Positive Semidefinite Rank

João Gouveia

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA
Dagstuhl - 16th February 2015
with Hamza Fawzi (MIT), Pablo Parrilo (MIT), Richard Z. Robinson (U.Washington) and Rekha Thomas (U.Washington)

Section 1

Definition and Basic Properties

Definition

Let M be a m by n nonnegative matrix.

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right]}
\end{array}\left[\begin{array}{ccc}
1 & 0 \\
1 & 0 & 1
\end{array}\right]\right.
$$

Definition

Let M be a m by n nonnegative matrix. A semidefinite factorization of M of size k is a set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{ccc}{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]} \\ {\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]} \\ {\left[\begin{array}{cc}1 & -1 / 2 \\ -1 / 2 & 1\end{array}\right]}\end{array}\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]\right.$

The smallest size of a semidefinite factorization is denoted by positive semidefinite rank of M, rank psd $\left.^{(} M\right)$

Basic Properties

Properties

The psd rank is:
(i) invariant under transpositions or nonnegative scalings;
(ii) subadditive;
(iii) at least $\approx \sqrt{2 \text { rank }}$;
(iv) at most the smallest dimension of the matrix;
(v) \cdots

How does the rank function look like?
Let $A=\left[\begin{array}{lll}1 & x & y \\ y & 1 & x \\ x & y & 1\end{array}\right]$.

How does the rank function look like?

$$
\text { Let } A=\left[\begin{array}{lll}
1 & x & y \\
y & 1 & x \\
x & y & 1
\end{array}\right] \text {. }
$$

$$
\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}
$$

How does the rank function look like?
Let $A=\left[\begin{array}{lll}1 & x & y \\ y & 1 & x \\ x & y & 1\end{array}\right]$.
$\operatorname{rank}_{\mathrm{psd}}(A) \in\{1,2,3\}$

How does the rank function look like? (continued)

$$
\text { Let } A=\left[\begin{array}{lll}
1 & y & x \\
y & 1 & y \\
x & y & 1
\end{array}\right] \text {. }
$$

How does the rank function look like? (continued)

$$
\text { Let } A=\left[\begin{array}{lll}
1 & y & x \\
y & 1 & y \\
x & y & 1
\end{array}\right] \text {. }
$$

$$
\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}
$$

How does the rank function look like? (continued)

Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$. $\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

(Algebraic) geometry of the rank

(Algebraic) geometry of the rank

Scaling Lemma
If M has a psd factorization of size k, it has one where the factors have trace bounded by $\sqrt{k\|M\|_{1,1}}$.

(Algebraic) geometry of the rank

Scaling Lemma
If M has a psd factorization of size k, it has one where the factors have trace bounded by $\sqrt{k\|M\|_{1,1}}$.

Another Scaling Lemma [Briët-Dadush-Pokutta 2013] If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

(Algebraic) geometry of the rank

Scaling Lemma
If M has a psd factorization of size k, it has one where the factors have trace bounded by $\sqrt{k\|M\|_{1,1}}$.

Another Scaling Lemma [Briët-Dadush-Pokutta 2013] If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition
The rank ${ }_{\text {psd }}$ function is lower semicontinuous.

(Algebraic) geometry of the rank

Scaling Lemma
If M has a psd factorization of size k, it has one where the factors have trace bounded by $\sqrt{k\|M\|_{1,1}}$.

Another Scaling Lemma [Briët-Dadush-Pokutta 2013] If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition

The rank psd function is lower semicontinuous.
Proposition

$$
\mathcal{P}_{p, q, k}:=\left\{M \in \mathbb{R}_{+}^{p \times q} \mid \operatorname{rank}_{\mathrm{psd}}(M) \leq k\right\}
$$

is a closed semialgebraic set inside the rank $\leq\binom{ k+1}{2}$ variety.

(Algebraic) geometry of the rank

Scaling Lemma

If M has a psd factorization of size k, it has one where the factors have trace bounded by $\sqrt{k\|M\|_{1,1}}$.

Another Scaling Lemma [Briët-Dadush-Pokutta 2013] If M has a psd factorization of size k, it has one where the factors have largest eigenvalue bounded by $\sqrt{k\|M\|_{\infty}}$.

