PSD-minimality and slack ideals

João Gouveia

University of Coimbra

16th of July - ISMP 2015

with Kanstantsin Pashkovich (U. Waterloo), Richard Z. Robinson and Rekha Thomas (U.Washington)

João Gouveia (UC)

PSD-minimality and slack ideals

ISMP 2015 1 / 14

< 回 > < 三 > < 三

A semidefinite representation of size k of a d-polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \boldsymbol{y} \text{ s.t. } A_0 + \sum A_i \boldsymbol{x}_i + \sum B_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

< □ > < □ > < □ > < □ > < □ > < □ >

A semidefinite representation of size k of a d-polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \boldsymbol{y} \text{ s.t. } A_0 + \sum A_i \boldsymbol{x}_i + \sum B_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

We are interested in polytopes with small descriptions.

< 🗇 🕨 < 🖃 🕨 <

A semidefinite representation of size k of a d-polytope P is a description

$$\boldsymbol{P} = \left\{ \boldsymbol{x} \in \mathbb{R}^d \mid \exists \boldsymbol{y} \text{ s.t. } \boldsymbol{A}_0 + \sum \boldsymbol{A}_i \boldsymbol{x}_i + \sum \boldsymbol{B}_i \boldsymbol{y}_i \succeq \boldsymbol{0} \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

We are interested in polytopes with small descriptions.

Psd-minimal polytopes

The size of any semidefinite representation of a *d*-polytope *P* cannot be smaller than d + 1. If it equals d + 1 we call the polytope **psd-minimal**.

• All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...

< 🗇 🕨 < 🖃 🕨 <

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^2 only triangles and quadrilaterals are psd-minimal.

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^2 only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^3 there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes.

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^2 only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^3 there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes.

• What happens in \mathbb{R}^4 ?

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^2 only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^3 there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes.

• What happens in ℝ⁴? [GPRT15] There are precisely 31 combinatorial classes of psd-minimal 4-polytopes.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \dots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

590

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

Slack Matrix

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_V .

Slack Matrix

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Theorem (GRT13)

A *d*-polytope *P* is psd-minimal if and only if there exists some rank d + 1 matrix *M* such that $M \odot M = S_P$.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_V .

Slack Matrix

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Theorem (GRT13)

A *d*-polytope *P* is psd-minimal if and only if there exists some rank d + 1 matrix *M* such that $M \odot M = S_P$.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_V .

Slack Matrix

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Theorem (GRT13)

A *d*-polytope *P* is psd-minimal if and only if there exists some rank d + 1 matrix *M* such that $M \odot M = S_P$.

$$S_{\mathcal{P}} = egin{pmatrix} 1 & 1 & 0 & 0 \ 0 & 1 & 2 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 2 \end{pmatrix}$$

João Gouveia (UC)

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_V .

Slack Matrix

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{f \times v}$ given by $S_P(i,j) = h_i(p_j).$

Theorem (GRT13)

A *d*-polytope *P* is psd-minimal if and only if there exists some rank d + 1 matrix *M* such that $M \odot M = S_P$.

$$S_P = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 2 \end{pmatrix} \qquad \qquad M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & \sqrt{2} \end{pmatrix}$$

João Gouveia (UC)

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

 $I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle$

.∃ ト ∢

.

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}$$

I = 1

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}$$

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}$$

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

$$I_{P} = \langle x_{1}x_{3}x_{5}x_{8}x_{9} - x_{2}x_{4}x_{6}x_{7}x_{9} \rangle : (\prod x_{i})^{\infty}$$

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

 $I_{P} = \langle x_{1}x_{3}x_{5}x_{8}x_{9} - x_{2}x_{4}x_{6}x_{7}x_{9} \rangle : (\prod x_{i})^{\infty} = \langle x_{1}x_{3}x_{5}x_{8} - x_{2}x_{4}x_{6}x_{7} \rangle$

Sac

▲理ト ▲ ヨト ▲ ヨト

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

< □ > < □ > < □ > < □ >

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

If I_P has a trinomial of the form $x^a + x^b - x^c$ then *P* is not psd-minimal.

Why: You can't simultaneously have $z_1 + z_2 - z_3 = 0$ and $z_1^2 + z_2^2 - z_3^2 = 0$ for non-zero reals.

