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Lifts of Convex Sets

Lifts of Polytopes

Polytopes with many facets can be projections of much simpler
polytopes.

An example is the Parity Polytope:

PPn = conv({x ∈ {0,1}n : x has odd number of 1}).

For every even set A ⊆ {1, . . . ,n},∑
i∈A

xi −
∑
i 6∈A

xi ≤ |A| − 1

is a facet, so we have at least 2n−1 facets.
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Lifts of Convex Sets

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd
1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that∑

k zk = x;∑
k αk = 1;

‖ zk ‖1 = k αk ;
0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.



Lifts of Convex Sets

Parity Polytope

There is a much shorter description.

PPn is the set of x ∈ Rn such that there exists for every odd
1 ≤ k ≤ n a vector zk ∈ Rn and a real number αk such that∑

k zk = x;∑
k αk = 1;

‖ zk ‖1 = k αk ;
0 ≤ ( zk )i ≤ αk .

O(n2) variables and O(n2) constraints.



Lifts of Convex Sets

Complexity of a Polytope

This suggests that number of facets is not a good measure of
complexity for a polytope.

Canonical LP Lift
Given a polytope P, a canonical LP lift is a description

P = Φ(Rk
+ ∩ L)

for some affine space L and affine map Φ. We say it is a Rk
+-lift.

We are interested in the smallest k such that P has a Rk
+-lift, a

much better measure of “LP-complexity” .
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Lifts of Convex Sets

Two definitions

Let P be a polytope with facets defined by
h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and vertices p1, . . . ,pv .

Slack Matrix

The slack matrix of P is the matrix SP ∈ Rv×f defined by

SP(i , j) = hj(pi).

Nonnegative Factorization

Given a nonnegative matrix M ∈ Rn×m
+ we say that it has a

k -nonnegative factorization, or a Rk
+-factorization if there exist

matrices A ∈ Rn×k
+ and B ∈ Rk×m

+ such that

M = A · B.
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Yannakakis’ Theorem

Theorem (Yannakakis 1991)

A polytope P has a Rk
+-lift if and only if SP has a

Rk
+-factorization.

Does it work for other types of lifts?

Does it work for other types of convex sets?

Can we compare the power of different lifts?

Does LP solve all polynomial combinatorial problems?
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The Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix SH .


0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 =



1 0 1 0 0
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0 1 1 0 0
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Hexagon - continued

It is the projection of the slice of R5
+ cut out by

y1 + y2 + y3 + y5 = 2, y3 + y4 + y5 = 1.

For irregular hexagons a R6
+-lift is the only we can have.
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Generalizing to non-LP

We want to generalize this result to other types of lifts.

K -Lift
Given a polytope P, and a closed convex cone K , a K -lift of P
is a description

P = Φ(K ∩ L)

for some affine space L and affine map Φ.

Important cases are Rn
+, PSDn, SOCPn, CPn, CoPn,. . .
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K -factorizations

We also need to generalize the nonnegative factorizations.

Recall that if K ⊆ Rl is a closed convex cone, K ∗ ⊆ Rl is its
dual cone, defined by

K ∗ = {y ∈ Rl 〈y , x〉 ≥ 0, ∀x ∈ K}.

K -Factorization

Given a nonnegative matrix M ∈ Rn×m
+ we say that it has a

K -factorization if there exist a1, . . .an ∈ K and b1, . . . ,bm ∈ K ∗

such that
Mi,j =

〈
ai ,bj

〉
.

We can now generalize Yannakakis.
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Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope P has a K -lift if and only if SP has a K -factorization.

To further generalize Yannakakis to other convex sets, we have
to introduce a slack operator.

Given a convex set C ⊆ Rn, consider its polar set

C◦ = {x ∈ Rn : 〈x , y〉 ≤ 1, ∀y ∈ C},

and define the slack operator SC : ext(C)× ext(C◦)→ R+ as

SC(x , y) = 1− 〈x , y〉 .

Note that this generalizes the slack matrix.
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Generalized Yannakakis for convex sets

We can then define a K -factorization of SC as a pair of maps

A : ext(C)→ K B : ext(C◦)→ K ∗

such that
〈A(x),B(y)〉 = SC(x , y)

for all x , y .

Theorem (G-Parrilo-Thomas)
A convex set C has a K -lift if and only if SC has a
K -factorization.
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The Square

The 0/1 square is the projection
onto x and y of the slice of PSD3
given by 1 x y

x x z
y z y

 � 0.

Its slack matrix is given by

SP =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

 ,
and should factorize in PSD3.
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Square - continued

SP =


0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

 ,
is factorized by

 0 0 0
0 1 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 1

 ,

 1 −1 0
−1 1 0
0 0 0

 ,

 1 0 −1
0 0 0
−1 0 1

 ,

for the rows and 1 0 0
0 0 0
0 0 0

 ,

 1 0 1
0 0 0
1 0 1

 ,

 1 1 1
1 1 1
1 1 1

 ,

 1 1 0
1 1 0
0 0 0

,
for the columns.
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Open questions - further directions

The role of symmetry.

Are there polynomial sized [symmetric] SDP-lifts for the
matching polytope? What about LP?

Are there polynomial sized LP-lifts for the stable set
polytope of a perfect graph?

Which sets are SDP-representable, i.e., which sets have
SDP-lifts?
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The end

Thank You
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