Proposition

The rank psd function is lower semicontinuous.
Proposition

$$
\mathcal{P}_{p, q, k}:=\left\{M \in \mathbb{R}_{+}^{p \times q} \mid \operatorname{rank}_{\text {psd }}(M) \leq k\right\}
$$

is a closed semialgebraic set inside the rank $\leq\binom{ k+1}{2}$ variety.
Even in the case $(3,3,2)$ the precise description is not easy.

Geometric Motivation

Given a polytope P described as a convex hull of n points and a polyhedron Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Geometric Motivation

Given a polytope P described as a convex hull of n points and a polyhedron Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Theorem (Semidefinite Yannakakis Theorem) $\operatorname{rank}_{\text {psd }}\left(S_{P, Q}\right) \leq k$ if and only if there is a convex set C with an sdp representation of size k such that $P \subseteq C \subseteq Q$.

Geometric Motivation

Given a polytope P described as a convex hull of n points and a polyhedron Q described by m inequalities with $P \subseteq Q$ we define $S_{P, Q} \subseteq \mathbb{R}_{+}^{n \times m}$ as the evaluation of the inequalities of Q at the points of P.

Theorem (Semidefinite Yannakakis Theorem) $\operatorname{rank}_{\text {psd }}\left(S_{P, Q}\right) \leq k$ if and only if there is a convex set C with an sdp representation of size k such that $P \subseteq C \subseteq Q$.

Lemma (Gillis-Glineur 12)
All nonnegative matrices of rank $n+1$ can be seen as generalized slack matrices of polyhedra of dimension n.

Example

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Example

$$
\text { Lets look again at matrix } M=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \text {. }
$$

$$
M=S_{P, Q} \text { with }\left\{\begin{array}{l}
P=\operatorname{conv}\{(1,0),(0,1),(1,1)\} \\
Q=\{(x, y): 1 \geq 0, x \geq 0, y \geq 0\}
\end{array}\right. \text { : }
$$

Example

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

$$
M=S_{P, Q} \text { with }\left\{\begin{array}{l}
P=\operatorname{conv}\{(1,0),(0,1),(1,1)\} \\
Q=\{(x, y): 1 \geq 0, x \geq 0, y \geq 0\}
\end{array}\right.
$$

$\operatorname{rank}_{\text {psd }}(M)=2$

Example

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

$$
M=S_{P, Q} \text { with }\left\{\begin{array}{l}
P=\operatorname{conv}\{(1,0),(0,1),(1,1)\} \\
Q=\{(x, y): 1 \geq 0, x \geq 0, y \geq 0\}
\end{array}\right.
$$

$\operatorname{rank}_{\mathrm{psd}}(M)=2$

Section 2

Computing Semidefinite Rank

Low (usual) rank cases

Rank 1

$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{\text {psd }}(M)=1$

Low (usual) rank cases

Rank 1

$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{p s d}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{\text {psd }}(M)=2$

Low (usual) rank cases

```
Rank 1
\(\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{p s d}(M)=1\)
```

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{p s d}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Low (usual) rank cases

Rank 1
$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{p s d}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{p s d}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Can we say more for rank 3 ?

Low (usual) rank cases

Rank 1
$\operatorname{rank}(M)=1 \Leftrightarrow \operatorname{rank}_{\text {psd }}(M)=1$

Rank 2
$\operatorname{rank}(M)=2 \Rightarrow \operatorname{rank}_{\text {psd }}(M)=2$

Rank 3
$\operatorname{rank}(M)=3 \Rightarrow \operatorname{rank}_{\text {psd }}(M) \geq 2$

Can we say more for rank 3 ?
Let M_{n} be the (rank 3) slack matrix of a regular n-gon then rank $_{\text {psd }}\left(M_{n}\right) \longrightarrow+\infty$.

Checking semidefinite rank 2

Checking semidefinite rank 2

If rank $(M)>3$ then rank psd $(M)>2$, so we need only to study rank 3 matrices.

Checking semidefinite rank 2

If rank $(M)>3$ then rank psd $(M)>2$, so we need only to study rank 3 matrices.

