PSD-minimality and slack ideals

João Gouveia

University of Coimbra
16th of July - ISMP 2015
with Kanstantsin Pashkovich (U. Waterloo), Richard Z. Robinson and Rekha Thomas (U.Washington)

Semidefinite Representations

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite Representations

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
We are interested in polytopes with small descriptions.

Semidefinite Representations

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
We are interested in polytopes with small descriptions.

Psd-minimal polytopes

The size of any semidefinite representation of a d-polytope P cannot be smaller than $d+1$. If it equals $d+1$ we call the polytope psd-minimal.

Psd-minimal polytopes

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...

Psd-minimal polytopes

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^{2} only triangles and quadrilaterals are psd-minimal.

Psd-minimal polytopes

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^{2} only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^{3} there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes .

Psd-minimal polytopes

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^{2} only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^{3} there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes .

- What happens in \mathbb{R}^{4} ?

Psd-minimal polytopes

- All 2-level polytopes are psd-minimal. This includes stable set polytopes of perfect graphs, Birkhoff polytopes, Hanner polytopes...
- In \mathbb{R}^{2} only triangles and quadrilaterals are psd-minimal.
- In \mathbb{R}^{3} there are six classes of psd-minimal polytopes: simplices, triangular bipyramids, quadrilateral pyramids, (combinatorial) triangular prisms, biplanar octahedra and biplanar cubes .

- What happens in \mathbb{R}^{4} ? [GPRT15] There are precisely 31 combinatorial classes of psd-minimal 4-polytopes.

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Theorem (GRT13)

A d-polytope P is psd-minimal if and only if there exists some rank $d+1$ matrix M such that $M \odot M=S_{p}$.

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Theorem (GRT13)

A d-polytope P is psd-minimal if and only if there exists some rank $d+1$ matrix M such that $M \odot M=S_{p}$.

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Theorem (GRT13)

A d-polytope P is psd-minimal if and only if there exists some rank $d+1$ matrix M such that $M \odot M=S_{p}$.

$$
S_{P}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 2
\end{array}\right)
$$

Slack matrices

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Theorem (GRT13)

A d-polytope P is psd-minimal if and only if there exists some rank $d+1$ matrix M such that $M \odot M=S_{p}$.
$S_{P}=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 2\end{array}\right) \quad M=\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & \sqrt{2}\end{array}\right)$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

$$
S_{P}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

$$
S_{P}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
S_{P}(x)=\left(\begin{array}{ccccc}
x_{1} & x_{2} & 0 & 0 & 0 \\
0 & x_{3} & x_{4} & 0 & 0 \\
0 & 0 & x_{5} & x_{6} & 0 \\
x_{7} & 0 & 0 & x_{8} & 0 \\
0 & 0 & 0 & 0 & x_{9}
\end{array}\right)
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

$$
S_{P}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
S_{p}(x)=\left(\begin{array}{ccccc}
x_{1} & x_{2} & 0 & 0 & 0 \\
0 & x_{3} & x_{4} & 0 & 0 \\
0 & 0 & x_{5} & x_{6} & 0 \\
x_{7} & 0 & 0 & x_{8} & 0 \\
0 & 0 & 0 & 0 & x_{9}
\end{array}\right)
$$

$$
I_{P}=\left\langle x_{1} x_{3} x_{5} x_{8} x_{9}-x_{2} x_{4} x_{6} x_{7} x_{9}\right\rangle:\left(\prod x_{i}\right)^{\infty}
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

$$
S_{P}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
S_{p}(x)=\left(\begin{array}{ccccc}
x_{1} & x_{2} & 0 & 0 & 0 \\
0 & x_{3} & x_{4} & 0 & 0 \\
0 & 0 & x_{5} & x_{6} & 0 \\
x_{7} & 0 & 0 & x_{8} & 0 \\
0 & 0 & 0 & 0 & x_{9}
\end{array}\right)
$$

$$
I_{P}=\left\langle x_{1} x_{3} x_{5} x_{8} x_{9}-x_{2} x_{4} x_{6} x_{7} x_{9}\right\rangle:\left(\prod x_{i}\right)^{\infty}=\left\langle x_{1} x_{3} x_{5} x_{8}-x_{2} x_{4} x_{6} x_{7}\right\rangle
$$