Application to *n*-gons ($n \ge 5$):

Only triangles and quadrilaterals can be psd-minimal in \mathbb{R}^2 .

Sac

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Lemma

If *P* is psd-minimal at most four of its facets can share an edge.

João Gouveia (UC)

PSD-minimality and slack ideals

ISMP 2015 7 / 14

nar

< ロ ト < 同 ト < 三 ト < 三 ト

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Lemma

If *P* is psd-minimal at most four of its facets can share an edge.

João Gouveia (UC)

PSD-minimality and slack ideals

ISMP 2015 7 / 14

nar

< ロ ト < 同 ト < 三 ト < 三 ト

#	Construction	Vertices of a psd-minimal embedding	Facet Types	Dual	f-vector
1	Δ_4	$\{-e_{1234}, e_1, e_2, e_3, e_4\}$	5S	Self	(5, 10, 10, 5)
2	$(\Delta_1 \times \Delta_1) * \Delta_1$	$\{\pm e_1, \pm e_2, e_3, e_4\}$	4S,2Py	Self	(6, 13, 13, 6)
3		$\{0, 2e_1, 2e_2, 2e_3, e_{12} - e_3, e_4, e_{34}\}$	3S,2Py,2B	Self	(7, 17, 17, 7)
4	$\Delta_3 \times \Delta_1$	$\{-e_{123}, e_1, e_2, e_3\} + \{\pm e_4\}$	2S,4Pr	5	(8, 16, 14, 6)
5	$\Delta_3 \oplus \Delta_1$	$\{-e_{123}, e_1, e_2, e_3, \pm e_4\}$	85	4	(6, 14, 16, 8)
6	$\Delta_2 imes \Delta_2$	$\{-e_{12},e_1,e_2\}+\{-e_{34},e_3,e_4\}$	6Pr	7	(9, 18, 15, 6)
7	$\Delta_2\oplus\Delta_2$	$\{-e_{12}, e_1, e_2, -e_{34}, e_3, e_4\}$	9S	6	(6, 15, 18, 9)
8	$(\Delta_2 \times \Delta_1) * \Delta_0$	$\{e_4\} \cup (\{-e_{12}, e_1, e_2\} + \{\pm e_3\})$	2S,1Pr,3Py	9	(7, 15, 14, 6)
9	$(\Delta_2 \oplus \Delta_1) * \Delta_0$	$\{-e_{12}, e_1, e_2, \pm e_3, e_4\}$	6S,1B	8	(6, 14, 15, 7)
10		$\{0, e_1, e_2, e_3, e_{13}, e_{23}, e_4, e_{14}\}$	1S,2Pr,4Py	11	(8, 18, 17, 7)
11		$\{e_1, e_2, e_3, e_4, -2e_1 - e_{24}, -e_{13} - 2e_2, -2e_{12}\}$	4S,4Py	10	(7, 17, 18, 8)
12		$\{0, e_1, e_2/2, e_3, e_4, e_{14}, e_{12}/2, e_{13}, e_2 + 4e_{34}\}$	3Pr,3Py,2B	13	(9, 22, 21, 8)
13		$\{e_1, e_2, 9/4e_3, e_4, e_{124}/2, e_{13}, e_2 + e_3/4, e_{34}\}$	2S,6Py,1B	12	(8, 21, 22, 9)
14	$(\Delta_2 \oplus \Delta_1) imes \Delta_1$	$\{0, e_1, e_2, e_3, e_4, e_{12}, e_{23}, e_{24}, 2e_{13} + e_4, 2e_{13} + e_{24}\}$	6Pr,2B	15	(10, 23, 21, 8)