Lemma
Let $M=S_{P Q}$ with $\operatorname{rank}(M)=3$ then rank ${ }_{\text {psd }}(M)=2$ if and only if there is an ellipse E with $P \subseteq E \subseteq Q$.

Checking semidefinite rank 2

If rank $(M)>3$ then rank $_{\text {psd }}(M)>2$, so we need only to study rank 3 matrices.

Lemma
Let $M=S_{P Q}$ with rank $(M)=3$ then rank $\mathrm{pssd}(M)=2$ if and only if there is an ellipse E with $P \subseteq E \subseteq Q$.

Convex Formulation
Let $P=\operatorname{conv}\left(x_{1}, \cdots, x_{n}\right)$ and $Q=\{x: G x \leq h\}$ then $\operatorname{rank}_{\mathrm{psd}}\left(S_{P Q}\right)=2$ iff there exist A, b, c such that:

1. $A \succeq 0, \operatorname{trace}(A)=1$
2. $\left[\begin{array}{c}x_{j} \\ 1\end{array}\right]^{T}\left[\begin{array}{cc}A & b \\ b^{T} & c\end{array}\right]\left[\begin{array}{c}x_{j} \\ 1\end{array}\right] \leq 0 \quad \forall j$
3. $\exists \lambda_{i} \geq 0:\left[\begin{array}{cc}A & b \\ b^{T} & c\end{array}\right] \succeq \lambda_{i}\left[\begin{array}{cc}0 & g_{i}{ }^{T} / 2 \\ g_{i} / 2 & -h_{i}\end{array}\right] \quad \forall i$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

Example

$$
M=\left[\begin{array}{llll}
1+a & 1+b & 1-a & 1-b \\
1-a & 1+b & 1+a & 1-b \\
1-a & 1-b & 1+a & 1+b \\
1+a & 1-b & 1-a & 1+b
\end{array}\right]
$$

$$
\text { rank }_{\mathrm{psd}} M= \begin{cases}3 & \text { if } a^{2}+b^{2}>1 \\ 2 & \text { if } 0<a^{2}+b^{2} \leq 1 \\ 1 & \text { if } a=b=0\end{cases}
$$

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem
Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$.
Deciding if rank $\mathrm{psd}(M)=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$.

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem
Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$.
Deciding if rank $\mathrm{psd}(M)=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular for fixed k it is solvable in polynomial time.

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem
Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$.
Deciding if rank $\mathrm{ksd}(M)=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if $\operatorname{rank}_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

```
Theorem
Let \(M \in \mathbb{R}_{+}^{n \times m}\) with \(\operatorname{rank}(M)=\binom{k+1}{2}\).
```

Deciding if rank ${ }_{\text {psd }}(M)=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if $\operatorname{rank}_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?
- What is the complexity of computing rank ${ }_{\text {psd }}$?

General case

A similar geometric picture holds more generally, and can be used to show general complexity results.

Theorem

Let $M \in \mathbb{R}_{+}^{n \times m}$ with $\operatorname{rank}(M)=\binom{k+1}{2}$.
Deciding if rank ${ }_{\text {psd }}(M)=k$ can be solved in time $(n m)^{O\left(k^{5}\right)}$. In particular for fixed k it is solvable in polynomial time.

Open complexity problems:

- Is there a polynomial time algorithm to decide if rank $_{\text {psd }}(M) \leq k$ for fixed $k \geq 3$?
- What is the complexity of computing rank ${ }_{\text {psd }}$?
 NP-hard?

Section 3

Square Root Rank

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

We define $\operatorname{rank}_{\sqrt{ }}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.

Hadamard Square Root Rank

A Hadamard Square Root of a nonnegative matrix M, denoted $\sqrt[H]{M}$, is a matrix whose entries are square roots (positive or negative) of the corresponding entries of M.