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Application to n-gons ($n \geq 5$):

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Application to n-gons ($n \geq 5$):

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Application to n-gons ($n \geq 5$):

$$
\tilde{S_{p}}(x)=\left(\begin{array}{cccc}
0 & 0 & x_{1} & x_{2} \\
x_{3} & 0 & 0 & x_{4} \\
x_{5} & x_{6} & 0 & 0 \\
x_{7} & x_{8} & x_{9} & 0
\end{array}\right)
$$

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Application to n-gons ($n \geq 5$):

$$
\tilde{S_{p}}(x)=\left(\begin{array}{cccc}
0 & 0 & x_{1} & x_{2} \\
x_{3} & 0 & 0 & x_{4} \\
x_{5} & x_{6} & 0 & 0 \\
x_{7} & x_{8} & x_{9} & 0
\end{array}\right)
$$

$$
\begin{gathered}
\operatorname{det}\left(\tilde{S_{P}}(x)\right) \in I_{P} \\
\uparrow x_{1} x_{4} x_{6} x_{7}+x_{1} x_{4} x_{5} x_{8}-x_{2} x_{3} x_{6} x_{9}
\end{gathered}
$$

Trinomial obstructions

Trinomial Obstruction Lemma

If I_{P} has a trinomial of the form $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.
Why: You can't simultaneously have $z_{1}+z_{2}-z_{3}=0$ and $z_{1}{ }^{2}+z_{2}{ }^{2}-z_{3}{ }^{2}=0$ for non-zero reals.

Application to n-gons ($n \geq 5$):

$$
\tilde{S_{P}}(x)=\left(\begin{array}{cccc}
0 & 0 & x_{1} & x_{2} \\
x_{3} & 0 & 0 & x_{4} \\
x_{5} & x_{6} & 0 & 0 \\
x_{7} & x_{8} & x_{9} & 0
\end{array}\right) \quad \begin{array}{cc}
\operatorname{det}\left(\tilde{S_{P}}(x)\right) \in I_{P} \\
\uparrow & -x_{1} x_{4} x_{6} x_{7}+x_{1} x_{4} x_{5} x_{8}-x_{2} x_{3} x_{6} x_{9}
\end{array}
$$

Only triangles and quadrilaterals can be psd-minimal in \mathbb{R}^{2}.

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Lemma

If P is psd-minimal at most four of its facets can share an edge.

Combinatorial obstructions

From these we can derive combinatorial obstructions.

Proposition

Non-trivial intersections of facets of psd-minimal 4-polytopes:

Lemma

If P is psd-minimal at most four of its facets can share an edge.