15	$(\Delta_2 \times \Delta_1) \oplus \Delta_1$	$\{e_1, 2e_2, e_3, 2e_4, e_2 + 2e_3, e_2 + 4e_4, 2e_1 + e_2, e_{134}\}$	4S,6Py	14	(8, 21, 23, 10)
16	$(\Delta_1 \times \Delta_1 \times \Delta_1) * \Delta_0$	$(\{\pm e_1\} + \{\pm e_2\} + \{\pm e_3\}) \cup \{e_4\}$	1C,6Py	17	(9, 20, 18, 7)
17	$(\Delta_1 \oplus \Delta_1 \oplus \Delta_1) * \Delta_0$	$\{\pm e_1, \pm e_2, \pm e_3, e_4\}$	10,8S	16	(7, 18, 20, 9)
18		$\{0, e_1, e_2/2e_4, e_{234}, e_{23}, e_{24}/2, e_{134}, e_{13}\}$	2Pr,4Py,2B	19	(9, 22, 21, 8)
19		$\{0, e_1, e_3, e_4, e_{14}, e_{23}, e_{24}, e_{234}\}$	10,4S,4Py	18	(8, 21, 22, 9)
20	$((\Delta_1 \times \Delta_1) * \Delta_0) \times \Delta_1$	$\{\pm e_1, \pm e_2, e_3\} + \{\pm e_4\}$	1C,4Pr,2Py	21	(10, 21, 18, 7)
21	$((\Delta_1 \times \Delta_1) * \Delta_0) \oplus \Delta_1$	$\{\pm e_1, \pm e_2, e_3, e_3/2 \pm e_4\}$	8S,2Py	20	(7, 18, 21, 10)
22		$\{0, 2e_1, 2e_3, 2e_4, e_{12}, e_{123}, e_{1234}, 2e_{24}, 2e_{34}\}$	6Py,3B	23	(9, 24, 24, 9)
23		$\{0, e_1, e_3, e_4, e_{12}, e_{123}, e_{23}, e_{24}, e_{234}\}$	2O,3S,1Pr,3Py	22	(9, 24, 24, 9)
24		$\{0, 2e_1, 2e_2, 2e_3, 2e_4, e_{123}, e_{124}, e_{134}, e_{1234}, e_{234}\}$	10B	25	(10, 30, 30, 10)
25		$\{e_1, e_2, e_3, e_4, e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\}$	50,5S	24	(10, 30, 30, 10)
26	$(\Delta_1 \times \Delta_1 \times \Delta_1) \oplus \Delta_1$	$(\{\pm e_1\} + \{\pm e_2\} + \{\pm e_3\}) \cup \{\pm e_4\}$	12Py	27	(10, 28, 30, 12)
27	$(\Delta_1 \oplus \Delta_1 \oplus \Delta_1) \times \Delta_1$	$\{\pm e_1, \pm e_2, \pm e_3\} + \{\pm e_4\}$	2O,8Pr	26	(12, 30, 28, 10)
28	$\Delta_1 \times \Delta_1 \times \Delta_2$	$\{\pm e_1\} + \{\pm e_2\} + \{-e_{34}, e_3, e_4\}$	3C,4Pr	29	(12, 24, 19, 7)
29	$\Delta_1 \oplus \Delta_1 \oplus \Delta_2$	$\{\pm e_1, \pm e_2, -e_{34}, e_3, e_4\}$	12S	28	(7, 19, 24, 12)
30	$\Delta_1 \times \Delta_1 \times \Delta_1 \times \Delta_1$	$\{\pm e_1\} + \{\pm e_2\} + \{\pm e_3\} + \{\pm e_4\}$	8C	31	(16, 32, 24, 8)
31	$\Delta_1\oplus\Delta_1\oplus\Delta_1\oplus\Delta_1$	$\{\pm e_1, \pm e_2, \pm e_3 \pm e_4\}$	16S	30	(8, 24, 32, 16)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