Example:

$$
M=\left[\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right] ; \quad \quad \sqrt[H]{M}=\left[\begin{array}{cc}
\pm 1 & 0 \\
\pm \sqrt{2} & \pm 1
\end{array}\right]
$$

We define $\operatorname{rank}_{\sqrt{ }}(M)=\min \{\operatorname{rank}(\sqrt[H]{M})\}$.
Proposition
rank $_{\sqrt{ }}(M)$ rank corresponds to the semidefinite rank restricted to rank one factor matrices. In particular

$$
\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{\sqrt{ }}(M)
$$

How does the square root rank function look like?
Let $A=\left[\begin{array}{lll}1 & x & y \\ y & 1 & x \\ x & y & 1\end{array}\right]$.
$\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

How does the square root rank function look like?

$$
\text { Let } A=\left[\begin{array}{lll}
1 & x & y \\
y & 1 & x \\
x & y & 1
\end{array}\right] \text {. }
$$

$$
\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}
$$

$\operatorname{rank}_{\sqrt{ }}(A) \leq 2$

How does the square root rank function look like?
Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$.
$\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

How does the square root rank function look like?
Let $A=\left[\begin{array}{lll}1 & y & x \\ y & 1 & y \\ x & y & 1\end{array}\right]$.
$\operatorname{rank}_{\text {psd }}(A) \in\{1,2,3\}$

$\operatorname{rank}_{\sqrt{ }}(A) \leq 2$

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be $2 n_{j}-1$ is the j th odd prime.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be $2 n_{j}-1$ is the j th odd prime. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be $2 n_{j}-1$ is the j th odd prime. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be $2 n_{j}-1$ is the j th odd prime. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

$\operatorname{rank}\left(Q^{k}\right)=2 \Rightarrow \operatorname{rank}_{\mathrm{psd}}\left(Q^{k}\right)=\operatorname{rank}_{+}\left(Q^{k}\right)=2$.

Example: The Prime Matrices

Let $n_{1}, n_{2}, n_{3}, \ldots$ be $2 n_{j}-1$ is the j th odd prime. Define a $k \times k$ matrix Q^{k} such that $Q_{i j}^{k}=n_{i}+n_{j}-1$.

$$
Q^{4}=\left(\begin{array}{cccc}
3 & 4 & 5 & 7 \\
4 & 5 & 6 & 8 \\
5 & 6 & 7 & 9 \\
7 & 8 & 9 & 11
\end{array}\right)
$$

$\operatorname{rank}\left(Q^{k}\right)=2 \Rightarrow \operatorname{rank}_{\mathrm{psd}}\left(Q^{k}\right)=\operatorname{rank}_{+}\left(Q^{k}\right)=2$.

However rank ${ }_{\sqrt{ }}\left(Q^{k}\right)=k$.

Further bad news on the square-root rank

Complexity
Computing Square-Root Rank is NP-Hard.

Further bad news on the square-root rank

Complexity
Computing Square-Root Rank is NP-Hard.

rank $_{\sqrt{ }}\left[\begin{array}{ccccc}1 & 0 & \cdots & 0 & a_{1}{ }^{2} \\ 0 & 1 & \ddots & 0 & a_{2}{ }^{2} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & a_{n}{ }^{2} \\ 1 & 1 & \ldots & 1 & 0\end{array}\right]=n$ iff $\left\{a_{1}, \ldots, a_{n}\right\}$ can be partitioned

What works for square root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{\sqrt{ }}(M) \leq \operatorname{rank}(M)$.

What works for square root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{\sqrt{ }}(M) \leq \operatorname{rank}(M)$.

Theorem [Barvinok 2012]
If M has at most k distinct entries, rank $_{\text {psd }}(M) \leq(\underset{k-1}{k-1+\operatorname{rank}(M)})$

What works for square root rank

0/1 matrices
If $M \in\{0,1\}^{n \times m}$ then $\operatorname{rank}_{\text {psd }}(M) \leq \operatorname{rank}_{\sqrt{ }}(M) \leq \operatorname{rank}(M)$.

Theorem [Barvinok 2012]
If M has at most k distinct entries, $\operatorname{rank}_{\text {psd }}(M) \leq(\underset{k-1}{k-1+\operatorname{rank}(M)})$

Psd minimal polytopes
P a d-dimensional polytope, then rank $_{\text {psd }}\left(S_{P}\right) \geq d+1$ with equality if and only if rank ${ }_{\checkmark}\left(S_{P}\right)=d+1$.

PSD minimal polytopes

\mathbb{R}^{2} characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a quadrilateral.

