Geometry of Sums of Squares Relaxations

João Gouveia

University of Washington

12th May - Final Exam

Convex Hulls of Algebraic Sets

Problem

Given an algebraic set

$$\{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) = \ldots = g_m(\mathbf{x}) = 0\},$$

we want to find a good "convex" description for its convex hull.

Convex Hulls of Algebraic Sets

Problem

Given an algebraic set

$$\{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) = \ldots = g_m(\mathbf{x}) = 0\},$$

we want to find a good "convex" description for its convex hull.

Notation:

•
$$I = \langle g_1, \ldots, g_m \rangle$$
,

Convex Hulls of Algebraic Sets

Problem

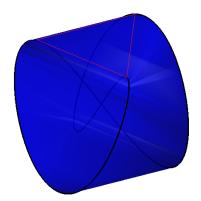
Given an algebraic set

$$\{\mathbf{x} \in \mathbb{R}^n : g_1(\mathbf{x}) = \ldots = g_m(\mathbf{x}) = 0\},$$

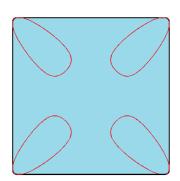
we want to find a good "convex" description for its convex hull.

Notation:

- $I = \langle g_1, \ldots, g_m \rangle$,
- $\mathcal{V}_{\mathbb{R}}(I) = \{ \text{Real zeros of } I \}.$



$$I = \left\langle x^2 - y^2 - xz, z - 4x^3 + 3x \right\rangle$$



$$I = \left\langle 25(x^4 + y^4 + 1) - 34(x^2y^2 + x^2 + y^2) \right\rangle$$

Theta body

Convex Hull

$$\mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(\mathit{I}))) = \bigcap_{\substack{\ell \text{ linear }, \ell \mid_{\mathcal{V}_{\mathbb{R}}(\mathit{I})} \geq 0}} \{x \in \mathbb{R}^n : \ell(x) \geq 0\}$$

Theta body

Convex Hull

$$\mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(I))) = \bigcap_{\substack{\ell \text{ linear }, \ell \mid_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0}} \{x \in \mathbb{R}^n : \ell(x) \geq 0\}$$

We can replace $\ell|_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0$ by ℓ being sos modulo I:

$$\ell \equiv \sum_{i} h_{i}^{2} + I.$$

If $deg(h_i) \le k$ we say that ℓ is k-sos.

Theta body

Convex Hull

$$\mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(I))) = \bigcap_{\substack{\ell \text{ linear }, \ell|_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0}} \{x \in \mathbb{R}^n : \ell(x) \geq 0\}$$

We can replace $\ell|_{\mathcal{V}_{\mathbb{R}}(I)} \geq 0$ by ℓ being sos modulo I:

$$\ell \equiv \sum_{i} h_{i}^{2} + I.$$

If $deg(h_i) \le k$ we say that ℓ is k-sos.

Definition

$$\mathsf{TH}_k(I) := \bigcap_{\substack{\ell \text{ linear }, \ell \text{ k-sos modulo } I}} \{x \in \mathbb{R}^n : \ell(x) \ge 0\}$$

Theta body - Example

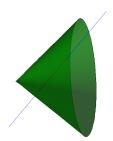
(Loading...)

TH₂(I) for
$$I = \langle x(x^2 + y^2) - x^4 - x^2y^2 - y^4 \rangle$$
.

 PSD_n - cone of all $n \times n$ positive semidefinite matrices.

 PSD_n - cone of all $n \times n$ positive semidefinite matrices.

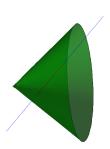
A spectrahedron is the intersection of some PSD_n with some affine plane.



 PSD_n - cone of all $n \times n$ positive semidefinite matrices.

A spectrahedron is the intersection of some PSD_n with some affine plane.

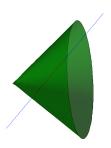
Optimizing over projections of spectrahedra can be done efficiently.



 PSD_n - cone of all $n \times n$ positive semidefinite matrices.

A spectrahedron is the intersection of some PSD_n with some affine plane.

Optimizing over projections of spectrahedra can be done efficiently.



