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Section 1

Definition and Basic Properties



Definition

Let M be a m by n nonnegative matrix.

A semidefinite
factorization of M of size k is a set of k × k positive semidefinite
matrices A1, · · · ,Am and B1, · · ·Bn such that Mi,j =

〈
Ai ,Bj

〉
.

 1 1

1 1

  1 0

0 0

  0 0

0 1


[

1 0
0 0

]
[

0 0
0 1

]
[

1 −1/2
−1/2 1

]


1 1 0

1 0 1

1 1 1



The smallest size of a semidefinite factorization is denoted by
positive semidefinite rank of M, rankpsd (M)
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Basic Properties

Properties
The psd rank is:

(i) invariant under transpositions or nonnegative scalings;
(ii) subadditive;
(iii) at least ≈

√
2rank ;

(iv) at most the smallest dimension of the matrix;
(v) · · ·



How does the rank function look like?

Let A =

 1 x y
y 1 x
x y 1

.

rankpsd (A) ∈ {1,2,3}
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How does the rank function look like? (continued)

Let A =

 1 y x
y 1 y
x y 1
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rankpsd (A) ∈ {1,2,3}
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How does the rank function look like? (continued)

Let A =

 1 y x
y 1 y
x y 1

. rankpsd (A) ∈ {1,2,3}



(Algebraic) geometry of the rank

Scaling Lemma
If M has a psd factorization of size k , it has one where the
factors have trace bounded by

√
k‖M‖1,1.

Another Scaling Lemma [Briët-Dadush-Pokutta 2013]
If M has a psd factorization of size k , it has one where the
factors have largest eigenvalue bounded by

√
k‖M‖∞.

Proposition
The rankpsd function is lower semicontinuous.

Proposition
Pp,q,k := {M ∈ Rp×q

+ | rankpsd (M) ≤ k}

is a closed semialgebraic set inside the rank ≤
(k+1

2

)
variety.

Even in the case (3,3,2) the precise description is not easy.
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Geometric Motivation

Given a polytope P described as a convex hull of n points and a
polyhedron Q described by m inequalities with P ⊆ Q we
define SP,Q ⊆ Rn×m

+ as the evaluation of the inequalities of Q at
the points of P.

Theorem (Semidefinite Yannakakis Theorem)
rankpsd (SP,Q) ≤ k if and only if there is a convex set C with an
sdp representation of size k such that P ⊆ C ⊆ Q.

Lemma (Gillis-Glineur 12)
All nonnegative matrices of rank n + 1 can be seen as
generalized slack matrices of polyhedra of dimension n.
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Example

Lets look again at matrix M =

 1 1 0
1 0 1
1 1 1

 .

M = SP,Q with
{

P = conv{(1,0), (0,1), (1,1)}
Q = {(x , y) : 1 ≥ 0, x ≥ 0, y ≥ 0} :

rankpsd (M) = 2
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Section 2

Computing Semidefinite Rank



Low (usual) rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more for rank 3?
Let Mn be the (rank 3) slack matrix of a regular n-gon then
rankpsd (Mn) −→ +∞.



Low (usual) rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more for rank 3?
Let Mn be the (rank 3) slack matrix of a regular n-gon then
rankpsd (Mn) −→ +∞.



Low (usual) rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more for rank 3?
Let Mn be the (rank 3) slack matrix of a regular n-gon then
rankpsd (Mn) −→ +∞.



Low (usual) rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more for rank 3?

Let Mn be the (rank 3) slack matrix of a regular n-gon then
rankpsd (Mn) −→ +∞.



Low (usual) rank cases

Rank 1
rank (M) = 1⇔ rankpsd (M) = 1

Rank 2
rank (M) = 2⇒ rankpsd (M) = 2

Rank 3
rank (M) = 3⇒ rankpsd (M) ≥ 2

Can we say more for rank 3?
Let Mn be the (rank 3) slack matrix of a regular n-gon then
rankpsd (Mn) −→ +∞.



Checking semidefinite rank 2

If rank (M) > 3 then rankpsd (M) > 2, so we need only to study
rank 3 matrices.