\#	Construction	Vertices of a psd-minimal embedding	Facet Types	Dual	f-vector
1	Δ_{4}	$\left\{-e_{1234}, e_{1}, e_{2}, e_{3}, e_{4}\right\}$	5 S	Self	(5, 10, 10, 5)
2	$\left(\Delta_{1} \times \Delta_{1}\right) * \Delta_{1}$	$\left\{ \pm e_{1}, \pm e_{2}, e_{3}, e_{4}\right\}$	4S,2Py	Self	$(6,13,13,6)$
3		$\left\{0,2 e_{1}, 2 e_{2}, 2 e_{3}, e_{12}-e_{3}, e_{4}, e_{34}\right\}$	3S,2Py,2B	Self	(7,17, 17, 7)
4	$\Delta_{3} \times \Delta_{1}$	$\left\{-e_{123}, e_{1}, e_{2}, e_{3}\right\}+\left\{ \pm e_{4}\right\}$	2S,4Pr	5	$(8,16,14,6)$
5	$\Delta_{3} \oplus \Delta_{1}$	$\left\{-e_{123}, e_{1}, e_{2}, e_{3}, \pm e_{4}\right\}$	8 S	4	$(6,14,16,8)$
6	$\Delta_{2} \times \Delta_{2}$	$\left\{-e_{12}, e_{1}, e_{2}\right\}+\left\{-e_{34}, e_{3}, e_{4}\right\}$	6 Pr	7	$(9,18,15,6)$
7	$\Delta_{2} \oplus \Delta_{2}$	$\left\{-e_{12}, e_{1}, e_{2},-e_{34}, e_{3}, e_{4}\right\}$	9S	6	$(6,15,18,9)$
8	$\left(\Delta_{2} \times \Delta_{1}\right) * \Delta_{0}$	$\left\{e_{4}\right\} \cup\left(\left\{-e_{12}, e_{1}, e_{2}\right\}+\left\{ \pm e_{3}\right\}\right)$	2S,1Pr,3Py	9	$(7,15,14,6)$
9	$\left(\Delta_{2} \oplus \Delta_{1}\right) * \Delta_{0}$	$\left\{-e_{12}, e_{1}, e_{2}, \pm e_{3}, e_{4}\right\}$	6S,1B	8	$(6,14,15,7)$
10		$\left\{0, e_{1}, e_{2}, e_{3}, e_{13}, e_{23}, e_{4}, e_{14}\right\}$	1S,2Pr,4Py	11	$(8,18,17,7)$
11		$\left\{e_{1}, e_{2}, e_{3}, e_{4},-2 e_{1}-e_{24},-e_{13}-2 e_{2},-2 e_{12}\right\}$	4S,4Py	10	$(7,17,18,8)$
12		$\left\{0, e_{1}, e_{2} / 2, e_{3}, e_{4}, e_{14}, e_{12} / 2, e_{13}, e_{2}+4 e_{34}\right\}$	3Pr,3Py,2B	13	(9,22, 21, 8)
13		$\left\{e_{1}, e_{2}, 9 / 4 e_{3}, e_{4}, e_{124} / 2, e_{13}, e_{2}+e_{3} / 4, e_{34}\right\}$	2S,6Py,1B	12	(8,21, 22,9)
14	$\left(\Delta_{2} \oplus \Delta_{1}\right) \times \Delta_{1}$	$\left\{0, e_{1}, e_{2}, e_{3}, e_{4}, e_{12}, e_{23}, e_{24}, 2 e_{13}+e_{4}, 2 e_{13}+e_{24}\right\}$	$6 \mathrm{Pr}, 2 \mathrm{~B}$	15	$(10,23,21,8)$
15	$\left(\Delta_{2} \times \Delta_{1}\right) \oplus \Delta_{1}$	$\left\{e_{1}, 2 e_{2}, e_{3}, 2 e_{4}, e_{2}+2 e_{3}, e_{2}+4 e_{4}, 2 e_{1}+e_{2}, e_{134}\right\}$	4S,6Py	14	$(8,21,23,10)$
16	$\left(\Delta_{1} \times \Delta_{1} \times \Delta_{1}\right) * \Delta_{0}$	$\left(\left\{ \pm e_{1}\right\}+\left\{ \pm e_{2}\right\}+\left\{ \pm e_{3}\right\}\right) \cup\left\{e_{4}\right\}$	1C,6Py	17	$(9,20,18,7)$