G-Parrilo-Thomas

Theta Bodies are projections of spectrahedra [moment theory]

Convergence

$$\mathsf{TH}_1(I) \supseteq \mathsf{TH}_2(I) \supseteq \ldots \supseteq \mathsf{TH}_k(I) \supseteq \mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(I)))$$

When do we have convergence?

Convergence

$$\mathsf{TH}_1(I) \supseteq \mathsf{TH}_2(I) \supseteq \ldots \supseteq \mathsf{TH}_k(I) \supseteq \mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(I)))$$

When do we have convergence?

Putinar

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact we always have convergence.

Convergence

$$\mathsf{TH}_1(I) \supseteq \mathsf{TH}_2(I) \supseteq \ldots \supseteq \mathsf{TH}_k(I) \supseteq \mathsf{cl}(\mathsf{conv}(\mathcal{V}_{\mathbb{R}}(I)))$$

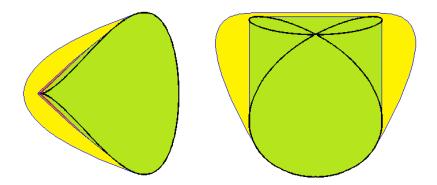
When do we have convergence?

Putinar

If $\mathcal{V}_{\mathbb{R}}(I)$ is compact we always have convergence.

G-Netzer

If $V_{\mathbb{R}}(I)$ has "bad" singularities, that convergence is not finite.



Two quartics and their theta body sequence.

Finite sets

If the real variety is finite:

Finite sets

If the real variety is finite:

G-Thomas

If $\mathcal{V}_{\mathbb{R}}(I)$ is finite, I is TH_k -exact for some k.

Finite sets

If the real variety is finite:

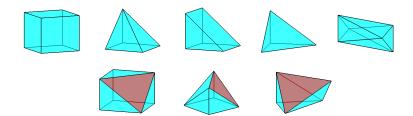
G-Thomas

If $\mathcal{V}_{\mathbb{R}}(I)$ is finite, I is TH_k -exact for some k.

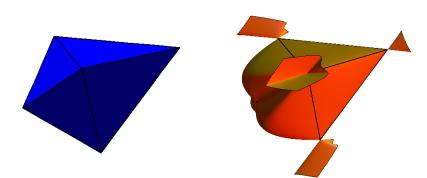
G-Parrilo-Thomas

If $S \subseteq \mathbb{R}^n$ is finite, I(S) is TH_1 -exact if and only if S is the set of vertices of a 2-level polytope.

2-level polytopes



2-level polytopes

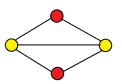


Theta bodies applied to combinatorial problems:

Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

The stable set problem.



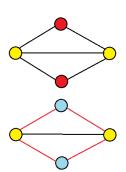
Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

The stable set problem.

G-Laurent-Parrilo-Thomas

The max-cut problem.



Theta bodies applied to combinatorial problems:

Lovász, Lasserre, Laurent

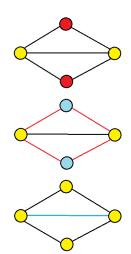
The stable set problem.

G-Laurent-Parrilo-Thomas

The max-cut problem.

G-Thomas

The max triangle-free subgraph / min K_3 -cover problem.



A stable set is a set of non-adjacent nodes of a graph.

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

Find the largest (weighted) stable set of *G*.

A stable set is a set of non-adjacent nodes of a graph.

Stable Set Problem

Find the largest (weighted) stable set of *G*.

Equivalent to optimize over the convex hull of the characteristic vectors of all stable sets.

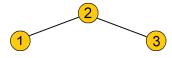
A stable set is a set of non-adjacent nodes of a graph.

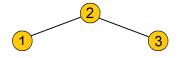
Stable Set Problem

Find the largest (weighted) stable set of G.

Equivalent to optimize over the convex hull of the characteristic vectors of all stable sets.

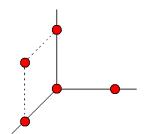
STAB(G) - stable set polytope of G.

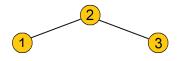




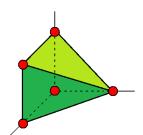
$$S_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$$

$$S_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$$





$$\mathcal{S}_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$$



Theta body for stable set

Given a graph G with n nodes, TH_1 is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that

$$\left[\begin{array}{cc} 1 & \mathbf{x}^t \\ \mathbf{x} & \mathbf{U} \end{array}\right] \succeq \mathbf{0}$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U) = x$ and $U_{ij} = 0$ for all edges (i, j).

