that there exits a
map
¢ : SF(Sp,a) — Ck(P, Q).

In fact, it is invariant with respect to the GL(k) action so we
have a map
¢ Fk(Sp,a) — Ck(P, Q)

from the space of factorizations to that of “sandwiched” sets.
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Example revisited

Lets look again at matrix M =

—_
—_ O —

—_ a0
1

S

Here we actually have a one to one correspondence
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Extremal case

Theorem
If M = Sp q has rankpsq (M) = k and rank (M) = (“}") then
Fi(M) and Cx(P, Q) are homeomorphic.

This result does not extend to all other cases. For H the regular
hexagon and M = Sy we have:

» rank (M) = 3, rankpsq (M) = 4;
» C4(H, H) has a single element;
» F4(M) has at least 2 points.
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Connectedness

Proposition
For rank (M) = 3, rankysq (M) = 2, F2(M) is connected.

The equivalent is not true for nonnegative rank

Question
When is Fx(M) connected?



The end
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