## Lifts of Convex Sets

João Gouveia

Universidade de Coimbra
27th July - Optimization 2011
with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington)

## Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes.

## Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the Parity Polytope:

$$
\operatorname{PP}_{n}=\operatorname{conv}\left(\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{x} \text { has odd number of } 1\right\}\right) .
$$

## Lifts of Polytopes

Polytopes with many facets can be projections of much simpler polytopes. An example is the Parity Polytope:

$$
\operatorname{PP}_{n}=\operatorname{conv}\left(\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{x} \text { has odd number of } 1\right\}\right) .
$$

For every even set $A \subseteq\{1, \ldots, n\}$,

$$
\sum_{i \in A} x_{i}-\sum_{i \notin A} x_{i} \leq|A|-1
$$

is a facet, so we have at least $2^{n-1}$ facets.

## Parity Polytope

There is a much shorter description.
$\mathrm{PP}_{n}$ is the set of $\mathbf{x} \in \mathbb{R}^{n}$ such that there exists for every odd $1 \leq k \leq n$ a vector $\mathbf{z}_{k} \in \mathbb{R}^{n}$ and a real number $\alpha_{k}$ such that

- $\sum_{k} \mathbf{z}_{k}=\mathbf{x}$;
- $\sum_{k} \alpha_{k}=1$;
- $\left\|\mathbf{z}_{k}\right\|_{1}=k \alpha_{k}$;
- $0 \leq\left(\mathbf{z}_{k}\right)_{i} \leq \alpha_{k}$.


## Parity Polytope

There is a much shorter description.
$\mathrm{PP}_{n}$ is the set of $\mathbf{x} \in \mathbb{R}^{n}$ such that there exists for every odd $1 \leq k \leq n$ a vector $\mathbf{z}_{k} \in \mathbb{R}^{n}$ and a real number $\alpha_{k}$ such that

- $\sum_{k} \mathbf{z}_{k}=\mathbf{x}$;
- $\sum_{k} \alpha_{k}=1$;
- $\left\|\mathbf{z}_{k}\right\|_{1}=k \alpha_{k}$;
- $0 \leq\left(\mathbf{z}_{k}\right)_{i} \leq \alpha_{k}$.
$O\left(n^{2}\right)$ variables and $O\left(n^{2}\right)$ constraints.


## Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

## Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

## Canonical LP Lift

Given a polytope $P$, a canonical LP lift is a description

$$
P=\Phi\left(\mathbb{R}_{+}^{k} \cap L\right)
$$

for some affine space $L$ and affine map $\Phi$. We say it is a $\mathbb{R}_{+}^{k}$-lift.

## Complexity of a Polytope

This suggests that number of facets is not a good measure of complexity for a polytope.

## Canonical LP Lift

Given a polytope $P$, a canonical LP lift is a description

$$
P=\Phi\left(\mathbb{R}_{+}^{k} \cap L\right)
$$

for some affine space $L$ and affine map $\Phi$. We say it is a $\mathbb{R}_{+}^{k}$-lift.

We are interested in the smallest $k$ such that $P$ has a $\mathbb{R}_{+}^{k}$-lift, a much better measure of "LP-complexity".

## Two definitions

Let $P$ be a polytope with facets defined by
$h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Two definitions

Let $P$ be a polytope with facets defined by
$h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Slack Matrix

The slack matrix of $P$ is the matrix $S_{P} \in \mathbb{R}^{v \times f}$ defined by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

## Two definitions

Let $P$ be a polytope with facets defined by
$h_{1}(\mathbf{x}) \geq 0, \ldots, h_{f}(\mathbf{x}) \geq 0$, and vertices $p_{1}, \ldots, p_{v}$.

## Slack Matrix

The slack matrix of $P$ is the matrix $S_{P} \in \mathbb{R}^{v \times f}$ defined by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

## Nonnegative Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ we say that it has a $k$-nonnegative factorization, or a $\mathbb{R}_{+}^{k}$-factorization if there exist matrices $A \in \mathbb{R}_{+}^{n \times k}$ and $B \in \mathbb{R}_{+}^{k \times m}$ such that

$$
M=A \cdot B
$$

## Yannakakis' Theorem

## Theorem (Yannakakis 1991)

A polytope $P$ has a $\mathbb{R}_{+}^{k}$-lift if and only if $S_{P}$ has a $\mathbb{R}_{+}^{k}$-factorization.

