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1. Linear Representations and Yannakakis Theorem
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If a polytope has many facets and vertices we would like a
better description.

A linear representation of a polytope P is a description
P={x:3y,aixi + -+ anXn+ani1y1 + - animym > b},

i.e., a description of P as a projection of a higher dimensional

polytope.
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Why?

The projection of a polytope can have many more facets than
the original:

(Ben-Tal + Nemirovski, 2001): A regular n-gon can be written
as the projection of a polytope with 2[log,(n)]| sides.

To do linear optimization on the projection we can optimize on
the “upper” polytope.

Given a polytope P we are interested in finding how small can
its linear representation be. This tells us how hard it is to
optimize over P using LP.
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Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.
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Slack Matrix

Let P be a polytope with facets given by
hi(x) > 0,...,h«(x) > 0, and vertices py,...,pv.

The slack matrix of P is the matrix Sp € R"*V given by

Example: For the unit cube.

Ll dilelififel]
0 0 1 0 1 1 0
0 0 0 1 0 1 1
x>0 0 1 0 0 1 0 {1
y>0 o 0 1 0 1 1 0
z>0 o 0 0 1 0 1
1-x>0 1 0 1 1 0 1 0
1—y>0 1 1.0 1 0 0 1
1-z>0 |1 1 1 0 1 0 0

OO0 = —a
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Nonnegative Factorizations
Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a pair of
nonnegative matrices A, mby k, and B, k by n, such that

M= AxB.

Equivalently, it is a collection of nonnegative vectors ay,--- ,an
and by, - - - by in R such that M;; = (a;, by).
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Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then the following
are equal.
» The least number of facets of a polytope Q whose
projection is P.

» The least k such that S has a nonnegative factorization of
size k. [rank,(S)]
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Consider the regular hexagon.

It has a 6 x 6 slack matrix.
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Hexagon

Consider the regular hexagon.

It has a 6 x 6 slack matrix.
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Semidefinite Representations

A semidefinite representation of size k of a polytope P is a
description

P:{XER”

dy s.t. Ag + ZA,-X,' + Z Biy; = O}
where A; and B; are k x k real symmetric matrices.

Given a polytope P we are interested in finding how small can
such a description be.

This tells us how hard it is to optimize over P using semidefinite
programming.
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The 0/1 square is the
projection onto x; and
Xo of
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Semidefinite Yannakakis Theorem

Theorem (G.-Parrilo-Thomas 2011)

A polytope P has a semidefinite representation of size k if and
only if its slack matrix has a PSD-factorization.

The psd rank of M, rankpsq(M) is the smallest k for which V/
has a PSD-factorization.

The psd rank of a polytope P is defined as

rankpsq(P) := rankpsq(Sp).
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The Hexagon - continued

The regular hexagon must have a size
4 representation.

Consider the affinely  equiva-
lent hexagon [/ with vertices
(+£1,0),(0,+1),(1,—1) and (—1,1).

1 Xi Xo X{+Xo
X 1
H— (X1,X2) : 1 )4 Y2

X{+Xo Vo Y3 1
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Basic Facts

Let M be a p by g nonnegative matrix. Then:
» rank(M) < rank, (M) < min{p, q}.

> I’ank(M) S (rankpsdz(M)-H).

» rankpsq(M) < rank  (M).

Computing these ranks is hard. In fact checking if
rank(M) = rank. (M) is NP-Hard (Vavasis '07).

Many other complexity questions are open.
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The nonnegative rank of a matrix M is larger than the size of its
smallest rectangle cover.
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Rectangle covering bound

The nonnegative rank of a matrix M is larger than the size of its

smallest rectangle cover.

Example:

In this case rank (M) > 4.

. 27

Vam's

The rectangle bound corresponds to the boolean rank and also
relates to the minimum communication complexity of a 2-party
protocol to compute the support of M.



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

we| 1]



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

1 0]
M_[Z 1]

el



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

1 0]
M_[Z 1]

o[y 2= 2]



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

1 0]
M_[Z 1]

-] Jy 8o 8o -] 8o




Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

10]
m=[2 7

o[ fy © o v 8o [ Gy o

We define ranky (M) = min{rank( ¥/M)}.



Hadamard Square Roots

A Hadamard Square Root of a nonnegative matrix M, denoted
{/M, is a matrix whose entries are square roots (positive or
negative) of the corresponding entries of M.

Example:

10]
m=[2 7

o[ fy © o v 8o [ Gy o

We define ranky (M) = min{rank( ¥/M)}.



Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

ranky(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.



Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

ranky(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsq(M) < ranky(M).



Hadamard Rank and Semidefinite Rank

Proposition (G.-Robinson-Thomas 2012)

ranky(M) is the smallest k for which we have a semidefinite
factorization of M of size k using only rank one matrices.

In particular rankpsq(M) < ranky(M).