17	$\left(\Delta_{1} \oplus \Delta_{1} \oplus \Delta_{1}\right) * \Delta_{0}$	$\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3}, e_{4}\right\}$	10,8S	16	(7,18, 20,9)
18		$\left\{0, e_{1}, e_{2} / 2 e_{4}, e_{234}, e_{23}, e_{24} / 2, e_{134}, e_{13}\right\}$	2Pr,4Py,2B	19	(9,22, 21, 8)
19		$\left\{0, e_{1}, e_{3}, e_{4}, e_{14}, e_{23}, e_{24}, e_{234}\right\}$	1O,4S,4Py	18	(8,21,22,9)
20	$\left(\left(\Delta_{1} \times \Delta_{1}\right) * \Delta_{0}\right) \times \Delta_{1}$	$\left\{ \pm e_{1}, \pm e_{2}, e_{3}\right\}+\left\{ \pm e_{4}\right\}$	1C,4Pr,2Py	21	$(10,21,18,7)$
21	$\left(\left(\Delta_{1} \times \Delta_{1}\right) * \Delta_{0}\right) \oplus \Delta_{1}$	$\left\{ \pm e_{1}, \pm e_{2}, e_{3}, e_{3} / 2 \pm e_{4}\right\}$	8S,2Py	20	$(7,18,21,10)$
22		$\left\{0,2 e_{1}, 2 e_{3}, 2 e_{4}, e_{12}, e_{123}, e_{1234}, 2 e_{24}, 2 e_{34}\right\}$	6Py,3B	23	(9,24,24,9)
23		$\left\{0, e_{1}, e_{3}, e_{4}, e_{12}, e_{123}, e_{23}, e_{24}, e_{234}\right\}$	2O,3S,1Pr,3Py	22	(9,24,24,9)
24		$\left\{0,2 e_{1}, 2 e_{2}, 2 e_{3}, 2 e_{4}, e_{123}, e_{124}, e_{134}, e_{1234}, e_{234}\right\}$	10B	25	$(10,30,30,10)$
25		$\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\}$	50,5S	24	$(10,30,30,10)$
26	$\left(\Delta_{1} \times \Delta_{1} \times \Delta_{1}\right) \oplus \Delta_{1}$	$\left(\left\{ \pm e_{1}\right\}+\left\{ \pm e_{2}\right\}+\left\{ \pm e_{3}\right\}\right) \cup\left\{ \pm e_{4}\right\}$	12 Py	27	(10, 28, 30, 12)
27	$\left(\Delta_{1} \oplus \Delta_{1} \oplus \Delta_{1}\right) \times \Delta_{1}$	$\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3}\right\}+\left\{ \pm e_{4}\right\}$	$2 \mathrm{O}, 8 \mathrm{Pr}$	26	$(12,30,28,10)$
28	$\Delta_{1} \times \Delta_{1} \times \Delta_{2}$	$\left\{ \pm e_{1}\right\}+\left\{ \pm e_{2}\right\}+\left\{-e_{34}, e_{3}, e_{4}\right\}$	$3 \mathrm{C}, 4 \mathrm{Pr}$	29	$(12,24,19,7)$
29	$\Delta_{1} \oplus \Delta_{1} \oplus \Delta_{2}$	$\left\{ \pm e_{1}, \pm e_{2},-e_{34}, e_{3}, e_{4}\right\}$	12 S	28	$(7,19,24,12)$
30	$\Delta_{1} \times \Delta_{1} \times \Delta_{1} \times \Delta_{1}$	$\left\{ \pm e_{1}\right\}+\left\{ \pm e_{2}\right\}+\left\{ \pm e_{3}\right\}+\left\{ \pm e_{4}\right\}$	8 C	31	$(16,32,24,8)$
31	$\Delta_{1} \oplus \Delta_{1} \oplus \Delta_{1} \oplus \Delta_{1}$	$\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3} \pm e_{4}\right\}$	16 S	30	$(8,24,32,16)$