## Yannakakis' Theorem

## Theorem (Yannakakis 1991)

A polytope $P$ has a $\mathbb{R}_{+}^{k}$-lift if and only if $S_{P}$ has a $\mathbb{R}_{+}^{k}$-factorization.

- Does it work for other types of lifts?


## Yannakakis' Theorem

## Theorem (Yannakakis 1991)

A polytope $P$ has a $\mathbb{R}_{+}^{k}$-lift if and only if $S_{P}$ has a $\mathbb{R}_{+}^{k}$-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?


## Yannakakis' Theorem

## Theorem (Yannakakis 1991)

A polytope $P$ has a $\mathbb{R}_{+}^{k}$-lift if and only if $S_{P}$ has a $\mathbb{R}_{+}^{k}$-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?


## Yannakakis' Theorem

## Theorem (Yannakakis 1991)

A polytope $P$ has a $\mathbb{R}_{+}^{k}$-lift if and only if $S_{P}$ has a $\mathbb{R}_{+}^{k}$-factorization.

- Does it work for other types of lifts?
- Does it work for other types of convex sets?
- Can we compare the power of different lifts?
- Does LP solve all polynomial combinatorial problems?


## The Hexagon

Consider the regular hexagon.

## The Hexagon

Consider the regular hexagon.


## The Hexagon

Consider the regular hexagon.

It has a $6 \times 6$ slack matrix $S_{H}$.

## The Hexagon

Consider the regular hexagon.

It has a $6 \times 6$ slack matrix $S_{H}$.


$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

## The Hexagon

Consider the regular hexagon.

It has a $6 \times 6$ slack matrix $S_{H}$.


$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## Hexagon - continued

It is the projection of the slice of $\mathbb{R}_{+}^{5}$ cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1 .
$$

## Hexagon - continued

It is the projection of the slice of $\mathbb{R}_{+}^{5}$ cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1
$$



## Hexagon - continued

It is the projection of the slice of $\mathbb{R}_{+}^{5}$ cut out by

$$
y_{1}+y_{2}+y_{3}+y_{5}=2, \quad y_{3}+y_{4}+y_{5}=1
$$



For irregular hexagons a $\mathbb{R}_{+}^{6}$-lift is the only we can have.

## Generalizing to non-LP

We want to generalize this result to other types of lifts.

## Generalizing to non-LP

We want to generalize this result to other types of lifts.

## K-Lift

Given a polytope $P$, and a closed convex cone $K$, a $K$-lift of $P$ is a description

$$
P=\Phi(K \cap L)
$$

for some affine space $L$ and affine map $\Phi$.

## Generalizing to non-LP

We want to generalize this result to other types of lifts.

## K-Lift

Given a polytope $P$, and a closed convex cone $K$, a $K$-lift of $P$ is a description

$$
P=\Phi(K \cap L)
$$

for some affine space $L$ and affine map $\Phi$.

Important cases are $\mathbb{R}_{+}^{n}, \mathrm{PSD}_{n}, \mathrm{SOCP}_{n}, \mathrm{CP}_{n}, \mathrm{CoP}_{n}, \ldots$

## K-factorizations

We also need to generalize the nonnegative factorizations.

## K-factorizations

We also need to generalize the nonnegative factorizations.
Recall that if $K \subseteq \mathbb{R}^{\prime}$ is a closed convex cone, $K^{*} \subseteq \mathbb{R}^{\prime}$ is its dual cone, defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{\prime}\langle y, x\rangle \geq 0, \forall x \in K\right\}
$$

## K-factorizations

We also need to generalize the nonnegative factorizations.
Recall that if $K \subseteq \mathbb{R}^{\prime}$ is a closed convex cone, $K^{*} \subseteq \mathbb{R}^{\prime}$ is its dual cone, defined by

$$
K^{*}=\left\{y \in \mathbb{R}^{\prime}\langle y, x\rangle \geq 0, \forall x \in K\right\}
$$

## K-Factorization

Given a nonnegative matrix $M \in \mathbb{R}_{+}^{n \times m}$ we say that it has a $K$-factorization if there exist $a_{1}, \ldots a_{n} \in K$ and $b_{1}, \ldots, b_{m} \in K^{*}$ such that

$$
M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle .
$$

We can now generalize Yannakakis.

## Generalized Yannakakis for polytopes

Theorem (G-Parrilo-Thomas)
A polytope $P$ has a $K$-lift if and only if $S_{P}$ has a $K$-factorization.

