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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Pmin = Min p(x) over all x such that

xe{x|pi(x)=0,i=1,..,t}.
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Pmin = Min p(x) over all x such that

X € V(<p1> o 7pt>) = V(I)
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Pmin = mMax A such that

p(x) — A > 0forall x € V(/).

o = = = DA
Blekherman, Gouveia, Pfeiffer Binary sums of squares




Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Pmin < Psos = Max A such that

p(x)— A= Zh,z mod /.

=] = = E DA
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) = A=>_ h?mod I, deg(h) < k.
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prin < Psos < Pl = max A such that

p(x) — A € T[]

=] = = E DA
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) — X € L[l].

However, there are other sum of squares certificates for nonnegativity.
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) — X € L[l].

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties Il

(p(x) — N)g(x) € Xk[l], for some positive g(x)).

Blekherman, Gouveia, Pfeiffer Binary sums of squares EURO 2013 2/11



Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) — X € L[l].

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties Il

Prmin < pé’é‘s = max A such that

(P(x) = N)(1 4+ g(x)) € Zk[l], forsome g(x) € X,([/]).
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) — X € L[l].

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties Il

Prmin < pé’é‘s = max A such that

(P(x) = N + X)) N Zk[N] # 0.
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Sums of squares certificates

Polynomial Optimization over Algebraic Varieties
Prmin < Psos < Plss = max ) such that

p(x) — X € L[l].

However, there are other sum of squares certificates for nonnegativity.

Polynomial Optimization over Algebraic Varieties Il

Prmin < pé’é‘s = max A such that

(P(x) = N + X)) N Zk[N] # 0.

This is not a linear SDP anymore, but is still doable.
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

Let p(x) = x
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

Let p(x) = x then
p2,s = —0.1250,
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

P2, = —0.1250, p3., = —0.0208,

Let p(x) = x then
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

P2, = —0.1250, pd, = —0.0208, pl = —0.0092,

Let p(x) = x then
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

P2, = —0.1250, pd, = —0.0208, pl = —0.0092,

Let p(x) = x then

However p;g,zs = Pmin = 0.
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

P2, = —0.1250, pd, = —0.0208, pl = —0.0092,

Let p(x) = x then

However pl2 = pmin = 0. In fact

x2 . x = x*+ y? modulo /.
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Example

Consider the teardrop curve given by / = (x* — x3 + y2).

el
T~/

P2, = —0.1250, pd, = —0.0208, pl = —0.0092,

Let p(x) = x then

However pl2 = pmin = 0. In fact

x% . x = x* 4+ y? modulo /.

Multipliers make the relaxations less sensitive to singularities.
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().

[t
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().

Cube C3

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().

‘.::::ff_’”

Level Ty

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().
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Level T;

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().

‘,::1:1’,/_’””7

Level T,

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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The n-cube
We are interested in the n-cube:

Co={0,1}"={xeR": x2—x;=0,i=1,---,n} = V().

‘,::::ff_’“w

Level T3

Sh acts on C,, by permuting coordinates, and if p is symmetric, it will be
completely characterized by its evaluation at the levels T, of the cube:

Tk:{XGCn : in:k}-
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.

Theorem

If T« is not a local extreme of p over R” (seen as a polynomial in }_ x;)
then Prin > Psos ", Where r = [(deg p)/2].
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Main Result 1 - Bad news
Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.

Theorem

If T« is not a local extreme of p over R” (seen as a polynomial in }_ x;)

then prin > Phos ", Where r = [(deg p)/2].

This means that if the minimizer of p is “simple enough” and is close to
the central levels of the cube, we need high level sos relaxations.
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Main Result 1 - Bad news

Let p be a symmetric square-free polynomial attaining its minimum
over C, at level Ty, withdegp < k < n/2.

Theorem

If T« is not a local extreme of p over R” (seen as a polynomial in }_ x;)

then prin > Phos ", Where r = [(deg p)/2].

This means that if the minimizer of p is “simple enough” and is close to
the central levels of the cube, we need high level sos relaxations.
The proof reduces to this lemma.

Lemma
If p has degree d and vanishes at 7, with d < k < n— d then

p=(k=>_x)q mod I,

with deg q < deg p.

v
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Sketch of Proof:

Consider the action of S, in R[/].