Theta body for stable set

Given a graph G with n nodes, TH_1 is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that

$$\left[\begin{array}{cc} 1 & \mathbf{x}^t \\ \mathbf{x} & \mathbf{U} \end{array}\right] \succeq \mathbf{0}$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U) = x$ and $U_{ij} = 0$ for all edges (i, j).

It is a projected spectrahedron.

Theta body for stable set

Given a graph G with n nodes, TH_1 is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ such that

$$\left[\begin{array}{cc} 1 & \mathbf{x}^t \\ \mathbf{x} & \mathbf{U} \end{array}\right] \succeq \mathbf{0}$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U) = x$ and $U_{ij} = 0$ for all edges (i, j).

It is a projected spectrahedron.

Theorem (Lovász)

 $TH_1 = STAB(G)$ if and only if G is perfect.

If G is perfect STAB(G) is a projection of a slice of the cone PSD_{n+1} . $\binom{n+1}{2}$ variables

If *G* is perfect STAB(*G*) is a projection of a slice of the cone PSD_{n+1} . $\binom{n+1}{2}$ variables

STAB(G) can have exponentially many vertices and facets.

If *G* is perfect STAB(*G*) is a projection of a slice of the cone PSD_{n+1} . $\binom{n+1}{2}$ variables

STAB(G) can have exponentially many vertices and facets.

The idea of adding variables to get simpler descriptions (LP and SDP) is old, and many hierarchies of approximation explore this: Ballas, Sherali-Adams, Lovász-Schrijver, Lasserre, Bienstock-Zuckerberg, theta bodies...

If *G* is perfect STAB(*G*) is a projection of a slice of the cone PSD_{n+1} . $\binom{n+1}{2}$ variables

STAB(G) can have exponentially many vertices and facets.

The idea of adding variables to get simpler descriptions (LP and SDP) is old, and many hierarchies of approximation explore this: Ballas, Sherali-Adams, Lovász-Schrijver, Lasserre, Bienstock-Zuckerberg, theta bodies...

We want to frame all these approaches and their limits in one single theory

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes.

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the **Parity Polytope**:

$$PP_n = conv(\{\mathbf{x} \in \{0, 1\}^n : \mathbf{x} \text{ has odd number of } 1\}).$$

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the **Parity Polytope**:

$$PP_n = conv(\{\mathbf{x} \in \{0, 1\}^n : \mathbf{x} \text{ has odd number of } 1\}).$$

For every even set $A \subseteq \{1, \dots, n\}$,

$$\sum_{i\in A} x_i - \sum_{i\not\in A} x_i \le |A| - 1$$

is a facet, so we have at least 2^{n-1} facets.

Parity Polytope

There is a much shorter description.

PP_n is the set of $\mathbf{x} \in \mathbb{R}^n$ such that there exists for every odd $1 \le k \le n$ a vector $\mathbf{z}_k \in \mathbb{R}^n$ and a real number α_k such that

- $\bullet \ \sum_{k} \mathbf{z}_{k} = \mathbf{x};$
- $\sum_{k} \alpha_{k} = 1$;
- $\bullet \parallel \mathbf{z}_k \parallel_1 = k \alpha_k;$
- $0 \le (\mathbf{z}_k)_i \le \alpha_k$.

Parity Polytope

There is a much shorter description.

PP_n is the set of $\mathbf{x} \in \mathbb{R}^n$ such that there exists for every odd $1 \le k \le n$ a vector $\mathbf{z}_k \in \mathbb{R}^n$ and a real number α_k such that

- $\bullet \ \sum_{k} \mathbf{z}_{k} = \mathbf{x};$
- $\bullet \ \sum_{k} \alpha_{k} = 1;$
- $\bullet \parallel \mathbf{z}_k \parallel_1 = k \alpha_k;$
- $0 \le (\mathbf{z}_k)_i \le \alpha_k$.

 $O(n^2)$ variables and $O(n^2)$ constraints.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Canonical LP Lift

Given a polytope P, a canonical LP lift is a description

$$P = \Phi(\mathbb{R}^k_+ \cap L)$$

for some affine space L and affine map Φ . We say it is a \mathbb{R}^k_+ -lift.

Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

Canonical LP Lift

Given a polytope P, a canonical LP lift is a description

$$P = \Phi(\mathbb{R}^k_+ \cap L)$$

for some affine space L and affine map Φ . We say it is a \mathbb{R}^k_+ -lift.

We are interested in the smallest k such that P has a \mathbb{R}^k_+ -lift, a much better measure of "LP-complexity".

Two definitions

Let P be a polytope with facets defined by $h_1(\mathbf{x}) \geq 0, \dots, h_f(\mathbf{x}) \geq 0$, and vertices p_1, \dots, p_v .

Two definitions

Let P be a polytope with facets defined by $h_1(\mathbf{x}) \geq 0, \dots, h_f(\mathbf{x}) \geq 0$, and vertices p_1, \dots, p_v .

Slack Matrix

The slack matrix of P is the matrix $S_P \in \mathbb{R}^{v \times f}$ defined by

$$S_P(i,j) = h_j(p_i).$$

Two definitions

Let P be a polytope with facets defined by $h_1(\mathbf{x}) \geq 0, \dots, h_f(\mathbf{x}) \geq 0$, and vertices p_1, \dots, p_v .

Slack Matrix

The slack matrix of P is the matrix $S_P \in \mathbb{R}^{v \times f}$ defined by

$$S_P(i,j) = h_j(p_i).$$

Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_+^{n \times m}$ we say that it has a k-nonnegative factorization, or a \mathbb{R}_+^k -factorization if there exist matrices $A \in \mathbb{R}_+^{n \times k}$ and $B \in \mathbb{R}_+^{k \times m}$ such that

$$M = A \cdot B$$
.

Theorem (Yannakakis 1991)

A polytope P has a \mathbb{R}^k_+ -lift if and only if S_P has a \mathbb{R}^k_+ -factorization.

Theorem (Yannakakis 1991)

A polytope P has a \mathbb{R}^k_+ -lift if and only if S_P has a \mathbb{R}^k_+ -factorization.

Does it work for other types of lifts?

Theorem (Yannakakis 1991)

A polytope P has a \mathbb{R}_+^k -lift if and only if S_P has a \mathbb{R}_+^k -factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?

Theorem (Yannakakis 1991)

A polytope P has a \mathbb{R}_+^k -lift if and only if S_P has a \mathbb{R}_+^k -factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?

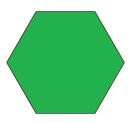
Theorem (Yannakakis 1991)

A polytope P has a \mathbb{R}_+^k -lift if and only if S_P has a \mathbb{R}_+^k -factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?
- Does LP solve all polynomial combinatorial problems?

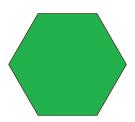
Consider the regular hexagon.

Consider the regular hexagon.



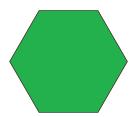
Consider the regular hexagon.

It has a 6×6 slack matrix S_H .



Consider the regular hexagon.

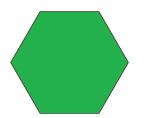
It has a 6×6 slack matrix S_H .



```
\left[\begin{array}{ccccccc} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{array}\right]
```

Consider the regular hexagon.

It has a 6×6 slack matrix S_H .



$$\begin{bmatrix} 0 & 0 & 1 & 2 & 2 & 1 \\ 1 & 0 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 2 & 1 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Hexagon - continued

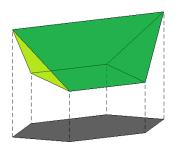
It is the projection of the slice of \mathbb{R}^5_+ cut out by

$$y_1 + y_2 + y_3 + y_5 = 2$$
, $y_3 + y_4 + y_5 = 1$.

Hexagon - continued

It is the projection of the slice of \mathbb{R}^5_+ cut out by

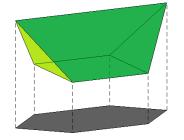
$$y_1 + y_2 + y_3 + y_5 = 2$$
, $y_3 + y_4 + y_5 = 1$.

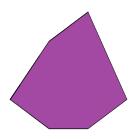


Hexagon - continued

It is the projection of the slice of \mathbb{R}^5_+ cut out by

$$y_1 + y_2 + y_3 + y_5 = 2$$
, $y_3 + y_4 + y_5 = 1$.