$$S_{P}(x) = \begin{pmatrix} x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{4} & x_{5} & x_{6} \\ x_{7} & 0 & 0 & x_{8} & 0 & 0 \\ 0 & x_{9} & 0 & 0 & x_{10} & 0 \\ 0 & 0 & x_{11} & 0 & 0 & x_{12} \end{pmatrix}$$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

	(x_1)	x ₂	x ₃	0	0	0 \
	0	Ō	Ő	<i>x</i> ₄	x5	x ₆
$S_P(x) =$	X7	0	0	x ₈	0	0
	0	Xg	0	Ő	x ₁₀	0
	0/	Ő	<i>x</i> ₁₁	0	0	x ₁₂ /

 $I_{P} = \langle -x_{1}x_{5}x_{8}x_{9}x_{11} + x_{2}x_{4}x_{7}x_{10}x_{11}, -x_{1}x_{6}x_{8}x_{9}x_{11} + x_{3}x_{4}x_{7}x_{9}x_{12}, -x_{2}x_{6}x_{7}x_{10}x_{11} + x_{3}x_{5}x_{7}x_{9}x_{12}, -x_{1}x_{5}x_{8}x_{9}x_{12} + x_{2}x_{4}x_{7}x_{10}x_{12}, -x_{1}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{4}x_{7}x_{10}x_{12}, -x_{2}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{5}x_{8}x_{9}x_{12} \rangle$

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

	X_1	x ₂	x ₃	0	0	0 \
	0	0	0	<i>x</i> ₄	x5	<i>x</i> 6
$S_P(x) =$	X7	0	0	x ₈	0	0
	0	Xg	0	Ő	x ₁₀	0
	0/	Ő	<i>x</i> ₁₁	0	0	x ₁₂ /

 $I_{P} = \langle -x_{1}x_{5}x_{8}x_{9}x_{11} + x_{2}x_{4}x_{7}x_{10}x_{11}, -x_{1}x_{6}x_{8}x_{9}x_{11} + x_{3}x_{4}x_{7}x_{9}x_{12}, -x_{2}x_{6}x_{7}x_{10}x_{11} + x_{3}x_{5}x_{7}x_{9}x_{12}, -x_{1}x_{5}x_{8}x_{9}x_{12} + x_{2}x_{4}x_{7}x_{10}x_{12}, -x_{1}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{4}x_{7}x_{10}x_{12}, -x_{2}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{5}x_{8}x_{9}x_{12} \rangle$

Proposition

If I_P is binomial then P is psd-minimal.

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^a - x^b$.

	X_1	X2	X ₃	0	0	0 \
	0	Ō	Ő	<i>x</i> ₄	x5	<i>x</i> 6
$S_P(x) =$	X7	0	0	x ₈	0	0
	0	Xg	0	Ő	x ₁₀	0
	0/	Ő	<i>x</i> ₁₁	0	0	x ₁₂ /

 $I_{P} = \langle -x_{1}x_{5}x_{8}x_{9}x_{11} + x_{2}x_{4}x_{7}x_{10}x_{11}, -x_{1}x_{6}x_{8}x_{9}x_{11} + x_{3}x_{4}x_{7}x_{9}x_{12}, -x_{2}x_{6}x_{7}x_{10}x_{11} + x_{3}x_{5}x_{7}x_{9}x_{12}, -x_{1}x_{5}x_{8}x_{9}x_{12} + x_{2}x_{4}x_{7}x_{10}x_{12}, -x_{1}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{4}x_{7}x_{10}x_{12}, -x_{2}x_{6}x_{8}x_{10}x_{11} + x_{3}x_{5}x_{8}x_{9}x_{12} \rangle$

Proposition

If I_P is binomial then P is psd-minimal.

The first 11 classes of the table and all *d*-polytopes with d + 2 vertices have binomial slack ideals.

João Gouveia (UC)

How to derive psd-minimality conditions:

590

I > <
 I >
 I

How to derive psd-minimality conditions:

Algorithm (in theory)

• Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- ⁽²⁾ Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- **2** Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- **2** Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- **2** Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

• scale to 1 as many entries as possible

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- **2** Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- ⁽²⁾ Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing
- impose the square condition on few entries at a time

How to derive psd-minimality conditions:

Algorithm (in theory)

- Compute $I_P \subset \mathbb{R}[x]$ and let J_P be a copy of I_P in new variables y.
- **2** Consider $K_P = I_P + J_P + \langle y_i^2 \mathbf{x}_i \rangle_{i=1,...,t} \subset \mathbb{R}[\mathbf{x}, y].$
- Eliminate y from K_P to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing
- impose the square condition on few entries at a time

...

