Sums of squares in polynomial binary optimization

Greg Blekherman ${ }^{1}$ João Gouveia ${ }^{2}$ James Pfeiffer ${ }^{3}$

${ }^{1}$ Georgia Tech
${ }^{2}$ Universidade de Coimbra
${ }^{3}$ University of Washington

3rd July - EURO-INFORMS 2013 - Rome

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\text {min }}=\min p(x)$ over all x such that

$$
x \in\left\{x \mid p_{i}(x)=0, i=1, \ldots, t\right\} .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\text {min }}=\min p(x)$ over all x such that

$$
x \in \mathcal{V}\left(\left\langle p_{1}, \cdots, p_{t}\right\rangle\right)=\mathcal{V}(I) .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\text {min }}=\max \lambda$ such that

$$
p(x)-\lambda \geq 0 \text { for all } x \in \mathcal{V}(I)
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\text {min }} \leq p_{\text {sos }}=\max \lambda$ such that

$$
p(x)-\lambda=\sum h_{i}^{2} \bmod I
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
p(x)-\lambda=\sum h_{i}^{2} \bmod I, \quad \operatorname{deg}\left(h_{i}\right) \leq k
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
p(x)-\lambda \in \Sigma_{k}[] .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
p(x)-\lambda \in \Sigma_{k}[] .
$$

However, there are other sum of squares certificates for nonnegativity.

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
\left.p(x)-\lambda \in \Sigma_{k}[]\right] .
$$

However, there are other sum of squares certificates for nonnegativity.
Polynomial Optimization over Algebraic Varieties II

$$
\left.(p(x)-\lambda) g(x) \in \Sigma_{k}[], \quad \text { for some positive } g(x)\right) .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
\left.p(x)-\lambda \in \Sigma_{k}[]\right] .
$$

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties II

$p_{\min } \leq p_{\mathrm{sos}}^{l, k}=\max \lambda$ such that

$$
(p(x)-\lambda)(1+g(x)) \in \Sigma_{k}[I], \quad \text { for some } g(x) \in \Sigma_{l}([I]) .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
\left.p(x)-\lambda \in \Sigma_{k}[]\right] .
$$

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties II

$p_{\min } \leq p_{\mathrm{sos}}^{l, k}=\max \lambda$ such that

$$
(p(x)-\lambda)\left(1+\Sigma_{l}[I]\right) \cap \Sigma_{k}[I] \neq \emptyset .
$$

Sums of squares certificates

Polynomial Optimization over Algebraic Varieties

$p_{\min } \leq p_{\text {sos }} \leq p_{\text {sos }}^{k}=\max \lambda$ such that

$$
\left.p(x)-\lambda \in \Sigma_{k}[]\right] .
$$

However, there are other sum of squares certificates for nonnegativity.
Polynomial Optimization over Algebraic Varieties II
$p_{\text {min }} \leq p_{\mathrm{sos}}^{l, k}=\max \lambda$ such that

$$
(p(x)-\lambda)\left(1+\Sigma_{l}[I]\right) \cap \Sigma_{k}[I] \neq \emptyset .
$$

This is not a linear SDP anymore, but is still doable.

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250
$$

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208
$$

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$.

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092, \quad \ldots
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

Example

Consider the teardrop curve given by $I=\left\langle x^{4}-x^{3}+y^{2}\right\rangle$.

Let $p(x)=x$ then

$$
p_{\mathrm{sos}}^{2}=-0.1250, \quad p_{\mathrm{sos}}^{3}=-0.0208, \quad p_{\mathrm{sos}}^{4}=-0.0092, \quad \ldots
$$

However $p_{\mathrm{sos}}^{1,2}=p_{\text {min }}=0$. In fact

$$
x^{2} \cdot x=x^{4}+y^{2} \text { modulo } I .
$$

Multipliers make the relaxations less sensitive to singularities.

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) .
$$

Cube C_{3}

The n-cube

We are interested in the n-cube:

$$
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) .
$$

Cube C_{3}
S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

The n-cube

We are interested in the n-cube:

$$
\begin{gathered}
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) \\
\\
\text { Level } T_{0}
\end{gathered}
$$

S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

The n-cube

We are interested in the n-cube:

$$
\begin{gathered}
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) \\
\\
\text { Level } T_{1}
\end{gathered}
$$

S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

The n-cube

We are interested in the n-cube:

$$
\begin{gathered}
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) . \\
\text { Level } T_{2}
\end{gathered}
$$

S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

The n-cube

We are interested in the n-cube:

$$
\begin{gathered}
C_{n}=\{0,1\}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}^{2}-x_{i}=0, i=1, \cdots, n\right\}=\mathcal{V}\left(I_{n}\right) \\
\\
\text { Level } T_{3}
\end{gathered}
$$

S_{n} acts on C_{n} by permuting coordinates, and if p is symmetric, it will be completely characterized by its evaluation at the levels T_{k} of the cube:

$$
T_{k}=\left\{x \in C_{n}: \sum x_{i}=k\right\} .
$$

Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum over C_{n} at level T_{k}, with $\operatorname{deg} p \leq k \leq n / 2$.

Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum over C_{n} at level T_{k}, with $\operatorname{deg} p \leq k \leq n / 2$.

Theorem

If T_{k} is not a local extreme of p over \mathbb{R}^{n} (seen as a polynomial in $\sum x_{i}$) then $p_{\text {min }}>p_{\text {sos }}^{k-r, k}$, where $r=\lceil(\operatorname{deg} p) / 2\rceil$.

Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum over C_{n} at level T_{k}, with $\operatorname{deg} p \leq k \leq n / 2$.

Theorem

If T_{k} is not a local extreme of p over \mathbb{R}^{n} (seen as a polynomial in $\sum x_{i}$) then $p_{\text {min }}>p_{\text {sos }}^{k-r, k}$, where $r=\lceil(\operatorname{deg} p) / 2\rceil$.

This means that if the minimizer of p is "simple enough" and is close to the central levels of the cube, we need high level sos relaxations.

Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum over C_{n} at level T_{k}, with $\operatorname{deg} p \leq k \leq n / 2$.

Theorem

If T_{k} is not a local extreme of p over \mathbb{R}^{n} (seen as a polynomial in $\sum x_{i}$) then $p_{\min }>p_{\mathrm{sos}}^{k-r, k}$, where $r=\lceil(\operatorname{deg} p) / 2\rceil$.

This means that if the minimizer of p is "simple enough" and is close to the central levels of the cube, we need high level sos relaxations.
The proof reduces to this lemma.

Lemma

If p has degree d and vanishes at T_{k} with $d \leq k \leq n-d$ then

$$
p=\left(k-\sum x_{i}\right) q \bmod I_{n},
$$

with $\operatorname{deg} q<\operatorname{deg} p$.

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$.

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$. It decomposes:

$$
\mathbb{R}[]_{k}=\mathbb{R}[/]_{=0} \oplus \mathbb{R}[I]_{=1} \oplus \mathbb{R}[I]_{=2} \oplus \oplus \cdots c \mid \mathbb{R}[]_{=k}
$$

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
\oplus
\end{array} \\
& H_{n-1,1} \\
& H_{n-1,1} \\
& \text {... } \\
& H_{n-2,2} \\
& H_{n-2,2} \\
& H_{n-k, k}
\end{aligned}
$$

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{array}{ccccccc}
\mathbb{R}[/]_{k}=\underset{2 \|}{\mathbb{R}[/]_{=0}} & \oplus & \mathbb{R}[/]_{=1} & \oplus & \underset{2 \|}{[1 /]_{=2}} & \oplus & \cdots \\
H_{n, 0} & H_{n, 0} & H_{n, 0} & & \cdots & \mathbb{R}[I]_{=k} \\
& \oplus & \oplus & & & H_{n, 0} \\
& H_{n-1,1} & H_{n-1,1} & & \cdots & H_{n-1,1} \\
& & \oplus & & & \oplus \\
& & H_{n-2,2} & & \cdots & H_{n-2,2} \\
& & & \ddots & & \vdots \\
& & & & & & H_{n-k, k}
\end{array}
$$

Let M_{j} be the first copy of $H_{n-j, j}$ to appear,

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
\stackrel{\oplus}{H_{n-1,1}}
\end{array} \\
& \begin{array}{cccc}
H_{n, 0} & & \cdots & H_{n, 0} \\
\oplus & & \cdots & H_{n-1,1} \\
H_{n-1,1} & & \cdots & \oplus \\
\oplus & & \cdots & H_{n-2,2} \\
H_{n-2,2} & & & \vdots \\
& \ddots & & H_{n-k, k}
\end{array}
\end{aligned}
$$

Let M_{j} be the first copy of $H_{n-j, j}$ to appear, then

$$
\mathbb{R}[I]_{k}=\bigoplus_{j=0}^{k} M_{j} \oplus\left(k-\sum x_{i}\right) M_{j} \oplus \cdots \oplus\left(k-\sum x_{i}\right)^{k-j} M_{j}
$$

Sketch of Proof:

Consider the action of S_{n} in $\mathbb{R}[]_{k}$. It decomposes:

$$
\begin{aligned}
& H_{n, 0} \\
& \begin{array}{c}
H_{n, 0} \\
\oplus \\
H_{n-1,1}
\end{array} \\
& \begin{array}{c}
H_{n, 0} \\
\oplus \\
H_{n-1,1} \\
\oplus \\
H_{n-2,2}
\end{array} \\
& \cdots \quad H_{n, 0} \\
& \text {. . . } \\
& \begin{array}{c}
H_{n-1,1} \\
\oplus
\end{array} \\
& H_{n-2,2}
\end{aligned}
$$

Let M_{j} be the first copy of $H_{n-j, j}$ to appear, then

$$
\mathbb{R}[I]_{k}=\bigoplus_{j=0}^{k} M_{j} \oplus\left(k-\sum x_{i}\right) M_{j} \oplus \cdots \oplus\left(k-\sum x_{i}\right)^{k-j} M_{j}
$$

and is enough to check that M_{j} does not vanish at T_{k}.

Application 1 - MaxCut

Recall that the maxcut problem over K_{n} can be reduced to

Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Application 1 - MaxCut

Recall that the maxcut problem over K_{n} can be reduced to

Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lassere relaxations are of limited use.

Laurent

For $n=2 k+1, p_{\text {sos }}^{k}>p_{\text {max }}$.

Application 1 - MaxCut

Recall that the maxcut problem over K_{n} can be reduced to

Binary polynomial formulation of MaxCut

$$
\max p(x)=\sum_{i \neq j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

Laurent has proved that Lassere relaxations are of limited use.

Laurent

For $n=2 k+1, p_{\text {sos }}^{k}>p_{\text {max }}$.
Note that p attains its maximum in C_{n} at T_{k} and T_{k+1}, which are not local maxima of p over \mathbb{R}^{n}.

First corollary of main result 1

For $n=2 k+1, p_{\mathrm{sos}}^{k-1, k}>p_{\text {max }}$.

Application 2 - Global Optimization

Let p be any polynomial in \mathbb{R}^{n}.

Application 2 - Global Optimization

Let p be any polynomial in \mathbb{R}^{n}.
Artin (Hilbert's 17th Problem)
For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.

Application 2 - Global Optimization

Let p be any polynomial in \mathbb{R}^{n}.
Artin (Hilbert's 17th Problem)
For some $I, k, p_{\mathrm{sos}}^{l, k}=p_{\text {min }}$.

We also know that these I, k can be very high. However there were no examples for such behavior.

Application 2 - Global Optimization

Let p be any polynomial in \mathbb{R}^{n}.
Artin (Hilbert's 17th Problem)
For some $I, k, p_{\text {sos }}^{I, k}=p_{\text {min }}$.

We also know that these I, k can be very high. However there were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\text {min }}<p_{\mathrm{sos}}^{k-2, k}$.

Application 2 - Global Optimization

Let p be any polynomial in \mathbb{R}^{n}.
Artin (Hilbert's 17th Problem)
For some $I, k, p_{\text {sos }}^{I, k}=p_{\text {min }}$.

We also know that these I, k can be very high. However there were no examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in $\mathbb{R}^{2 k+1}$ for which $p_{\text {min }}<p_{\mathrm{sos}}^{k-2, k}$.

This is proven by a perturbed extension of the polynomial on the previous example.

Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

Theorem
Let p be a non constant quadratic polynomial in $\mathbb{R}^{2 k+1}$, then $p_{\min }=p_{\mathrm{sos}}^{k+1, k+2}$.

Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary polynomial programming. Luckily we also can show some upper bounds.

Theorem
Let p be a non constant quadratic polynomial in $\mathbb{R}^{2 k+1}$, then $p_{\mathrm{min}}=p_{\mathrm{sos}}^{k+1, k+2}$.

The proof is based in dimension counting.

Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n},
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.

Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.
The negative result proved by Laurent has an opposed positive conjecture.

Conjecture (Laurent)

If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\mathrm{sos}}^{k+1}$ for all weights.

Application - MaxCut revisited

Consider the weighted maxcut formulation.
Binary polynomial formulation of MaxCut

$$
\max p_{\omega}(x)=\sum_{i \neq j} \omega_{i j}\left(1-x_{i}\right) x_{j} \text { s.t. } x \in C_{n}
$$

where $\omega_{i j}$ is the weight of edge $\{i, j\}$.
The negative result proved by Laurent has an opposed positive conjecture.

Conjecture (Laurent)

If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\mathrm{sos}}^{k+1}$ for all weights.
A weaker version can now be proved.
Corollary of main result 2
If $n=2 k+1,\left(p_{\omega}\right)_{\min }=\left(p_{\omega}\right)_{\text {sos }}^{k+1, k+2}$ for all weights.

The End

Thank You