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

$$
S_{p}(x)=\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & 0 & 0 & x_{8} & 0 & 0 \\
0 & x_{9} & 0 & 0 & x_{10} & 0 \\
0 & 0 & x_{11} & 0 & 0 & x_{12}
\end{array}\right)
$$

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

$$
S_{p}(x)=\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & 0 & 0 & x_{8} & 0 & 0 \\
0 & x_{9} & 0 & 0 & x_{10} & 0 \\
0 & 0 & x_{11} & 0 & 0 & x_{12}
\end{array}\right)
$$

$I_{P}=\left\langle-x_{1} x_{5} x_{8} x_{9} x_{11}+x_{2} x_{4} x_{7} x_{10} x_{11},-x_{1} x_{6} x_{8} x_{9} x_{11}+x_{3} x_{4} x_{7} x_{9} x_{12},-x_{2} x_{6} x_{7} x_{10} x_{11}+x_{3} x_{5} x_{7} x_{9} x_{12}\right.$,

$$
\left.-x_{1} x_{5} x_{8} x_{9} x_{12}+x_{2} x_{4} x_{7} x_{10} x_{12},-x_{1} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{4} x_{7} x_{10} x_{12},-x_{2} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{5} x_{8} x_{9} x_{12}\right\rangle
$$

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

$$
S_{P}(x)=\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & 0 & 0 & x_{8} & 0 & 0 \\
0 & x_{9} & 0 & 0 & x_{10} & 0 \\
0 & 0 & x_{11} & 0 & 0 & x_{12}
\end{array}\right)
$$

$I_{P}=\left\langle-x_{1} x_{5} x_{8} x_{9} x_{11}+x_{2} x_{4} x_{7} x_{10} x_{11},-x_{1} x_{6} x_{8} x_{9} x_{11}+x_{3} x_{4} x_{7} x_{9} x_{12},-x_{2} x_{6} x_{7} x_{10} x_{11}+x_{3} x_{5} x_{7} x_{9} x_{12}\right.$, $\left.-x_{1} x_{5} x_{8} x_{9} x_{12}+x_{2} x_{4} x_{7} x_{10} x_{12},-x_{1} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{4} x_{7} x_{10} x_{12},-x_{2} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{5} x_{8} x_{9} x_{12}\right\rangle$

Proposition

If I_{P} is binomial then P is psd-minimal.

Binomial slack ideals

Binomial slack ideal

We will call a slack ideal binomial if it is generated by polynomials of the type $x^{a}-x^{b}$.

$$
S_{P}(x)=\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & x_{4} & x_{5} & x_{6} \\
x_{7} & 0 & 0 & x_{8} & 0 & 0 \\
0 & x_{9} & 0 & 0 & x_{10} & 0 \\
0 & 0 & x_{11} & 0 & 0 & x_{12}
\end{array}\right)
$$

$I_{P}=\left\langle-x_{1} x_{5} x_{8} x_{9} x_{11}+x_{2} x_{4} x_{7} x_{10} x_{11},-x_{1} x_{6} x_{8} x_{9} x_{11}+x_{3} x_{4} x_{7} x_{9} x_{12},-x_{2} x_{6} x_{7} x_{10} x_{11}+x_{3} x_{5} x_{7} x_{9} x_{12}\right.$, $\left.-x_{1} x_{5} x_{8} x_{9} x_{12}+x_{2} x_{4} x_{7} x_{10} x_{12},-x_{1} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{4} x_{7} x_{10} x_{12},-x_{2} x_{6} x_{8} x_{10} x_{11}+x_{3} x_{5} x_{8} x_{9} x_{12}\right\rangle$

Proposition

If I_{P} is binomial then P is psd-minimal.
The first 11 classes of the table and all d-polytopes with $d+2$ vertices have binomial slack ideals.

General technique

How to derive psd-minimality conditions:

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing
- impose the square condition on few entries at a time

General technique

How to derive psd-minimality conditions:

Algorithm (in theory)

(1) Compute $I_{P} \subset \mathbb{R}[x]$ and let J_{P} be a copy of I_{P} in new variables y.
(2) Consider $K_{P}=I_{P}+J_{P}+\left\langle y_{i}^{2}-x_{i}\right\rangle_{i=1, \ldots, t} \subset \mathbb{R}[x, y]$.
(3) Eliminate y from K_{P} to get the conditions of psd-minimality for the combinatorial class of P.

In practice we have to resort to simplifications.