Lemma
Let M = SPQ with rank (M) = 3 then rankpsd (M) = 2 if and only
if there is an ellipse E with P ⊆ E ⊆ Q.

Convex Formulation
Let P = conv(x1, · · · , xn) and Q = {x : Gx ≤ h} then
rankpsd (SPQ) = 2 iff there exist A,b, c such that:

1. A � 0, trace(A) = 1

2.
[
xj
1

]T [ A b
bT c

] [
xj
1

]
≤ 0 ∀j

3. ∃λi ≥ 0 :

[
A b
bT c

]
� λi

[
0 gi

T/2
gi/2 −hi

]
∀i
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Example

M =


1 + a 1 + b 1− a 1− b
1− a 1 + b 1 + a 1− b
1− a 1− b 1 + a 1 + b
1 + a 1− b 1− a 1 + b



rankpsd M =


3 if a2 + b2 > 1
2 if 0 < a2 + b2 ≤ 1
1 if a = b = 0
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General case

A similar geometric picture holds more generally, and can be
used to show general complexity results.

Theorem
Let M ∈ Rn×m

+ with rank (M) =
(k+1

2

)
.

Deciding if rankpsd (M) = k can be solved in time (nm)O(k5).
In particular for fixed k it is solvable in polynomial time.

Open complexity problems:

I Is there a polynomial time algorithm to decide if
rankpsd (M) ≤ k for fixed k ≥ 3?

I What is the complexity of computing rankpsd ?
I Is deciding rankpsd (M) < min{p,q} for a p × q matrix

NP-hard?
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Section 3

Square Root Rank



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]
We define rank√ (M) = min{rank ( H

√
M)}.

Proposition
rank√ (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsd (M) ≤ rank√ (M).



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]
We define rank√ (M) = min{rank ( H

√
M)}.

Proposition
rank√ (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsd (M) ≤ rank√ (M).



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]

We define rank√ (M) = min{rank ( H
√

M)}.

Proposition
rank√ (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsd (M) ≤ rank√ (M).



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]
We define rank√ (M) = min{rank ( H

√
M)}.

Proposition
rank√ (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsd (M) ≤ rank√ (M).



Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted
H
√

M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

M =

[
1 0
2 1

]
;

H
√

M=

[
±1 0
±
√

2 ±1

]
We define rank√ (M) = min{rank ( H

√
M)}.

Proposition
rank√ (M) rank corresponds to the semidefinite rank restricted
to rank one factor matrices. In particular

rankpsd (M) ≤ rank√ (M).



How does the square root rank function look like?

Let A =

 1 x y
y 1 x
x y 1

. rankpsd (A) ∈ {1,2,3}

rank√ (A) ≤ 2
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Example: The Prime Matrices

Let n1,n2,n3, . . . be 2nj − 1 is the j th odd prime.

Define a k × k
matrix Qk such that Qk

ij = ni + nj − 1.

Q4 =


3 4 5 7
4 5 6 8
5 6 7 9
7 8 9 11

 .

rank (Qk ) = 2⇒ rankpsd (Qk ) = rank +(Qk ) = 2.

However rank√ (Qk ) = k .
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Further bad news on the square-root rank

Complexity
Computing Square-Root Rank is NP-Hard.

rank√


1 0 · · · 0 a1

2

0 1
. . . 0 a2

2

...
. . . . . .

...
...

0 0 . . . 1 an
2

1 1 . . . 1 0

 = n iff {a1, ...,an} can be partitioned
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What works for square root rank

0/1 matrices
If M ∈ {0,1}n×m then rankpsd (M) ≤ rank√ (M) ≤ rank (M).

Theorem [Barvinok 2012]
If M has at most k distinct entries, rankpsd (M) ≤

(k−1+rank (M)
k−1

)

Psd minimal polytopes
P a d-dimensional polytope, then rankpsd (SP) ≥ d + 1 with
equality if and only if rank√ (SP) = d + 1.
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PSD minimal polytopes

R2 characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a
quadrilateral.

R3 characterization
A 3-dimensional polytope is sdp-minimal iff it is a combinatorial
simplex, bisimplex, quadrilateral pyramid, triangular prism
or if it is a biplanar octahedra or a biplanar cuboid.

