
Sums of Squares in Polynomial Optimization
Lecture 2

João Gouveia

21st of May 2019 - IPCO Summer School

IPCO 2019 Summer School 1



Section 5

The Moment Approach
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The probability measure viewpoint

There is another way of reformulating the unconstrained pop.

Unconstrained POP - v3.0
Given a polynomial p(x) ∈ R[x] find

p∗ = min
µ∈M(Rn)

∫
p(x)dµ,

where µ ∈M(Rn) is the set of probability distributions in Rn.

In a way, we are just averaging the values of the polynomial with different weights, so
the minimum will be attained when we put all mass in the minimizers of p.

But how would we even try to compute this?
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Moments

Suppose
p(x) =

∑
α∈I⊆Nn

pαxα.

Then we can think of the integral of p as a sum:∫
p(x)dµ =

∑
α∈I

pα

∫
xαdµ.

The sequence y = (yα)α∈Nn =
∫

xαdµ is the moment sequence of the measure µ.
If we call p̃ to the sequence of coefficients of p then∫

p(x)dµ = 〈p̃, y〉.

Let us denote the set of all moment sequences of measures with support contained in
a set K by Mom(K).
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The moment viewpoint

We have now yet another way of reformulating the unconstrained pop.

Unconstrained POP - v3.1
Given a polynomial p(x) ∈ R[x] find

p∗ = min
y∈Mom(Rn)

〈p̃, y〉.

We still need to characterize Mom(K). This is a very classic (and very hard) problem
called the moment problem. Only a few simple cases have full solutions.

Observations
1 For K = R this is the Hamburger moment problem (1921)
2 For K = R+ this is the Stieltjes moment problem (1894)
3 For K = [a, b] this is the Hausdorff moment problem (1921)
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Conditions on moments

It is generally very hard to find necessary and sufficient conditions for a sequence to
be a moment sequence, but there is a simple necessary one.

Necessary condition

If y is a moment sequence and p a polynomial, 〈y, p̃2〉 ≥ 0.

We can write this in a nicer way.
Let M(y) be the (infinite) matrix indexed by Nn with [M(y)]α,β = yα+β then

〈y, p̃2〉 = p̃tM(y)p̃

Necessary condition v2.0
If y is a moment sequence then M(y) � 0.

We will denote by Md(y) the submatrix of M(y) indexed by monomials of degree less
or equal to d. M(y) � 0 if and only if all truncated matrices Md(y) � 0.
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The moment relaxation

We will relax being a measure by this truncated moment condition.

Moment optimization
Given a polynomial p(x) ∈ R[x] of degree d find

pmom = inf
y∈RNn

〈y, p̃〉 subject to Md(y) � 0

Observations
1 This is still a semidefinite program.
2 It is actually dual to the sums of squares version.
3 In fact pmom = psos.
4 We can interpret the attained y as approximations for moments of a measure on

optimal the solution set. We might recover the minimizers if lucky.
5 Not as nice to provide certificates.
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Revisited example

Let us revisit yet again the problem

min
x∈R

p(x) = 3x4 − 4x3 + 12x2 − 24x + 10.

Step 1: Establish the sdp: min 3y4 − 4y3 + 12y2 − 24y1 + 10 s.t.

M2(y) =

 1 y1 y2
y1 y2 y3
y2 y3 y4

 � 0.

Step 2: Solve the sdp:

sdpvar y1 y2 y3 y4
optimize([1,y1,y2;y1,y2,y3;y2,y3,y4]>=0,3*y4-4*y3+12*y2-24*y1+10)

We get −3.0000. But what is the minimizer?

M2(y) =

1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000


This is a rank 1 matrix. y1 should be the average of x with respect to optimal measure.
If we plug 1 for x we get in fact −3.
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A larger example

Let us think about p(x, y) = x4 − 4x3y + 7x2y2 − 4xy3 − 4xy + y4.