PSD minimal polytopes

\mathbb{R}^{2} characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a quadrilateral.
\mathbb{R}^{3} characterization
A 3-dimensional polytope is sdp-minimal iff it is a combinatorial simplex, bisimplex, quadrilateral pyramid, triangular prism or if it is a biplanar octahedra or a biplanar cuboid.

PSD minimal polytopes

\mathbb{R}^{2} characterization
A 2-dimensional polytope is sdp-minimal iff it is a triangle or a quadrilateral.
\mathbb{R}^{3} characterization
A 3-dimensional polytope is sdp-minimal iff it is a combinatorial simplex, bisimplex, quadrilateral pyramid, triangular prism or if it is a biplanar octahedra or a biplanar cuboid.

Kostya's talk for more news on that.

Section 4

Dependency on the field

Complex psd rank

We can define rank ${ }_{\text {psd }}^{\mathbb{C}}$, by allowing complex psd matrices as factors.

Complex psd rank

We can define rank ${ }_{\text {psd }}^{\mathbb{C}}$, by allowing complex psd matrices as factors. It is easy to show

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) .
$$

Complex psd rank

We can define rank ${ }_{\text {psd }}^{\mathbb{C}}$, by allowing complex psd matrices as factors. It is easy to show

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) .
$$

The best we actually know
Theorem [Lee-Wei-de Wolf 14]
For the $n \times n$ derangement matrix M_{n} we have

$$
\operatorname{rank}_{\mathrm{psd}}\left(M_{n}\right) \approx \sqrt{2} \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) .
$$

Complex psd rank

We can define rank ${ }_{\text {psd }}^{\mathbb{C}}$, by allowing complex psd matrices as factors. It is easy to show

$$
\operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) \leq \operatorname{rank}_{\mathrm{psd}}(M) \leq 2 \operatorname{rank}_{\mathrm{psd}}^{\mathbb{C}}(M) .
$$

The best we actually know
Theorem [Lee-Wei-de Wolf 14]
For the $n \times n$ derangement matrix M_{n} we have

$$
\operatorname{rank}_{\text {psd }}\left(M_{n}\right) \approx \sqrt{2} \operatorname{rank}_{\text {psd }}^{\mathbb{C}}(M) .
$$

Can the gap be 2 ?

Rational psd rank

We could also define rank ${ }_{\text {psd }}^{Q}$ by restricting to rational factors.

Rational psd rank

We could also define rank ${ }_{p s d}^{\mathbb{Q}}$ by restricting to rational factors. It is clear that $\operatorname{rank}_{p s d}^{\mathbb{Q}}(M) \geq \operatorname{rank}_{p s d}(M)$, and we can show the inequality to be possibly strict.

Rational psd rank

We could also define rank ${ }_{\text {psd }}^{Q}$ by restricting to rational factors. It is clear that $\operatorname{rank}_{\mathrm{psd}}^{\mathbb{Q}}(M) \geq \operatorname{rank}_{\text {psd }}(M)$, and we can show the inequality to be possibly strict.

$$
M=\left(\begin{array}{llllll}
0 & 0 & 2 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Rational psd rank

We could also define rank ${ }_{\text {psd }}^{Q}$ by restricting to rational factors. It is clear that $\operatorname{rank}_{\text {psd }}^{\mathbb{Q}}(M) \geq \operatorname{rank}_{\text {psd }}(M)$, and we can show the inequality to be possibly strict.

$$
M=\left(\begin{array}{llllll}
0 & 0 & 2 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & 0 & 1 \\
1 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0 \\
1 & 0 & 0 & 2 & 1 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1 & 0
\end{array}\right)
$$

psd minimal \Rightarrow rank one factors $\Rightarrow\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ cannot appear.

Section 5

Space of factorizations

Space of factorizations

Given M with rank psd $(M)=k$ consider $\mathcal{S F}(M)$ the set of its tgk $\times k$ psd factorizations:
$\mathcal{S F}(M)=\left\{\left(A_{1}, \cdots, A_{n}, B_{1} \cdots, B_{m}\right) \in \mathrm{PSD}_{k}^{m+n}: M_{i j}=\left\langle A_{i}, B_{j}\right\rangle, \forall i, j\right\}$.