< 🗇 🕨 < 🖃 🕨 <

E ISMP 2015 11/14

990

< □ > < □ > < □ > < □ > < □ >

	/1	1	0	0	0	0	0	0 \
	0	0	1	0	1	0	1	0
	0	0	1	0	x_3	0	0	1
	0	1	<i>x</i> ₁	0	Ő	1	<i>X</i> 9	0
$\overline{S_P}(x) =$	0	1	1	0	0	<i>x</i> 6	Ő	x ₁₂
• • •	1	0	0	X2	<i>x</i> ₄	Ő	x ₁₀	0
	1	0	0	1	X5	0	0	X13
	0	0	0	1	Ő	<i>x</i> 7	x ₁₁	0
	0/	0	0	1	0	X ₈	Ó	x14/

Ð. ISMP 2015 11/14

990

< □ > < □ > < □ > < □ > < □ >

 $I_{P} = \langle x_{12} + x_{13} - x_{14} - 1, x_{11} - x_{14}, x_{10} - x_{13}, x_{9} + x_{13} - x_{14} - 1, x_{8} - 1, x_{7} - 1, x_{6} - 1, x_{5} - 1, x_{7} - 1, x_{7}$ $x_4 - 1, x_3 - 1, x_2 - 1, x_1 - 1$

3 **ISMP 2015** 11/14

990

<ロト < 回ト < 回ト < ヨト < ヨト

 $I_{P} = \langle x_{12} + x_{13} - x_{14} - 1, x_{11} - x_{14}, x_{10} - x_{13}, x_{9} + x_{13} - x_{14} - 1, x_{8} - 1, x_{7} - 1, x_{6} - 1, x_{5} - 1, x_{7} - 1, x_{7}$ $x_4 - 1, x_3 - 1, x_2 - 1, x_1 - 1$

3 **ISMP 2015** 11/14

990

< □ > < □ > < □ > < □ > < □ > < □ >

Now we impose $y_9^2 = x_9$, $y_{10}^2 = x_{10}$ and

$$(y_9 + y_{10} - 1)^2 = y_9^2 + y_{10}^2 - 1.$$

Eliminating y we get $x_9 = 1$ or (equivalently) $x_{10} = 1$

Now we impose $y_9^2 = x_9$, $y_{10}^2 = x_{10}$ and

$$(y_9 + y_{10} - 1)^2 = y_9^2 + y_{10}^2 - 1.$$

Eliminating y we get $x_9 = 1$ or (equivalently) $x_{10} = 1$

Now we impose $y_9^2 = x_9$, $y_{10}^2 = x_{10}$ and

$$(y_9 + y_{10} - 1)^2 = y_9^2 + y_{10}^2 - 1.$$

Eliminating y we get $x_9 = 1$ or (equivalently) $x_{10} = 1$

We get a linear space living inside the slack variety

E **ISMP 2015** 12/14

590

イロト イロト イヨト

João Gouveia (UC)

э **ISMP 2015** 12/14

< 🗇 🕨 < 🖃 🕨

It is psd-minimal if and only if

$$x_1^4 + 2x_1^3x_2 + 3x_1^2x_2^2 + 2x_1x_2^3 + x_2^4 - 2x_1^3 - 2x_2^3 + x_1^2 - 2x_1x_2 + x_2^2 = 0$$

It is psd-minimal if and only if

$$x_1^4 + 2x_1^3x_2 + 3x_1^2x_2^2 + 2x_1x_2^3 + x_2^4 - 2x_1^3 - 2x_2^3 + x_1^2 - 2x_1x_2 + x_2^2 = 0$$

João Gouveia (UC)

It is psd-minimal if and only if

$$x_1^4 + 2x_1^3x_2 + 3x_1^2x_2^2 + 2x_1x_2^3 + x_2^4 - 2x_1^3 - 2x_2^3 + x_1^2 - 2x_1x_2 + x_2^2 = 0$$

In particular:

- The positive square root does not work.
- The support does not have rank 5.

Open questions

João Gouveia (UC)

900

Þ

< ロト < 回 ト < 注 ト < 注</p>

590

 $\exists \rightarrow \neg$ -

• When is the *d*-cube psd-minimal?

• When is the *d*-cube psd-minimal?

• Are binomial slack ideals always toric?

• When is the *d*-cube psd-minimal?

• Are binomial slack ideals always toric?

• Is the slack ideal of a combinatorially psd-minimal polytope always binomial?

G., Pashkovich, Robinson and Thomas. Four Dimensional Polytopes of Minimum PSD Rank. *arXiv:1506.00187*

< 🗇 🕨 < 🖃 🕨 <

Sar

G., Pashkovich, Robinson and Thomas. Four Dimensional Polytopes of Minimum PSD Rank. *arXiv:1506.00187*

Thank you

.∃ ⊳.