Minimize y40 − 4y31 + 7y22 − 4y13 − 4y11 + y04 subject to
1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04

 � 0

We get −4 as the minimum and the rank 2 matrix

M2(y) =


1 0 0 2 2 2
0 2 2 0 0 0
0 2 2 0 0 0
2 0 0 4 4 4
2 0 0 4 4 4
2 0 0 4 4 4

 � 0

This is the average combination of the moments of ±(
√

2,
√

2), the two minimizers.
This is not always possible!
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The graph realization problem

min
x∈R2×n

∑
{i,j}∈E

(‖xi − xj‖2 − d2
ij)

2
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The graph realization problem

min
x∈R2×n

∑
{i,j}∈E

(‖xi − xj‖2 − d2
ij)

2
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Section 6

Nonnegative certificates over the nonnegative orthant
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Nonnegativity over Rn
+

To warm up for the general constrained polynomial optimization, let us study a very
particular case.

Certifying nonnegative over the orthant
Given a homogeneous polynomial p(x) ∈ R[x] find if

p(χ) ≥ 0 for all χ ∈ Rn
+.

Why do we care? Because it is fun, but also:

Copositive matrices
A symmetric matrix M ∈ Rn×n is copositive if and only if χtMχ ≥ 0 for all χ ∈ Rn

+.

Optimizing over the cone of copositive matrices can be used to reformulate almost
everything.
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Reducing to sums of squares

A simple trick relies on the following:

p(x) ≥ 0,∀x ∈ Rn
+ if and only if p(x2) ≥ 0,∀x ∈ R+n

where x2 = (x2
1, x

2
2, . . . , x

2
n).

We can now use sums of squares, to search for certificates of the type

(x2
1 + x2

2 + · · ·+ x2
n)rp(x2) ∈ Σ[x].

When applied to check copositivity this is usually called the Parrilo hierarchy.

Observation
We can use this trick to optimize over any polynomial image of an affine space.
If C = ϕ(Rn) where ϕ : Rn → Rm is a polynomial map, then p ≥ 0 in C if and only if
p ◦ ϕ ≥ 0 in Rn, and we can use sums of squares.
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Pólya’s Certificates

Let ∆n be the standard simplex {x ∈ Rn
+ |

∑
xi = 1} as usual.

For homogeneous polynomials nonnegative over Rn
+ and ∆n is equivalent.

Trivial observation
If p(x) only has nonnegative coefficients it is nonnegative over the simplex ∆n.

Not enough:
x2 + xy− xz + y2 − yz + z2

in positive over ∆3.

Theorem (Pólya - 1928)
p(x) is positive over ∆n if and only if there exists k such that

(x1 + x2 + · · ·+ xn)kp(x)

has only positive coefficients.
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Example

p(x, y, z) = x2 + xy−xz+y2−yz+z2

(x + y + z)p(x, y, z) = x3 + 2x2y + 2xy2−xyz+y3 + z3

(x + y + z)2p(x, y, z) = x4 + 3x3y + x3z + 4x2y2 + x2yz + 3xy3 + xy2z−xyz2

+xz3 + y4 + y3z + yz3 + z4

(x + y + z)3p(x, y, z) = x5 + 4x4y + 2x4z + 7x3y2 + 5x3yz + x3z2 + 7x2y3

+6x2y2z + x2z3 + 4xy4 + 5xy3z + xyz3 + 2xz4 + y5

+2y4z + y3z2 + y2z3 + 2yz4 + z5

Observation
We can use this to generate linear programming relaxations of strict copositivity of
matrices, among other things.
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What is actually happening

The proof boils down to a simple fact. Given a monomial xα define

xαε =

n∏
i=1

αi−1∏
j=0

(xi − jε).

For example (x3y2)0.1 = x(x− 0.1)(x− 0.2)y(y− 0.1).

We denote by pε(x) the polynomial obtained by applying this to each monomial.

Then, the coefficient of xα in (x1 + x2 + · · ·+ xn)kp(x), where d is the degree of p
anda α̃ = α

|α| ∈ ∆n is (
k!|α|d

α1!α2! · · ·αn!

)
p 1
|α|

(α̃)

Since p 1
|α|
→ p uniformly in ∆n we get the result.
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What is actually happening - Part 2

What we actually proved:

Sketch of Proposition
If we plot the points α̃ in the simplex colored green or red depending on if the
coefficients are positive or negative in (x1 + x2 + · · ·+ xn)kp(x) then the green points
converge to the region of positivity and the red ones to that of negativity as k→∞.

p(x, y, z) = 5x2 − 6xy + 2y2 − 4xz− 2yz + z2
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Section 7

Constrained Polynomial Optimization
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The general formulation

In general we are interested in constrained optimization.