Space of factorizations

Given M with rank psd $(M)=k$ consider $\mathcal{S F}(M)$ the set of its tgk $\times k$ psd factorizations:
$\mathcal{S F}(M)=\left\{\left(A_{1}, \cdots, A_{n}, B_{1} \cdots, B_{m}\right) \in \operatorname{PSD}_{k}^{m+n}: M_{i j}=\left\langle A_{i}, B_{j}\right\rangle, \forall i, j\right\}$.

For any $L \in G L(k)$ it is easy to see

$$
\left(A_{1}, \cdots, B_{m}\right) \in \mathcal{S F}(M) \Leftrightarrow\left(L^{T} A_{1} L, \cdots, L^{-1} B_{m} L^{-T}\right) \in \mathcal{S F}(M)
$$

so $\operatorname{GL}(k)$ acts on this set.

Space of factorizations

Given M with rank psd $(M)=k$ consider $\mathcal{S F}(M)$ the set of its tgk $\times k$ psd factorizations:
$\mathcal{S F}(M)=\left\{\left(A_{1}, \cdots, A_{n}, B_{1} \cdots, B_{m}\right) \in \mathrm{PSD}_{k}^{m+n}: M_{i j}=\left\langle A_{i}, B_{j}\right\rangle, \forall i, j\right\}$.

For any $L \in G L(k)$ it is easy to see

$$
\left(A_{1}, \cdots, B_{m}\right) \in \mathcal{S} \mathcal{F}(M) \Leftrightarrow\left(L^{T} A_{1} L, \cdots, L^{-1} B_{m} L^{-T}\right) \in \mathcal{S} \mathcal{F}(M)
$$

so $\operatorname{GL}(k)$ acts on this set.

To $\mathcal{F}_{k}(M):=\mathcal{S} \mathcal{F}(M) / G L(k)$ we call the space of factorizations of M.

Example

Recall that $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ has $\operatorname{rank}_{\mathrm{psd}}(M)=2$.

Example

Recall that $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ has rank $_{\text {psd }}(M)=2$.

What is $\mathcal{F}_{2}(M)$?
$\{$

Example

Recall that $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ has rank $_{\text {psd }}(M)=2$.

What is $\mathcal{F}_{2}(M)$?

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right.
$$

Example

Recall that $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ has $\operatorname{rank}_{\text {psd }}(M)=2$.

What is $\mathcal{F}_{2}(M)$?

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\right.
$$

$$
\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Example

Recall that $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$ has $\operatorname{rank}_{\mathrm{psd}}(M)=2$.

What is $\mathcal{F}_{2}(M) ?$

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right],\left[\begin{array}{cc}
1 & \frac{-1}{2 a} \\
\frac{-1}{2 a} & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

with $a \in[1 / 2,1]$.

Geometry of the space of factorizations

Given $P \subseteq Q$, let $\mathcal{C}_{k}(P, Q)$ be the set of PSD_{k}-representable sets C such that $P \subseteq C \subseteq Q$.

Geometry of the space of factorizations

Given $P \subseteq Q$, let $\mathcal{C}_{k}(P, Q)$ be the set of PSD_{k}-representable sets C such that $P \subseteq C \subseteq Q$.

The generalized Yannakakis theorem tells us that there exits a map

$$
\varphi: \mathcal{S F}\left(S_{P, Q}\right) \longrightarrow \mathcal{C}_{k}(P, Q)
$$

Geometry of the space of factorizations

Given $P \subseteq Q$, let $\mathcal{C}_{k}(P, Q)$ be the set of PSD_{k}-representable sets C such that $P \subseteq C \subseteq Q$.

The generalized Yannakakis theorem tells us that there exits a map

$$
\varphi: \mathcal{S F}\left(S_{P, Q}\right) \longrightarrow \mathcal{C}_{k}(P, Q)
$$

In fact, it is invariant with respect to the $\mathrm{GL}(k)$ action so we have a map

$$
\varphi: \mathcal{F}_{k}\left(S_{P, Q}\right) \longrightarrow \mathcal{C}_{k}(P, Q)
$$

from the space of factorizations to that of "sandwiched" sets.