## Generalized Yannakakis for polytopes

## Theorem (G-Parrilo-Thomas)

A polytope $P$ has a $K$-lift if and only if $S_{P}$ has a $K$-factorization.

To further generalize Yannakakis to other convex sets, we have to introduce a slack operator.

## Generalized Yannakakis for polytopes

## Theorem (G-Parrilo-Thomas)

A polytope $P$ has a $K$-lift if and only if $S_{P}$ has a $K$-factorization.

To further generalize Yannakakis to other convex sets, we have to introduce a slack operator.

Given a convex set $C \subseteq \mathbb{R}^{n}$, consider its polar set

$$
C^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \quad \forall y \in C\right\}
$$

## Generalized Yannakakis for polytopes

## Theorem (G-Parrilo-Thomas)

A polytope $P$ has a K-lift if and only if $S_{P}$ has a K-factorization.

To further generalize Yannakakis to other convex sets, we have to introduce a slack operator.

Given a convex set $C \subseteq \mathbb{R}^{n}$, consider its polar set

$$
C^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \quad \forall y \in C\right\}
$$

and define the slack operator $S_{C}: \operatorname{ext}(C) \times \operatorname{ext}\left(C^{\circ}\right) \rightarrow \mathbb{R}_{+}$as

$$
S_{C}(x, y)=1-\langle x, y\rangle
$$

## Generalized Yannakakis for polytopes

## Theorem (G-Parrilo-Thomas)

A polytope $P$ has a K-lift if and only if $S_{P}$ has a K-factorization.

To further generalize Yannakakis to other convex sets, we have to introduce a slack operator.

Given a convex set $C \subseteq \mathbb{R}^{n}$, consider its polar set

$$
C^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1, \quad \forall y \in C\right\}
$$

and define the slack operator $S_{C}: \operatorname{ext}(C) \times \operatorname{ext}\left(C^{\circ}\right) \rightarrow \mathbb{R}_{+}$as

$$
S_{C}(x, y)=1-\langle x, y\rangle
$$

Note that this generalizes the slack matrix.

## Generalized Yannakakis for convex sets

We can then define a $K$-factorization of $S_{C}$ as a pair of maps

$$
A: \operatorname{ext}(C) \rightarrow K \quad B: \operatorname{ext}\left(C^{\circ}\right) \rightarrow K^{*}
$$

such that

$$
\langle A(x), B(y)\rangle=S_{C}(x, y)
$$

for all $x, y$.

## Generalized Yannakakis for convex sets

We can then define a $K$-factorization of $S_{C}$ as a pair of maps

$$
A: \operatorname{ext}(C) \rightarrow K \quad B: \operatorname{ext}\left(C^{\circ}\right) \rightarrow K^{*}
$$

such that

$$
\langle A(x), B(y)\rangle=S_{C}(x, y)
$$

for all $x, y$.

## Theorem (G-Parrilo-Thomas)

A convex set $C$ has a $K$-lift if and only if $S_{C}$ has a $K$-factorization.

## The Square

The $0 / 1$ square is the projection onto $x$ and $y$ of the slice of $\mathrm{PSD}_{3}$ given by

$$
\left[\begin{array}{lll}
1 & x & y \\
x & x & z \\
y & z & y
\end{array}\right] \succeq 0
$$

## The Square

The $0 / 1$ square is the projection onto $x$ and $y$ of the slice of $\mathrm{PSD}_{3}$ given by

$$
\left[\begin{array}{lll}
1 & x & y \\
x & x & z \\
y & z & y
\end{array}\right] \succeq 0
$$



## The Square

The $0 / 1$ square is the projection onto $x$ and $y$ of the slice of $\mathrm{PSD}_{3}$ given by

$$
\left[\begin{array}{lll}
1 & x & y \\
x & x & z \\
y & z & y
\end{array}\right] \succeq 0
$$



Its slack matrix is given by

$$
S_{P}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

and should factorize in $\mathrm{PSD}_{3}$.

## Square - continued

$$
S_{P}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

is factorized by

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

for the rows and

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

for the columns.

## Open questions - further directions

- The role of symmetry.


## Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?


## Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?


## Open questions - further directions

- The role of symmetry.
- Are there polynomial sized [symmetric] SDP-lifts for the matching polytope? What about LP?
- Are there polynomial sized LP-lifts for the stable set polytope of a perfect graph?
- Which sets are SDP-representable, i.e., which sets have SDP-lifts?

The end

## Thank You

