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Section 1

Unconstrained Polynomial Optimization and
Nonnegativity
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The problem

We will start by studying the simplest polynomial optimization problem.

Unconstrained POP
Given a polynomial p(x) = p(x1, · · · , xn) ∈ R[x] find

p∗ = inf
χ∈Rn

p(χ).

How hard can that be?
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The univariate case - a classic approach

Lets keep it simple. What can we do when p is a univariate polynomial?

It is almost equivalent to detecting real roots, which is somewhat easy, but not trivial.
We have tools for that.

Sturm’s Sequence
Given a univariate polynomial p of degree d, we define the Sturm’s sequence of the
polynomials by:

P0 = P

P1 = P′

Pi+1 = −remainder of the division of Pi−1 by Pi

for i = 1, . . . , d − 1.

For P0 = p = 3x4 − 4x3 + 12x2 − 24x + 10 we get

P1 = 12x3 − 12x2 + 24x− 24, P2 = −5x2 + 16x− 8,
P3 = −2232x+1656

25 P4 = −1075
961 .
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The univariate case (continuation)

This is enough to locate all roots:

Theorem (Sturm’s Theorem (1829))
Given a univariate polynomial of degree d, p, and χ ∈ R denote by w(χ) the number
of sign changes in the sequence

P0(χ),P1(χ), · · · ,Pd(χ)

then the number of distinct real zeros of p in the interval (a, b] equals w(a)− w(b),
this extends to a = +∞ and b = −∞ by looking at the signs of leading monomials.

Recall, we had P0 = 3x4 − 4x3 + 12x2 − 24x + 10 and

P1 = 12x3 − 12x2 + 24x − 24, P2 = −5x2 + 16x − 8,
P3 = −2232x+1656

25 P4 = −1075
961 .

Evaluating at 0 we get (+,−,−,+,−) so w(0) = 3.
Evaluating at +∞ we get (+,+,−,−,−) so w(+∞) = 1.
There are 2 roots in (0,+∞).
Evaluating at −∞ we get (+,−,−,+,−) so w(−∞) = 3.
There are no more roots.
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The univariate case (continuation)

There are two distinct real roots.

A polynomial p is positive if and only if w(+∞) = w(−∞) and p(0) > 0.
This is what is called a certificate of positivity.

Observations
1 We could locate the zeros of the derivative and test them.
2 We can also search for the maximal λ ∈ R such that p− λ has no real roots by

using the bisection method, for instance.
3 In practice, versions implementing variants of the Descartes rule of signs are

faster and more robust.
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The general case

The general case is not as simple.

Theorem
For polynomials of degree 4 in n variables, deciding if p∗ = 0 is NP-hard.

Proof: A number of hard combinatorial problems can be translated into this decision
problem. For instance, the partition problem asks if given a set {a1, . . . , an} of
positive integers one can partition it into two sets of equal sum. This is NP-hard.
Equivalently this is the same as asking if

min
χ∈Rn

(
n∑

i=1

aiχi

)2

+

n∑
i=1

(χ2
i − 1)2 = 0.

Observation
1 For odd degree, p∗ −∞.
2 For degree 2 solve a linear system and check the Hessian.
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Why should we solve this?

This is a hard problem. So before attempting to tackle it, we should make a case of
why should we do it. Polynomials are incredibly versatile tools, and can capture an
array of important problems.

Distance Graph Realization Problem
Given a graph G = ([n],E) and some distance information dij for all {i, j} ∈ E, there
is a realization in Rk with those distances if and only if

min
χ∈Rk×n

∑
{i,j}∈E

(‖χi − χj‖2 − d2
ij)

2 = 0.

Independence number of a graph [via Motzkin-Straus]
Given a graph G = ([n],E) its independence number verifies α(G) ≥ t if and only if
for the matrix Mt = t(AG + I)− J we have

min
χ∈Rn

n∑
i=1

n∑
j=1

χ2
i χ

2
j Mt

ij = 0.
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Re-framing the POP

Lets rewrite the unconstrained POP in a trivial way. Denote by P[x] the set of
globally nonnegative polynomials on x.

Unconstrained POP - v2.0
Given a polynomial p(x) = p(x1, · · · , xn) ∈ R[x] find

p∗ = sup
λ∈R
{λ | p(x)− λ ∈ P[x]}.

Advantages: Certificates of nonnegativity can be leveraged into optimization
schemes. If nothing else, by using bisection methods as we did with Sturm root
counting certificate for univariate polynomials.