=] = = E na
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rilk= R0 @& Ry & R[l2 & - & R[]
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rk = R0 ® R[l=1 @& R[]z @© --- & R[]
2l 2 2l 2

Hn,O Hn,O Hn,O T Hn,O
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hp25 ‘e Hp—25

Hn_k.x
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rilk= Rlflmo © Rz @& Rl & -+ @
I 2 2l
Hn,O Hn,O Hn,O
©® ©®
Hp—1 1 Hp_1 1
©®
Hp_22

Let M; be the first copy of H,_; ; to appear,
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

Rilk= R[fl-o @ Rlflz1 & R[fl.2 & -+ @ R[]
2l 2 2l 2

Hno Hno Hno e Hno
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hn—2,2 T Hn—2,2

Hn—k k

Let M; be the first copy of H,,_;; to appear, then

K
Rk =P Me k= Y x)Ma--a&k-> x) N

J=0
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Sketch of Proof:

Consider the action of S, in R[/]. It decomposes:

R[lk= R0 @ R[]=y @& R[l—2 & - & R[]
2l 2 2l 2

Hn.o Hno Hn.o e Hno
©® ©® &b

Hn—11 Hn_1 e Hn_11
©® &b

Hn—2,2 T Hn—2,2

Hn—k k

Let M; be the first copy of H,,_;; to appear, then

K
Rk =P Me k= Y x)Ma--a&k-> x) N

/=0
and is enough to check that M; does not vanish at Ty.



Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

maxp(x) = » (1 - x;)x;jst. x € Cy
i
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Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

maxp(x) = » (1 - x;)x;jst. x € Cy
i

Laurent has proved that Lassere relaxations are of limited use.

Laurent
For n =2k + 1, pls > Pmax- J
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Application 1 - MaxCut

Recall that the maxcut problem over K, can be reduced to

Binary polynomial formulation of MaxCut

maxp(x) = » (1 - x;)x;jst. x € Cy
i

Laurent has proved that Lassere relaxations are of limited use.

Laurent
For n =2k + 1, pls > Pmax- J

Note that p attains its maximum in C, at Ty and Ty 1, which are not
local maxima of p over R".

k—1

First corollary of main result 1
For n=2k + 1, pgos kK> Prmax- J
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Application 2 - Global Optimization
Let p be any polynomial in R".

=] = = E na
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Application 2 - Global Optimization
Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem)

For some 1, k, pi& = prin-

o = = = DA
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Application 2 - Global Optimization
Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some /, K, P = prin-

We also know that these /, k can be very high. However there were no
examples for such behavior.
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Application 2 - Global Optimization

Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, pi& = prin-

We also know that these /, k can be very high. However there were no
examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Pmin < Psos -
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Application 2 - Global Optimization

Let p be any polynomial in R".

Artin (Hilbert’s 17th Problem) J

For some 1, k, pi& = prin-

We also know that these /, k can be very high. However there were no
examples for such behavior.

Second corollary of main result 1

For any k there is a degree 4 polynomial in R%*1 for which
k—2,k
Pmin < Psos -

This is proven by a perturbed extension of the polynomial on the
previous example.
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary

polynomial programming. Luckily we also can show some upper
bounds.
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary

polynomial programming. Luckily we also can show some upper
bounds.

Theorem

Let p be a non constant quadratic polynomial in R2<+1_ then
k41 k+2
Pmin = Psos
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Main Result 2 - Not so bad news

We have showed lower bounds to the effectiveness of sos for binary
polynomial programming. Luckily we also can show some upper
bounds.

Theorem

Let p be a non constant quadratic polynomial in R2<+1_ then
k41 k+2
Pmin = Psos

The proof is based in dimension counting.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max p,(x) = > wj(1 = x;)x; s.t. X € Cn,
i

where wj; is the weight of edge {/,j}.
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Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut
max p,(x) = > wj(1 = x;)x; s.t. X € Cn,
i#]
where wj; is the weight of edge {/,j}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)
If n =2k +1, (P,)min = (Pu)5' for all weights. J

Blekherman, Gouveia, Pfeiffer Binary sums of squares EURO 2013 10/ 11



Application - MaxCut revisited
Consider the weighted maxcut formulation.

Binary polynomial formulation of MaxCut

max p,(x) = > wj(1 = x;)x; s.t. X € Cn,
i

where wj; is the weight of edge {/,j}.

The negative result proved by Laurent has an opposed positive
conjecture.

Conjecture (Laurent)

If n =2k + 1, (P)min = (P55 for all weights. J
A weaker version can now be proved.

Corollary of main result 2

If n =2k + 1, (0)min = (D) * for all weights. }
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The End

Thank You
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