For irregular hexagons a \mathbb{R}^6_+ -lift is the only we can have.

We want to generalize this result to other types of lifts.

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$P = \Phi(K \cap L)$$

for some affine space L and affine map Φ .

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$P = \Phi(K \cap L)$$

for some affine space L and affine map Φ .

Important cases are \mathbb{R}^n_+ , PSD_n, SOCP_n, CP_n, CoP_n,...

We want to generalize this result to other types of lifts.

K-Lift

Given a polytope P, and a closed convex cone K, a K-lift of P is a description

$$P = \Phi(K \cap L)$$

for some affine space L and affine map Φ .

Important cases are \mathbb{R}^n_+ , PSD_n, SOCP_n, CP_n, CoP_n,...

Note that if the theta body is exact, it is a PSD-lift.

K-factorizations

We also need to generalize the nonnegative factorizations.

K-factorizations

We also need to generalize the nonnegative factorizations.

Recall that if $K \subseteq \mathbb{R}^l$ is a closed convex cone, $K^* \subseteq \mathbb{R}^l$ is its dual cone, defined by

$$K^* = \{ y \in \mathbb{R}^I \mid \langle y, x \rangle \ge 0, \ \forall x \in K \}.$$

K-factorizations

We also need to generalize the nonnegative factorizations.

Recall that if $K \subseteq \mathbb{R}^l$ is a closed convex cone, $K^* \subseteq \mathbb{R}^l$ is its dual cone, defined by

$$K^* = \{ y \in \mathbb{R}^I \mid \langle y, x \rangle \ge 0, \ \forall x \in K \}.$$

K-Factorization

Given a nonnegative matrix $M \in \mathbb{R}_+^{n \times m}$ we say that it has a K-factorization if there exist $a_1, \ldots a_n \in K$ and $b_1, \ldots, b_m \in K^*$ such that

$$M_{i,j} = \langle \mathbf{a}_i, \mathbf{b}_j \rangle$$
.

We can now generalize Yannakakis.

Theorem (G-Parrilo-Thomas)

Theorem (G-Parrilo-Thomas)

A polytope P has a K-lift if and only if S_P has a K-factorization.

• If G is perfect STAB(G) has a PSD_{n+1} -lift (theta body).

Theorem (G-Parrilo-Thomas)

- If G is perfect STAB(G) has a PSD_{n+1} -lift (theta body).
- That is actually the best possible PSD-lift.

Theorem (G-Parrilo-Thomas)

- If G is perfect STAB(G) has a PSD_{n+1} -lift (theta body).
- That is actually the best possible PSD-lift.
- [Burer] In general STAB(G) has a CP_{n+1}-lift.

Theorem (G-Parrilo-Thomas)

- If G is perfect STAB(G) has a PSD_{n+1} -lift (theta body).
- That is actually the best possible PSD-lift.
- [Burer] In general STAB(G) has a CP_{n+1}-lift.
- We can generalize Yannakakis further to other convex sets by introducing a slack operator.

The Square

The 0/1 square is the projection onto x and y of the slice of PSD₃ given by

$$\left[\begin{array}{ccc} 1 & x & y \\ x & x & z \\ y & z & y \end{array}\right] \succeq 0.$$

The Square

The 0/1 square is the projection onto x and y of the slice of PSD₃ given by

$$\left[\begin{array}{ccc} 1 & x & y \\ x & x & z \\ y & z & y \end{array}\right] \succeq 0.$$

The Square

The 0/1 square is the projection onto x and y of the slice of PSD₃ given by

$$\begin{bmatrix} 1 & x & y \\ x & x & z \\ y & z & y \end{bmatrix} \succeq 0.$$

Its slack matrix is given by

$$S_P = \left[egin{array}{cccc} 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 \end{array}
ight],$$

and should factorize in PSD₃.

Square - continued

$$S_P = \left[egin{array}{cccc} 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 \end{array}
ight],$$

is factorized by

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{array}\right),$$

for the rows and

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right),$$

for the columns.

• The role of symmetry.

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?
- Which sets are SDP-representable, i.e., which sets have SDP-lifts?

The end

Thank You