Moreover, if the certificates are nice enough, we can replace P[x] by the set of
certifiably nonnegative polynomials, and maybe directly optimize over that, attaining
directly a lower bound for p∗.
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Section 2

Sums of Squares and Nonnegativity
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Sums of squares

A simple certificate for nonnegativity of a polynomial p ∈ R[x] is being a sum of
squares of other polynomials, i.e,

p(x) =

t∑
i=1

(hi(x))2,

for some hi ∈ R[x]. In that case we say p is a sum of squares or sos, and we denote the
set of all such polynomials by Σ[x]. Clearly Σ[x] ⊆ P[x].

Example: Consider the polynomial p(x, y) = x4−4x3y + 7x2y2−4xy3−4xy + y4 + 4.

p(x, y) = (x− y)4 + (xy− 2)2 ∈ Σ[x, y]
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Univariate polynomials revisited

Once again, univariate polynomials turn out to be very nice.

Proposition
A univariate polynomial is nonnegative if and only if it is sos.

Proof: Suppose p is a nonnegative univariate polynomial.
Any real root of a nonnegative polynomial must have even multiplicity, as the zero
must be a local minimum. Hence

p(x) = c2(x− r1)2m1 · · · (x− rk)
2mk ((x− a1)2 + b2

1) · · · ((x− al)
2 + b2

l )

where aj ± ibj are the complex roots of p. Distributing the sums we get a sum of 2l

squares.

Observation
By noting (a2 + b2)(c2 + d2) = (ac + bd)2 − (ad − bc)2 one can do it with two
squares only.
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Motzkin Example - 1967

Proposition
Motzkin’s polynomial p(x, y) = x4y2 + x2y4 + 1− 3x2y2 is nonnegative but not a sum
of squares.
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Motzkin Example (cont)

Proposition
Motzkin’s polynomial p(x, y) = x4y2 + x2y4 + 1− 3x2y2 is nonnegative.

Proof: By AM/GM inequality we have

x4y2 + x2y4 + 1
3

≥ 3
√

x4y2 × x2y4 × 1 = x2y2,

so p is in fact nonnegative.

To show that Motzkin is not sos, we will need an auxiliary Lemma. Recall that the
Newton Polytope of a polynomial p, N(p), is the convex hull of the vectors of
exponents of the monomials of p.
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Motzkin Example (cont.)

Lemma
If p =

∑
h2

i then for every i, we have N(p) = conv
(⋃

i N(h2
i )
)

in particular we have
the polytope inclusion

2N(hi) ⊆ N(p).

Sketch of proof: By contradiction take a vertex x2α of the convex hull of the union
that is not in N(p). Since it was a squared monomial it appears with positive
coefficient, hence to be canceled there should be cβxβ − cγxγ in other hi with
β + γ = 2α. But then 2α is in the segment [2β, 2γ] and was not a vertex.

Proposition
Motzkin’s polynomial p(x, y) = x4y2 + x2y4 + 1− 3x2y2 is not sos.

Proof: By the previous Lemma, if it was sos the squares would be of the form

(a + bxy + cx2y + cxy2)2

none of which can have negative coefficients for x2y2.
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Hilbert’s Theorem

When do sums of squares work perfectly? Let Pn
d and Σn

d be the sets of respectively
nonnegative and sos polynomials with n variables and degree d.

Theorem (Hilbert’s Theorem - 1888)
We have that Pn

2d = Σn
2d in exactly the following cases:

1 n = 1 (univariate polynomials)
2 d = 1 (quadratic polynomials)
3 n = 2 and d = 2 (bivariate quartic polynomials)

We saw a counterexample for n = 2 and d = 3, and a similar argument can be used to
find a counterexample for n = 3 and d = 2. [Exercise]

Observations
1 In fact Hilbert proved that every bivariate quartic polynomial is the sum of at

most three squares.
2 For some deeper history and many examples check Bruce Reznicks’s awesome

paper Some concrete aspects of Hilbert’s 17th problem.
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Blekherman’s Theorem

Unfortunately, it mostly does not work.

Theorem (Blekherman’s Theorem - 2006)
For an even fixed degree d ≥ 4, we have

lim
n→∞

N

√√√√√vol
(

Σ̂n
d

)
vol
(
P̂n

d

) = 0

where K̂ just means we intersect K with polynomials with integral 1 on the unit ball,
and N is the dimension of Pn

d .

Observations
1 The result is actually much more precise, this is a coarse simplification.
2 It relies on a clever application of Urysohn’s inequality.

There are almost no sums of squares. So why use it?
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The case for sums of squares

Why use sums of squares certificates?

1 They are simple, and very versatile.
2 If one is found, it gives a short, easy to verify, proof of nonnegativity.
3 They can be strengthened.
4 Most important: We can actually find them “efficiently”.