- scale to 1 as many entries as possible
- parametrize the slack variety before computing
- impose the square condition on few entries at a time
- ...

Example (Class 18)

Example (Class 18)

$$
\overline{S_{p}}(x)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & x_{3} & 0 & 0 & 1 \\
0 & 1 & x_{1} & 0 & 0 & 1 & x_{9} & 0 \\
0 & 1 & 1 & 0 & 0 & x_{6} & 0 & x_{12} \\
1 & 0 & 0 & x_{2} & x_{4} & 0 & x_{10} & 0 \\
1 & 0 & 0 & 1 & x_{5} & 0 & 0 & x_{13} \\
0 & 0 & 0 & 1 & 0 & x_{7} & x_{11} & 0 \\
0 & 0 & 0 & 1 & 0 & x_{8} & 0 & x_{14}
\end{array}\right)
$$

Example (Class 18)

$$
\overline{S_{P}}(x)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & x_{3} & 0 & 0 & 1 \\
0 & 1 & x_{1} & 0 & 0 & 1 & x_{9} & 0 \\
0 & 1 & 1 & 0 & 0 & x_{6} & 0 & x_{12} \\
1 & 0 & 0 & x_{2} & x_{4} & 0 & x_{10} & 0 \\
1 & 0 & 0 & 1 & x_{5} & 0 & 0 & x_{13} \\
0 & 0 & 0 & 1 & 0 & x_{7} & x_{11} & 0 \\
0 & 0 & 0 & 1 & 0 & x_{8} & 0 & x_{14}
\end{array}\right)
$$

$$
\begin{aligned}
I_{P}= & \left\langle x_{12}+x_{13}-x_{14}-1, x_{11}-x_{14}, x_{10}-x_{13}, x_{9}+x_{13}-x_{14}-1, x_{8}-1, x_{7}-1, x_{6}-1, x_{5}-1,\right. \\
& \left.x_{4}-1, x_{3}-1, x_{2}-1, x_{1}-1\right\rangle
\end{aligned}
$$

Example (Class 18)

$$
\overline{S_{P}}(x)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & x_{9} & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & x_{9} \\
1 & 0 & 0 & 1 & 1 & 0 & x_{10} & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & x_{10} \\
0 & 0 & 0 & 1 & 0 & 1 & x_{9}+x_{10}-1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & x_{9}+x_{10}-1
\end{array}\right)
$$

$$
\begin{aligned}
I_{P}= & \left\langle x_{12}+x_{13}-x_{14}-1, x_{11}-x_{14}, x_{10}-x_{13}, x_{9}+x_{13}-x_{14}-1, x_{8}-1, x_{7}-1, x_{6}-1, x_{5}-1,\right. \\
& \left.x_{4}-1, x_{3}-1, x_{2}-1, x_{1}-1\right\rangle
\end{aligned}
$$

Example (Class 18)

$$
\overline{S_{p}}(x)=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1 \\
x_{9} & 0 \\
0 & x_{9} \\
x_{10} & 0 \\
0 & x_{10} \\
x_{9}+x_{10}-1 & 0 \\
0 & x_{9}+x_{10}-1
\end{array}\right)
$$

Now we impose $y_{9}^{2}=x_{9}, y_{10}^{2}=x_{10}$ and

$$
\left(y_{9}+y_{10}-1\right)^{2}=y_{9}^{2}+y_{10}^{2}-1
$$

Eliminating y we get $x_{9}=1$ or (equivalently) $x_{10}=1$

Example (Class 18)

$$
\overline{S_{P}}(x)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & x_{10} & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & x_{10} \\
0 & 0 & 0 & 1 & 0 & 1 & x_{10} & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & x_{10}
\end{array}\right)
$$

