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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
pmin = min p(x) over all x such that

x ∈ {x | pi(x) = 0, i = 1, ..., t}.

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties II

pmin ≤ pl,k
sos = max λ such that

(p(x)− λ)g(x) ∈ Σk [I], for some positive g(x)).

This is not a linear SDP anymore, but is still doable.
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sos = max λ such that
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Polynomial Optimization over Algebraic Varieties II
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sos = max λ such that
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Example

Consider the teardrop curve given by I =
〈
x4 − x3 + y2〉.

Let p(x) = x then

p2
sos = −0.1250, p3

sos = −0.0208, p4
sos = −0.0092, ...

However p1,2
sos = pmin = 0. In fact

x2 · x = x4 + y2 modulo I.

Multipliers make the relaxations less sensitive to singularities.
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The n-cube
We are interested in the n-cube:

Cn = {0,1}n = {x ∈ Rn : x2
i − x i = 0, i = 1, · · · ,n} = V(In).

Cube C3

Sn acts on Cn by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels Tk of the cube:

Tk = {x ∈ Cn :
∑

x i = k}.
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We are interested in the n-cube:

Cn = {0,1}n = {x ∈ Rn : x2
i − x i = 0, i = 1, · · · ,n} = V(In).

Level T0

Sn acts on Cn by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels Tk of the cube:

Tk = {x ∈ Cn :
∑

x i = k}.
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Cn = {0,1}n = {x ∈ Rn : x2
i − x i = 0, i = 1, · · · ,n} = V(In).

Level T2

Sn acts on Cn by permuting coordinates, and if p is symmetric, it will be
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Main Result 1 - Bad news
Let p be a symmetric square-free polynomial attaining its minimum
over Cn at level Tk , with deg p ≤ k ≤ n/2.

Theorem
If Tk is not a local extreme of p over Rn (seen as a polynomial in

∑
xi )

then pmin > pk−r ,k
sos , where r = d(deg p)/2e.

This means that if the minimizer of p is “simple enough” and is close to
the central levels of the cube, we need high level sos relaxations.
The proof reduces to this lemma.

Lemma
If p has degree d and vanishes at Tk with d ≤ k ≤ n − d then

p = (k −
∑

xi)q mod In,

with deg q < deg p.
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Sketch of Proof:
Consider the action of Sn in R[I]k .

It decomposes:

R[I]k = R[I]=0 ⊕ R[I]=1 ⊕ R[I]=2 ⊕ · · · ⊕ R[I]=k

∼ = ∼ = ∼ = ∼ =

Hn,0 Hn,0 Hn,0 · · · Hn,0
⊕ ⊕ ⊕

Hn−1,1 Hn−1,1 · · · Hn−1,1
⊕ ⊕

Hn−2,2 · · · Hn−2,2
. . .

...
Hn−k ,k

Let Mj be the first copy of Hn−j,j to appear,

then

R[I]k =
k⊕

j=0

Mj ⊕ (k −
∑

xi)Mj ⊕ · · · ⊕ (k −
∑

xi)
k−jMj

and is enough to check that Mj does not vanish at Tk .
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Application 1 - MaxCut
Recall that the maxcut problem over Kn can be reduced to

Binary polynomial formulation of MaxCut

max p(x) =
∑
i 6=j

(1− x i)x j s.t. x ∈ Cn

Laurent has proved that Lassere relaxations are of limited use.

Laurent
For n = 2k + 1, pk

sos > pmax.

Note that p attains its maximum in Cn at Tk and Tk+1, which are not
local maxima of p over Rn.

First corollary of main result 1

For n = 2k + 1, pk−1,k
sos > pmax.
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Application 2 - Global Optimization
Let p be any polynomial in Rn.

Artin (Hilbert’s 17th Problem)

For some l , k , pl,k
sos = pmin.

We also know that these l , k can be very high. However there were no
examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R2k+1 for which
pmin < pk−2,k

sos .

This is proven by a perturbed extension of the polynomial on the
previous example.
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sos .

This is proven by a perturbed extension of the polynomial on the
previous example.
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary
polynomial programming. Luckily we also can show some upper
bounds.

Theorem
Let p be a non constant quadratic polynomial in R2k+1, then
pmin = pk+1,k+2

sos .

The proof is based in dimension counting.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max pω(x) =
∑
i 6=j

ωij(1− x i)x j s.t. x ∈ Cn,

where ωij is the weight of edge {i , j}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)

If n = 2k + 1, (pω)min = (pω)k+1
sos for all weights.

A weaker version can now be proved.

Corollary of main result 2

If n = 2k + 1, (pω)min = (pω)k+1,k+2
sos for all weights.
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The End

Thank You
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