In what follows I will try to convince you of all these points, starting from the last one.
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Section 3

Sums of Squares and Semidefinite Programming
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Semidefinite matrices

Recall that a symmetric matrix M ∈ Rn×n is positive semidefinite (psd), denoted by
M � 0, if and only if xtMx ≥ 0 for all x ∈ Rn. Equivalently

All eigenvalues of M are nonnegative;
M = UUt for some U ∈ Rn×m;
M =

∑k
i=1 vivt

i for some vi ∈ Rn.

Application: d = 2
A quadratic polynomial is nonnegative if and only if it is sos.

Note that a quadratic q(x) can be written as

q(x) =

[
1
x

]t

Q
[

1
x

]
for some real Q symmetric. The quadratic q being nonnegative is equivalent (almost)
by definition to Q � 0. By the condition above that means

q(x) =

[
1
x

]t
(

n∑
i=1

vivt
i

)[
1
x

]
hence q(x) =

∑n
i=1〈vi, (1, x)〉2 and is sos.
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Semidefinite matrices and sums of squares

The second part of this idea still works for general sums of squares.

Proposition
Let p(x) be an n variable degree 2d polynomial, and xd the vector of all monomials of
degree at most d. Then p is sos if and only if there exists a semidefinite matrix Q such
that p(x) = xt

dQxd.

Proof: Suppose p(x) =
∑k

i=1 hi(x)2.
Each hi(x) has degree at most d and can be written as hi(x) = 〈h̃i, xd〉 = h̃i

t
xd. Hence

p(x) =

k∑
i=1

hi(x)2 =

k∑
i=1

xt
dh̃ih̃i

t
xd = xt

d

(
k∑

i=1

h̃ih̃i
t
)

xd.

Calling Q =
∑k

i=1 h̃ih̃i
t

we get the result.
The other direction is the same reasoning in reverse order.
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Example

Consider the polynomial p(x, y) = x4 − 4x3y + 7x2y2 − 4xy3 − 4xy + y4 + 4. It is sos
if there exists Q � 0 such that

1
x
y
x2

xy
y2



t 
q11 q12 q13 q14 q15 q16
q12 q22 q23 q24 q25 q26
q13 q23 q33 q34 q35 q36
q14 q24 q34 q44 q45 q46
q15 q25 q35 q45 q55 q56
q16 q26 q36 q46 q56 q66




1
x
y
x2

xy
y2

 = p(x, y)

In other words, Q � 0 verifying

1 = q44, −4 = 2q45, 7 = q55 + 2q46, −4 = 2q56 −4 = 2q15 + 2q23
1 = q66, 4 = q11, 0 = 2q12 0 = 2q13 0 = q22 + 2q14

0 = q33 + 2q16 0 = 2q24 0 = 2q26 + 2q35 0 = 2q36 0 = 2q34 + 2q25

15 monomials of degree less or equal 4←→ 15 linear equations
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Example (cont.)
Plugging in the equations we want to find

Q =


4 0 0 q14 q15 q16
0 −2q14 −2 − q15 0 q25 q26
0 −2 − q15 −2q16 −q25 −q26 0

q14 0 −q25 1 −2 q46
q15 q25 −q26 −2 7 − 2q46 −2
q16 q26 0 q46 −2 1

 � 0

For instance

Q =


4 0 0 0 −2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 −2 1

−2 0 0 −2 5 −2
0 0 0 1 −2 1

 � 0.

In this case

p(x, y) = 〈(2, 0, 0, 0,−1, 0), xd〉2+〈(0, 0, 0, 1,−2, 1), xd〉2 = (xy−2)2+(x2−2xy+y2)2.

Observations
1 Q is not unique.
2 rank(Q) corresponds to number of squares.
3 Finding Q is a feasibility problem on a semidefinite program.
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Semidefinite programming

Semidefinite programs come in primal-dual pairs. They are of the form:

Primal problem
p∗ = minX 〈A0,X〉

s.t. 〈Ai,X〉 = bi, i = 1, . . . ,m
X � 0.

Dual problem
d∗ = maxy 〈b, y〉

s.t. A0 −
∑m

i=1 yiAi � 0.

where A0, . . . ,Am are real symmetric matrices.

Semidefinite programming is a generalization of linear programming. Using interior
point methods they can efficiently be solved to arbitrary precision.

We saw:

Proposition

Σn
d is the feasible set of a semidefinite programming of size

(n+d
d

)
.

In other words, we can efficiently optimize over the set of sums of squares
polynomials, but complexity grows with nd.
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The sum of squares relaxation

We can now replace the unconstrained POP by the sos relaxation.