Semialgebraically constrained POP
Given polynomials p(x), g1(x), g2(x), . . . , gm(x) ∈ R[x] we want to find

p∗ = inf
χ∈S

p(χ).

where S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0}.

In other words, we want to optimize a polynomial over a basic closed algebraic set.

min x3 + y2 − x2 − xy + 3 s.t. 4− x2 − y2 ≥ 0 and x3 − y2 − x ≥ 0
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Nonnegativity certificates over semialgebraic sets

We can now leverage our sum of squares idea to this case. To guarantee nonnegativity
of p(x) over S we can just ask for a certificate of the type

p(x) = σ0(x) + σ1(x)g1(x) + σ2(x)g2(x) + · · ·+ σm(x)gm(x)

where σi ∈ Σ[x]. We call the set of all such polynomials QS[x].
Disclaimer: we are conflating S with its defining polynomials g1, . . . , gm. It is not as
innocent as it appears.
Example: For

S = {(x, y) | 4− x2 − y2 ≥ 0, x3 − y2 − x ≥ 0}
p(x, y) = −y2x2 − 4yx2 + 3x2 − 2y2x + 6x + y2 + 4

we have

p(x, y) = (x + 1)2(4− x2 − y2) + 2(x3 − y2 − x) + (x2 − 2y)2
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Putinar’s Positivstellensatz

In principle, this seems to work.

Putinar’s Positivstellensatz - 1993
If S is archimedean then any p(x) ∈ R[x] such that p(x) > 0 on S is in QS[x].

Here archimedean just means certifiably compact, more precisely, N −
∑

x2
i ∈ QS[x]

for big enough N.

There is a catch!

Checking membership in QS[x] is hard:

p(x) = σ0(x) + σ1(x)g1(x) + σ2(x)g2(x) + · · ·+ σm(x)gm(x)

implies no degree bounds on the σi...
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A bad example

Consider S = {x | x3(1 − x) ≥ 0} = [0, 1] and
pε(x) = x + ε2.

Claim
pε is nonnegative in S for all ε but

p0(x) = x 6∈ QS[x]

Assume it is, i.e., x =
∑

hi(x)2 + x3(1− x)
∑

g2
i

Evaluating at x = 0 we get 0 =
∑

hi(0)2 which implies hi(0) = 0 for all i.

Differentiating we get 1 = 2
∑

hi(x)h′i(x) + (x3(1− x)
∑

g2
i )′.

Evaluating at x = 0 we get 1 = 0.

Observation
In fact, it can be shown that as ε→ 0, we need higher and higher degrees of hi and gi

to certify the nonnegativity of x + ε2.
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Degree limits

In order to be able to search for such certificates, we need to bound the degrees.

Truncated quadratic module
We define Qd

S[x] to be the set of all polynomials of the type:

σ0(x) + σ1(x)g1(x) + σ2(x)g2(x) + · · ·+ σm(x)gm(x)

where all σ are sums of squares and the degree of σ0 and σigi for all i is at most 2d.

We can now work with this.

Observation
1 Searching for certificates in Qd

S[x] is now a semidefinite program.
2 Qd

S[x] is closed if S has nonempty interior.
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The Lasserre hierarchy

We are now ready to establish a relaxation for constrained POP.

Lasserre Hierarchy
Given polynomials p(x), g1(x), g2(x), . . . , gm(x) ∈ R[x] and

S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0},

we define the d-th Lasserre hierarchy relaxation as

psos
d = supλ such that p(x)− λ ∈ Qd

S[x].

This can still be solved efficiently by semidefinite programming.

Properties
1 psos

1 ≤ psos
2 ≤ · · · ≤ p∗

2 If S is archimedean then psos
d → p∗.
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Toy Example

Recall the problem of minimizing x subject to x3(1− x) ≥ 0.
Lets compute psos

2 . We want to maximize λ such that

x− λ = σ0(x) + σ1(x)x3(1− x) =

 1
x
x2

t

Q0

 1
x
x2

+ q1x3(1− x)

and Q0 � 0 and q1 ≥ 0.

Q=sdpvar(3);
sdpvar l q x
F=[Q>=0,q>=0,coefficients([1,x,x^2]*Q*[1;x;x^2]

+q*x^3*(1-x)-x+l,x)==0]
solvesdp(F,-l)

We get psos
2 = 0.125 and in fact x + 1

8 = 1
2 (1 + x + 2x2)2 + 4x3(1− x).

