www.mat.uc.pt/~jgouveia/ipco2019problems.pdf

[Yesterday slides: www.mat.uc.pt/~jgouveia/ipco2019day 1handout.pdf]
(1) Show that the global infimum of a polynomial in \mathbb{R}^{2} might not be reached.
(e) Write $x^{4}+2 x^{3}+6 x^{2}-22 x+13$ as a sum of two squares by computing roots.
(Find for which a and b is the polynomial $x^{4}+a x+b$ nonnegative in \mathbb{R}.

- Prove that the following polynomials are nonnegative but not sos:
a $x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+1-4 x y z$
b $x^{4} y^{2}+y^{4}+x^{2}-3 x^{2} y^{2}$
[Choi-Lam 1976]
[Choi-Lam 1976]
c $\sum_{i=1}^{5} \prod_{i \neq j}\left(x_{i}-x_{j}\right) \quad$ [Lax-Lax 1978] see also IMO 1971
- Show that 3SAT can be formulated as checking if a degree 6 polynomial has minimum 0 .
(1) Write an explicit SDP to verify that the following polynomials are sos:
a $x^{4}+4 x^{3}+6 x^{2}+4 x+5$
b $2 x^{4}+5 y^{4}-x^{2} y^{2}+2 x^{3} y+2 x+2$
Bonus: Prove exactly that such a decomposition exists.
- Write an SDP to minimize/maximize the rational function $\frac{x^{3}-8 x+1}{x^{4}+x^{2}+12}$
(Give a sums of squares certificate of nonnegativity with multipliers for the polynomials in problem 4. You can use a computer if you have one
Bonus: Write actual exact certificates

And more problems

Check Semidefinite Optimization and Convex Algebraic Geometry edited by Blekherman, Parrilo, and Thomas for some of these and much more
(- A trignometric polynomial of degree d is a function of the form

$$
p(\theta)=a_{0}+\sum_{k=1}^{d}\left(a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right) .
$$

a Show that if d is even $p(\theta) \geq 0$ for all θ if and only if $p(\theta)=p_{1}(\theta)^{2}+p_{2}(\theta)^{2}$ for some trignometric polynomials p_{1} and p_{2}.
b Write a semidefinite program to certify the nonnegativity of

$$
\begin{aligned}
& \text { i } p(\theta)=4-\sin (\theta)+\sin (2 \theta)-3 \cos (2 \theta) \\
& \text { ii } p(\theta)=5-\sin (\theta)+\sin (2 \theta)-3 \cos (3 \theta)
\end{aligned}
$$

Compute their sos certificates.