SOS optimization
Given a polynomial p(x) ∈ R[x] find

psos = supλ such that p(x)− λ ∈ Σ[x].

We know that psos ≤ p∗ so we always get a lower bound.

It can be trivial:
If p is the Motzkin polynomial, we proved that psos = −∞.

It can be perfect:
Always if p is univariate, quadratic or a bivariate quartic, but also in other cases if we
are lucky.
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Another example

Let us revisit the problem

min
x∈R

p(x) = 3x4 − 4x3 + 12x2 − 24x + 10.

Step 1: maxλ such that p(x)− λ ∈ Σ[x]
Step 2: maxλ such that Q � 0 and

p(x)− λ =

 1
x
x2

t q11 q12 q13
q12 q22 q23
q13 q23 q33

 1
x
x2


Step 3: maxλ such that there exists γ with10− λ −12 γ

−12 12− 2γ −2
γ −2 3

 � 0

Step 4: Solve the sdp:

sdpvar l g
optimize([10-l,-12,g;-12,12-2*g,-2;g,-2,3]>=0,-l)

We get the optimum at λ = −3.0000. But what is the minimizer?
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Parentheses: From theory to practice

1 Many solvers for semidefinite programas are available:
sdpt3, mosek, sedumi, ...

2 A few toolboxes have implemented sums of squares automatically
sostools, gloptipoly, yalmip, ...

3 While theoretically the solution to an SDP can be attained in algebraic form, its
degree would be impractical (see The Algebraic Degree of Semidefinite
Programming by Nie, Ranestad and Sturmfels) so we must make do with
floating point approximations.

4 Recovering rigorous sos certificates from the sdp is an art as well as a science
(see A Macaulay 2 package for computing sum of squares decompositions of
polynomials with rational coefficients by Peyrl and Parrilo and follow up work
by Kaltofen, Zhi, El Din and others).
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Section 4

Strengthening Sums of Squares
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So sums of squares did not work, now what?

One can try a stronger certificate.

Theorem (Artin - 1927 - Hilbert’s 17th problem)
Every nonnegative polynomial can be written as a sum of squares of rational
functions.

In other words, p(x) ≥ 0 iff there are hi(x) and gi(x), i = 1, . . . , t such that

p(x) =

(
h1(x)

g1(x)

)2

+

(
h2(x)

g2(x)

)2

+ · · ·+
(

ht(x)

gt(x)

)2

.

Checking this is not easy though.

Idea: Consider a uniform denominator: Fix a nonnegative polynomial q(x) and try to
write q(x)p(x) as a sum of squares.

A usual candidate would be q(x) = (1 + x2
1 + x2

2 + · · ·+ x2
n).
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Using multipliers

Lets try it with Motzkin.

Recall p(x, y) = x4y2 + x2y4 + 1− 3x2y2.

(1+x2+y2)p(x, y) = (x2−y)2+(xy2−x)2+(x2y2−1)2+
1
4

(xy3−x3y)2+
3
4

(xy3+x3y−2xy)2

It works!

In fact it kind of always does...

Theorem (Reznick - 1995)
If inf p(x) > 0 then there exists r such that

(1 + x2
1 + x2

2 + · · ·+ x2
n)rp(x) ∈ Σ[x].

Bounds on r are not great. But it works surprisingly well in many applications.
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A multiplier based hierarchy

We can weaponize this certificate into a hierarchy of relaxations.

SOS optimization hierarchy
Given a polynomial p(x) ∈ R[x] find

psos
r = supλ such that (1 + x2

1 + x2
2 + · · ·+ x2

n)r(p(x)− λ) ∈ Σ[x].

This is an increasing sequence of lower bounds attained by semidefinite
programming. Reznick’s theorem can be seen as a convergence result.

Corollary
For any polynomial p(x), we have

lim
r→∞

psos
r = p∗.
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A simple example

Consider an example from Leep-Star via Reznick

p(x, y) = 3x4y2 − 2x3y3 1
2

x2y4 + 4x3y3 + x2y3 + 10x2y2 + 2xy2 − 8x2y + 4xy.

Compute psos:

sdpvar x y t
p=3*x^4*y^2-2*x^3*y^3+(x^2*y^4)/2+4*x^3*y^3+x^2*y^3

+10*x^2*y^2+2*x*y^2-8*x^2*y+4*x*y
solvesos(sos(p-t),-t,[],t)

We get t = −40.9412. Repeat for psos
1

solvesos(sos((x^2+y^2)*(p-t)),-t,[],t)

We get t = −5.765. After that it stabilizes. It is actually the true answer.
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