Increasing d, psos
3 ≈ −0.0416667, psos

4 ≈ −0.0208397, psos
5 ≈ −0.0127555,...

and it kind of gets stuck there...
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Toy Example 2

Take S = {(x, y) | − x4 + x3 − y2 ≥ 0}. We can draw the regions cut out by all the
linear inequalities whose nonnegativity over S is certified by Qd

S[x, y], for different d.

Results for d = 2, 3 and 4.

This is a relaxation for the convex hull of S. It is precisely the set of all relaxations of
first order moments in the moment approach.
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Dealing with equalities

Consider the alternative formulation for the general POP.

Semialgebraically constrained POP v2.0
Given polynomials p(x), g1(x), . . . , gm(x), h1(x), . . . , hl(x) ∈ R[x] we want to find

p∗ = inf
χ∈S

p(χ).

where S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0, h1(χ) = · · · = hl(χ) = 0}.

Clearly this equivalent to the previous one as we can replace hi(χ) = 0 by hi(χ) ≥ 0
and −hi(χ) ≥ 0. But it is helpful to think separately of the equalities.

Example (MaxCut)
Given some symmetric Q ∈ Rn×n,

maximize
n∑

i,j=1

qijxixj

subject to x2
i = 1, i = 1, . . . , n
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Dealing with equalities - Part 2

There are two equivalent ways of thinking about equalities.

Commutative algebra free way
If S is defined as previously, one can certify nonnegativity by writing

p(x) = σ0(x) + σ1(x)g1(x) + · · ·+ σm(x)gm(x) + f1(x)h1(x) + · · ·+ fl(x)hl(x)

where σi ∈ Σ[x] and fj ∈ R[x].

For those more commutative algebra inclined, one can consider the ideal I generated
by the polynomials h1(x), . . . , hl(x) and think of working modulo it.

Commutative algebra way
If S is defined as previously, one can certify nonnegativity by writing

p(x) = σ0(x) + σ1(x)g1(x) + · · ·+ σm(x)gm(x) mod I

where σi ∈ Σ[x].

These are of course precisely the same!!! But result in different degree restrictions.
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Example - The stable set problem

Given a graph G = ([n],E) we want to

maximize
n∑

i=1

xi

subject to x2
i = xi, i = 1, . . . , n

xixj = 0, {i, j} ∈ E
Taking as our ideal

IG = 〈x2
1 − x1, . . . , x2

n − xn, xixj | for all {i, j} ∈ E〉

we get as psos
1 the value of minimizing λ such that for some Q � 0 we have

λ−
n∑

i=1

xi ≡
[

1
x

]t

Q
[

1
x

]
mod IG.

This just means that we set all xixj to zero if {i, j} ∈ E and all x2
i to xi.

This is precisely Lovász theta number.
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Example - Projecting tensors to rank 1 tensors

Given a tensor F ∈ Rn1×n2×···×nm a very important problem with many applications is
to find a rank one approximation. More precisely:

Best rank-1 approximation tensor
Given F as above, find xi ∈ Rni , i = 1, . . . ,m such that

‖F − x1 ⊗ x2 ⊗ · · · ⊗ xn‖

is minimal.

This can be made into an equivalent polynomial optimization problem.

Best rank-1 approximation tensor

maximize

( ∑
i1,...,im

Fi1,...,im x1
i1 · · · x

m
im

)2

subject to ‖xi‖2 = 1, i = 1, . . . ,m

Relaxations actually work fine. (see Nie and Wang Semidefinite Relaxations for Best
Rank-1 Approximations
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Section 8

A few more nonnegativity certificates
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A well known nonnegativity certificate

An important case of constrained POP is that of linear programming:

Linear Programming
Given affine polynomials p(x), g1(x), g2(x), . . . , gm(x) ∈ R[x] we want to find

p∗ = inf
χ∈S

p(χ).

where S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0}.

We are naturally not suggesting using polynomial optimization techniques to solve
this problem, but note that psos

1 restricts to

psos
1 = supλ such that p(x)− λ = a0 +

m∑
i=1

aigi(x)

for ai ≥ 0. This is the certificate guaranteed to exist by Farkas’ Lemma. Hence
pP = psos

1 in this case.
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Linear Constrains

Somewhere between the LP and the full-fledged POP, sits the case of optimizing a
general polynomial under affine constrains.