Now we impose $y_{9}^{2}=x_{9}, y_{10}^{2}=x_{10}$ and

$$
\left(y_{9}+y_{10}-1\right)^{2}=y_{9}^{2}+y_{10}^{2}-1
$$

Eliminating y we get $x_{9}=1$ or (equivalently) $x_{10}=1$

Example (Class 18)

$$
\overline{S_{p}}(x)=\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & x_{10} & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & x_{10} \\
0 & 0 & 0 & 1 & 0 & 1 & x_{10} & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & x_{10}
\end{array}\right)
$$

Now we impose $y_{9}^{2}=x_{9}, y_{10}^{2}=x_{10}$ and

$$
\left(y_{9}+y_{10}-1\right)^{2}=y_{9}^{2}+y_{10}^{2}-1
$$

Eliminating y we get $x_{9}=1$ or (equivalently) $x_{10}=1$

We get a linear space living inside the slack variety

An even more interesting example (class 12)

An even more interesting example (class 12)

$$
\overline{S_{P}}(x)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
x_{1} & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & x_{1} & 0 & 0 & 1 & 1 & 0 & 0 \\
x_{2} & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & x_{2} & 1 & 0 & 0 & 0 & 1 & 0 \\
1-x_{1}-x_{2} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1-x_{1}-x_{2} & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

An even more interesting example (class 12)

$$
\overline{S_{p}}(x)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
x_{1} & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & x_{1} & 0 & 0 & 1 & 1 & 0 & 0 \\
x_{2} & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & x_{2} & 1 & 0 & 0 & 0 & 1 & 0 \\
1-x_{1}-x_{2} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1-x_{1}-x_{2} & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

It is psd-minimal if and only if

$$
x_{1}^{4}+2 x_{1}^{3} x_{2}+3 x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2}^{3}+x_{2}^{4}-2 x_{1}^{3}-2 x_{2}^{3}+x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=0
$$

An even more interesting example (class 12)

$$
\overline{S_{p}}(x)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
x_{1} & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & x_{1} & 0 & 0 & 1 & 1 & 0 & 0 \\
x_{2} & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & x_{2} & 1 & 0 & 0 & 0 & 1 & 0 \\
1-x_{1}-x_{2} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1-x_{1}-x_{2} & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

It is psd-minimal if and only if

$$
x_{1}^{4}+2 x_{1}^{3} x_{2}+3 x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2}^{3}+x_{2}^{4}-2 x_{1}^{3}-2 x_{2}^{3}+x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=0
$$

An even more interesting example (class 12)

$$
\overline{S_{p}}(x)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
x_{1} & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & x_{1} & 0 & 0 & 1 & 1 & 0 & 0 \\
x_{2} & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & x_{2} & 1 & 0 & 0 & 0 & 1 & 0 \\
1-x_{1}-x_{2} & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1-x_{1}-x_{2} & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

It is psd-minimal if and only if

$$
x_{1}^{4}+2 x_{1}^{3} x_{2}+3 x_{1}^{2} x_{2}^{2}+2 x_{1} x_{2}^{3}+x_{2}^{4}-2 x_{1}^{3}-2 x_{2}^{3}+x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}=0
$$

In particular:

- The positive square root does not work.
- The support does not have rank 5.

Open questions

Open questions

- Do psd-minimal d-polytopes have at most 2^{d} vertices?

Open questions

- Do psd-minimal d-polytopes have at most 2^{d} vertices?
- When is the d-cube psd-minimal?

Open questions

- Do psd-minimal d-polytopes have at most 2^{d} vertices?
- When is the d-cube psd-minimal?
- Are binomial slack ideals always toric?

Open questions

- Do psd-minimal d-polytopes have at most 2^{d} vertices?
- When is the d-cube psd-minimal?
- Are binomial slack ideals always toric?
- Is the slack ideal of a combinatorially psd-minimal polytope always binomial?

Conclusion

國 G., Pashkovich, Robinson and Thomas. Four Dimensional Polytopes of Minimum PSD Rank. arXiv:1506.00187

Conclusion

國 G., Pashkovich, Robinson and Thomas.
Four Dimensional Polytopes of Minimum PSD Rank. arXiv:1506.00187

Thank you