Example revisited

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Example revisited

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Example revisited

Lets look again at matrix $M=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Here we actually have a one to one correspondence

Extremal case

Theorem
If $M=S_{P, Q}$ has $\operatorname{rank}_{\text {psd }}(M)=k$ and $\operatorname{rank}(M)=\binom{k+1}{2}$ then $\mathcal{F}_{k}(M)$ and $\mathcal{C}_{k}(P, Q)$ are homeomorphic.

Extremal case

Theorem
If $M=S_{P, Q}$ has $\operatorname{rank}_{\text {psd }}(M)=k$ and rank $(M)=\binom{k+1}{2}$ then $\mathcal{F}_{k}(M)$ and $\mathcal{C}_{k}(P, Q)$ are homeomorphic.

This result does not extend to all other cases. For H the regular hexagon and $M=S_{H}$ we have:

Extremal case

Theorem
If $M=S_{P, Q}$ has $\operatorname{rank}_{\text {psd }}(M)=k$ and rank $(M)=\binom{k+1}{2}$ then $\mathcal{F}_{k}(M)$ and $\mathcal{C}_{k}(P, Q)$ are homeomorphic.

This result does not extend to all other cases. For H the regular hexagon and $M=S_{H}$ we have:

- $\operatorname{rank}(M)=3, \operatorname{rank}_{p s d}(M)=4$;

Extremal case

Theorem

If $M=S_{P, Q}$ has $\operatorname{rank}_{\text {psd }}(M)=k$ and rank $(M)=\binom{k+1}{2}$ then $\mathcal{F}_{k}(M)$ and $\mathcal{C}_{k}(P, Q)$ are homeomorphic.

This result does not extend to all other cases. For H the regular hexagon and $M=S_{H}$ we have:

- $\operatorname{rank}(M)=3, \operatorname{rank}_{\text {psd }}(M)=4$;
- $\mathcal{C}_{4}(H, H)$ has a single element;

Extremal case

Theorem

If $M=S_{P, Q}$ has $\operatorname{rank}_{\text {psd }}(M)=k$ and rank $(M)=\binom{k+1}{2}$ then $\mathcal{F}_{k}(M)$ and $\mathcal{C}_{k}(P, Q)$ are homeomorphic.

This result does not extend to all other cases. For H the regular hexagon and $M=S_{H}$ we have:

- $\operatorname{rank}(M)=3, \operatorname{rank}_{\text {psd }}(M)=4$;
- $\mathcal{C}_{4}(H, H)$ has a single element;
- $\mathcal{F}_{4}(M)$ has at least 2 points.

Connectedness

Proposition
For rank $(M)=3, \operatorname{rank}_{\text {psd }}(M)=2, \mathcal{F}_{2}(M)$ is connected.

Connectedness

Proposition

For rank $(M)=3, \operatorname{rank}_{\text {psd }}(M)=2, \mathcal{F}_{2}(M)$ is connected.

The equivalent is not true for nonnegative rank

Connectedness

Proposition
For rank $(M)=3, \operatorname{rank}_{\mathrm{psd}}(M)=2, \mathcal{F}_{2}(M)$ is connected.

The equivalent is not true for nonnegative rank

Connectedness

Proposition
For $\operatorname{rank}(M)=3, \operatorname{rank}_{\mathrm{psd}}(M)=2, \mathcal{F}_{2}(M)$ is connected.

The equivalent is not true for nonnegative rank

Question
When is $\mathcal{F}_{k}(M)$ connected?

The end

H. Fawzi, J. Gouveia, P. Parrilo, R. Z. Robinson and R.R. Thomas.

Positive semidefinite rank.
arXiv preprint arXiv:1407.4095, 2014.

H. Fawzi, J. Gouveia, and R. Z. Robinson.

Rational and real positive semidefinite rank can be different.
arXiv preprint arXiv:1404.4864, 2014.
J. Gouveia, P.A. Parrilo, and R.R. Thomas.

Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 38(2):248-264, 2013.
J. Gouveia, R. Z. Robinson, and R. R. Thomas.

Worst-case results for positive semidefinite rank.
arXiv preprint arXiv:1305.4600, to appear in Math. Programming B.J. Gouveia, R.Z. Robinson, and R.R. Thomas.

Polytopes of minimum positive semidefinite rank.
Discrete \& Computational Geometry, 50(3):679-699, 2013.

Thank you