Linear constrained POP
Given a polynomial p(x) ∈ R[x] and affine polynomials l1(x), l2(x), . . . , lm(x) we
want to find p∗ = inf

χ∈P
p(χ).

where P = {χ ∈ Rn | l1(χ) ≥ 0, . . . , lm(χ) ≥ 0} is a polytope.

In this case we have a simple certificate.

Theorem (Handelman - 1988)
A polynomial p(x) is positive over a polytope P if and only if there exists a finite
subset I ⊆ Nm and λI ≥ 0 for all I ∈ I such that

p(x) =
∑
I∈I

λI l1(x)I1 l2(x)I2 · · · lm(x)Im .

This can be used to derive an LP hierarchy of approximations, on the same spirit of
Lasserre’s.
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Schmüdgen’s certificates

Recall that in our nonnegativity certificates over a basic closed semialgebraic set

S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0}

we try to represent

p(x) = σ0(x) + σ1(x)g1(x) + σ2(x)g2(x) + · · ·+ σm(x)gm(x)

where all σ are sums of squares.

This is not the most powerful form one could think of. For J ⊆ {1, dots,m} let
gJ(x) =

∏
j∈J gj(x). All these are nonnegative over S so we could search for

certificates
p(x) =

∑
J⊆{1,...,m}

σJ(x)gJ(x).

We denote by TS[x] the set of all such polynomials,and by Td
S [x] those for which σJgJ

has degree at most 2d for all J.
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Schmüdgen’s certificates - Part 2

We can now establish another relaxation for constrained POP.

Another sos hierarchy
Given polynomials p(x), g1(x), g2(x), . . . , gm(x) ∈ R[x] and

S = {χ ∈ Rn | g1(χ) ≥ 0, . . . , gm(χ) ≥ 0},

we define the psos
d as

psos
d = supλ such that p(x)− λ ∈ Td

S [x].

Note that this is till and SDP, just a larger one with 2m psd constrains.
We also have psos

d ≥ psos
d for all p since Qd

S[x] ⊆ Td
S [x].

Theorem (Schmüdgen’s Positivstellensatz - 1991)
If S is compact and p(x) is positive over S then p(x) ∈ TS[x].

Hence psos
d → p∗ if S is compact. It is harder to compute but it might conceivably

converge much faster in some instances.
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Sums of Binomial Squares

Sometimes SDP is still too hard. We can try to compromise by limiting our
certificates.
We say that p(x) is a sum of binomial squares (sobs), if it can be written as

p(x) =

t∑
i=1

(aixαi + bixβi)2.

Clearly sobs implies sos. So it is a weaker certificate. Why bother?

Observation
A polynomial p(x) of degree 2d is sobs if and only if

p(x) = xt
dQxd

for some Q = UUt where every column of U has at most two nonzero entries.

Such Q are known as factor width 2 matrices. They are precisely the scaled
diagonally dominant matrices.
Checking if Q is of that form is an SOCP!
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Sums of Binomial Squares - Part 2

It is possible to create an SOCP out of that.

SDSOS optimization - Ahmadi-Majumdar 2017
Given a polynomial p(x) ∈ R[x] find

psobs = supλ such that p(x)− λ is sobs.

Or we can make a hierarchy of SOCP’s.

SDSOS hierarchy - Ahmadi-Majumdar 2017
Given a polynomial p(x) ∈ R[x] find

psobs
r = supλ such that (1 + x2

1 + · · ·+ x2
n)r(p(x)− λ) is sobs.

What do we know about this?

1 It works nicely in many large control applications.
2 But it might not converge to the optimum!!!
3 It can be improved in several ways.

IPCO 2019 Summer School 38



Section 9

Final Remarks
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Lasserre, J. (2015). An Introduction to Polynomial and Semi-Algebraic
Optimization. Cambridge Texts in Applied Mathematics.
Lasserre, J. (2009). Moments, positive polynomials and their applications.
World Scientific.
Laurent, M. (2009). Sums of squares, moment matrices and optimization over
polynomials. In Emerging applications of algebraic geometry (pp. 157-270).
Springer.
Marshall, M. (2008). Positive polynomials and sums of squares (No. 146). AMS.
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