Corollary
For 0/1 matrices

rankpsq(M) < ranky(M) < rank(M).
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ForM= |1 0 1 | wehave:
1 1 1
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rankpsg(M) = 2, ranky(M) =2, rank(M) = 3.
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» rank(A) = 3;

.=
(o)

O b~ =20

- O P2 O =

s AN, O = DN

—_
»

N = O N 7o)

—J)>.



Example

Consider the matrix A € R™" defined by a;; = (i — /).

0 149 16
1 014 9
4 101 4
A=19 410 1
16 9 4 1 0
» rank(A) = 3;

> rankpsq(A) = 2;



Example

Consider the matrix A € R™" defined by a;; = (i — /).

0 149 16
1 01 4 9
4 101 4
A=1 9 41 0 1
16 9 41 0
» rank(A) = 3;

> rankpsq(A) = 2;

» rank. (A) > log,(n) grows with n.



Example

Consider the matrix A € R™" defined by a;; = (i — /).

0 149 16
1 01 4 9
4 101 4
A=1 9 41 0 1
16 9 41 0
» rank(A) = 3;

> rankpsq(A) = 2;
» rank. (A) > log,(n) grows with n.

rank, can be arbitrarily larger than rank and rankpsg.



Lower Bounds for polytopes

Theorem (Goemans)

If a polytope P in R"” has m vertices, then it has nonnegative
rank at least log(m).



Lower Bounds for polytopes

Theorem (Goemans)

If a polytope P in R"” has m vertices, then it has nonnegative
rank at least log(m).

Theorem (G.-Parrilo-Thomas 2011)
If a polytope P in R” has m vertices, then it has psd rank at

|
least O < %)



Lower Bounds for polytopes

Theorem (Goemans)

If a polytope P in R"” has m vertices, then it has nonnegative
rank at least log(m).

Theorem (G.-Parrilo-Thomas 2011)

If a polytope P in R” has m vertices, then it has psd rank at

|
least O < %)

For P, = n-gon, rank., (Pp) and rankpsq(Pn) grow to infinity as n
grows, despite rank(Sp,) = 3.



Lower Bounds for polytopes

Theorem (Goemans)

If a polytope P in R"” has m vertices, then it has nonnegative
rank at least log(m).

Theorem (G.-Parrilo-Thomas 2011)

If a polytope P in R” has m vertices, then it has psd rank at

|
least O < %)

For P, = n-gon, rank., (Pp) and rankpsq(Pn) grow to infinity as n
grows, despite rank(Sp,) = 3.

Open questions:
» Separation between rank,sq and rank_, for polytopes?



Lower Bounds for polytopes

Theorem (Goemans)

If a polytope P in R"” has m vertices, then it has nonnegative
rank at least log(m).

Theorem (G.-Parrilo-Thomas 2011)

If a polytope P in R” has m vertices, then it has psd rank at

|
least O < %)

For P, = n-gon, rank., (Pp) and rankpsq(Pn) grow to infinity as n
grows, despite rank(Sp,) = 3.

Open questions:
» Separation between rank,sq and rank_, for polytopes?

» True PSD bound /log(m)?
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Upper Bounds for polytopes

Theorem (G.-Robinson-Thomas 2012%)

Let P be a generic polytope with m vertices, then
rankpsa(P) > ¥/m

But how bad does it really get? Not much is known.

Proposition (G.-Robinson-Thomas 2012%)

All hexagons have psd rank 4, hence any m-gon has rank at
most 4] F 1.

However, not even the heptagons are totally understood.
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Polytopes with minimal representations

Lemma
A polytope of dimension d does not have a semidefinite
representation of size smaller than d + 1.

Using the Hadamard rank we recover an older result.

Theorem (G.-Parrilo-Thomas 2009)

Let P be a polytope with dimension d whose slack matrix Sp is
0/1. Then P has a semidefinite representation of size d + 1.

But we can say much more.

Theorem (G.-Robinson-Thomas 2012)
Let P have dimension d. Then

rankpsd(P) = d + 1 < ranky(Sp) = d + 1.
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SDP-minimal Polytopes

We will say a dimension d polytope P is SDP-minimal if it has a
semidefinite representation of size d + 1.

On the plane the characterization is easy.

Proposition

A convex polygon is SDP-minimal if and only if it is a triangle or
a quadrilateral.
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Octahedra

Proposition

If P is combinatorially equivalent to an octahedron then it is

SDP-minimal if and only if there are two distinct sets of four
coplanar vertices of P.

This translates to a dual result on cuboids.
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Proposition (G.-Robinson-Thomas 2012%)

A polyhedron is SDP-minimal if and only if it is one of the
following:

» a simplex;

a triangular bi-pyramid,;

a triangular prism;

an octahedron or a cuboid as in the previous proposition.
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Higher dimensions are completely open.
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To read more on this:

Polytopes of Minimum Positive Semidefinite Rank - Gouveia,
Robinson and Thomas - arXiv:1205.5306

Lifts of convex sets and cone factorizations - Gouveia, Parrilo
and Thomas - arXiv:1111.3164
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