Kostya’s talk for more news on that.
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Section 4

Dependency on the field



Complex psd rank

We can define rank C
psd, by allowing complex psd matrices as

factors.

It is easy to show

rank C
psd(M) ≤ rankpsd (M) ≤ 2rank C

psd(M).

The best we actually know

Theorem [Lee-Wei-de Wolf 14]
For the n × n derangement matrix Mn we have

rankpsd (Mn) ≈
√

2rank C
psd(M).

Can the gap be 2?
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Rational psd rank

We could also define rank Q
psd by restricting to rational factors.

It

is clear that rank Q
psd(M) ≥ rank psd(M), and we can show the

inequality to be possibly strict.

psd minimal⇒ rank one factors⇒
[

1 1
2 1

]
cannot appear.
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Section 5

Space of factorizations



Space of factorizations

Given M with rankpsd (M) = k consider SF(M) the set of its
tgk × k psd factorizations:

SF(M) = {(A1, · · · ,An,B1 · · · ,Bm) ∈ PSDm+n
k : M ij =

〈
Ai ,Bj

〉
, ∀i , j}.

For any L ∈ GL(k) it is easy to see

(A1, · · · ,Bm) ∈ SF(M)⇔ (LT A1L, · · · ,L−1BmL−T ) ∈ SF(M)

so GL(k) acts on this set.

To Fk (M) := SF(M)/GL(k) we call the space of
factorizations of M.



Space of factorizations

Given M with rankpsd (M) = k consider SF(M) the set of its
tgk × k psd factorizations:

SF(M) = {(A1, · · · ,An,B1 · · · ,Bm) ∈ PSDm+n
k : M ij =

〈
Ai ,Bj

〉
, ∀i , j}.

For any L ∈ GL(k) it is easy to see

(A1, · · · ,Bm) ∈ SF(M)⇔ (LT A1L, · · · ,L−1BmL−T ) ∈ SF(M)

so GL(k) acts on this set.

To Fk (M) := SF(M)/GL(k) we call the space of
factorizations of M.



Space of factorizations

Given M with rankpsd (M) = k consider SF(M) the set of its
tgk × k psd factorizations:

SF(M) = {(A1, · · · ,An,B1 · · · ,Bm) ∈ PSDm+n
k : M ij =

〈
Ai ,Bj

〉
, ∀i , j}.

For any L ∈ GL(k) it is easy to see

(A1, · · · ,Bm) ∈ SF(M)⇔ (LT A1L, · · · ,L−1BmL−T ) ∈ SF(M)

so GL(k) acts on this set.

To Fk (M) := SF(M)/GL(k) we call the space of
factorizations of M.



Example

Recall that M =

 1 1 0
1 0 1
1 1 1

 has rankpsd (M) = 2.

What is F2(M)?

{

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 a
a 1

]
,

[
1 −1

2a
−1
2a 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]

}

with a ∈ [1/2,1].
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Geometry of the space of factorizations

Given P ⊆ Q, let Ck (P,Q) be the set of PSDk -representable
sets C such that P ⊆ C ⊆ Q.

The generalized Yannakakis theorem tells us that there exits a
map

ϕ : SF(SP,Q) −→ Ck (P,Q).

In fact, it is invariant with respect to the GL(k) action so we
have a map

ϕ : Fk (SP,Q) −→ Ck (P,Q)

from the space of factorizations to that of “sandwiched” sets.
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Lets look again at matrix M =

 1 1 0
1 0 1
1 1 1
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Here we actually have a one to one correspondence
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Extremal case

Theorem
If M = SP,Q has rankpsd (M) = k and rank (M) =

(k+1
2

)
then

Fk (M) and Ck (P,Q) are homeomorphic.

This result does not extend to all other cases. For H the regular
hexagon and M = SH we have:

I rank (M) = 3, rankpsd (M) = 4;
I C4(H,H) has a single element;
I F4(M) has at least 2 points.
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Connectedness

Proposition
For rank (M) = 3, rankpsd (M) = 2, F2(M) is connected.

The equivalent is not true for nonnegative rank

Question
When is Fk (M) connected?
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The end
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