Representing polytopes: the Yannakakis theorem

João Gouveia

CMUC - Universidade de Coimbra

15 de Julho de 2014 - Encontro Nacional da SPM

Section 1

Definitions and Motivation

Polytopes

A polytope is:

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:

The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

vertices of the polytope \longleftrightarrow minimal set of points

Polytopes

A polytope is:
The convex hull of a finite set of points in \mathbb{R}^{n}.

A compact intersection of half spaces in \mathbb{R}^{n}.

vertices of the polytope \longleftrightarrow minimal set of points
facets of the polytope \longleftrightarrow minimal set of half-spaces

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$

$$
\left\langle a_{1}, x\right\rangle \leq b_{1}
$$

subject to

$$
\begin{aligned}
& \left\langle a_{m}, x\right\rangle \leq b_{m} \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P
So we want to optimize on some direction over a polytope

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P

So we want to optimize on some direction over a polytope

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P

So we want to optimize on some direction over a polytope

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P

So we want to optimize on some direction over a polytope

Linear Programming and Polytopes

A linear program is an optimization problem of the type: maximize $\langle c, x\rangle$
$\left.\begin{array}{ll} & \left\langle a_{1}, x\right\rangle \leq b_{1} \\ \text { subject to } & \vdots \\ & \left\langle a_{m}, x\right\rangle \leq b_{m} \\ & x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x$ is in a polytope P

So we want to optimize on some direction over a polytope

LP is easy: polynomial on the number of facets/vertices

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Travelling Salesman Polytope

For any circuit C of n cities, let $\chi_{c} \in \mathbb{R}^{\binom{n}{2}}$ be defined by $\left(\chi_{C}\right)_{\{i, j\}}=\delta_{\{i, j\} \in C}$.

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Travelling Salesman Polytope

For any circuit C of n cities, let $\chi_{c} \in \mathbb{R}^{\binom{n}{2}}$ be defined by $\left(\chi_{C}\right)_{\{i, j\}}=\delta_{\{i, j\} \in C}$. The convex hull of all such points is the travelling salesman polytope, TSP (n).

Combinatorial Optimization

We can canonically transform many combinatorial optimization problems into linear programs.

Travelling Salesman Problem

Given some cities, what is the shortest circular path through all, without repetitions?

Travelling Salesman Polytope

For any circuit C of n cities, let $\chi_{c} \in \mathbb{R}^{\binom{n}{2}}$ be defined by $\left(\chi_{C}\right)_{\{i, j\}}=\delta_{\{i, j\} \in C}$. The convex hull of all such points is the travelling salesman polytope, $\operatorname{TSP}(n)$.

Travelling Salesman Problem Reformulated Given distances $d_{\{i, j\}}$ from city i to city j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{TSP}(n)
\end{array}
$$

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Polytopes can be projections of polytopes with many fewer facets.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Polytopes can be projections of polytopes with many fewer facets.

Ben-Tal, Nemirovski

Regular 2^{n}-gons can be written as projections of polytopes with $2 n$ facets.

Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Polytopes can be projections of polytopes with many fewer facets.

Ben-Tal, Nemirovski

Regular 2^{n}-gons can be written as projections of polytopes with $2 n$ facets.

Parity Polytope

P_{n}, the convex hull of all $0 / 1$ vectors with even number of ones, has 2^{n-1} facets and vertices but is the projection of a polytope with $O\left(n^{2}\right)$ facets.

Questions

The main question this poses:

Question 1

Given a polytope P, what is the smallest number of facets of a polytope that projects to P ?

Questions

The main question this poses:

Question 1

Given a polytope P, what is the smallest number of facets of a polytope that projects to P ?

This is the extension complexity of P and is denoted by $\mathrm{xc}(P)$.

Questions

The main question this poses:

Question 1

Given a polytope P, what is the smallest number of facets of a polytope that projects to P ?

This is the extension complexity of P and is denoted by $\mathrm{xc}(P)$.

Question 2

Is the extension complexity of $\operatorname{TSP}(n)$ polynomial on n ?

Questions

The main question this poses:

Question 1

Given a polytope P, what is the smallest number of facets of a polytope that projects to P ?

This is the extension complexity of P and is denoted by $\mathrm{xc}(P)$.

Question 2

Is the extension complexity of $\operatorname{TSP}(n)$ polynomial on n ?
Attempts at proving $P=N P$ used extensions of the TSP, and one motivation for Yannakakis was to prove them infeasible.

Section 2

Yannakakis Theorem

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

0	1	0	0	1	0	1	1
0	0	1	0	1	1	0	1
0	0	0	1	0	1	1	1

$$
\begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
z & \geq 0 \\
1-x & \geq 0 \\
1-y & \geq 0 \\
1-z & \geq 0
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Slack Matrix

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{f \times v}$ given by

$$
S_{P}(i, j)=h_{i}\left(p_{j}\right)
$$

Example: For the unit cube.

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& z \geq 0 \\
& 1-x \geq 0 \\
& 1-y \geq 0 \\
& 1-z \geq 0
\end{aligned} \quad\left[\begin{array}{l|l|l|l|l|l|l|l}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.
A nonnegative factorization of M of size k is a factorization

$$
M=\underbrace{A}_{m \times k} \times \underbrace{B}_{k \times n},
$$

where A and B are nonnnegative.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.
A nonnegative factorization of M of size k is a factorization

$$
M=\underbrace{A}_{m \times k} \times \underbrace{B}_{k \times n},
$$

where A and B are nonnnegative.
Equivalently, it is a collection of vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}_{+}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.
A nonnegative factorization of M of size k is a factorization

$$
M=\underbrace{A}_{m \times k} \times \underbrace{B}_{k \times n}
$$

where A and B are nonnnegative.
Equivalently, it is a collection of vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}_{+}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.
The smallest size of a nonnegative factorization of M is the nonnegative rank of M, rank ${ }_{+}(M)$.

Nonnegative Factorizations

Let M be an m by n nonnegative matrix.
A nonnegative factorization of M of size k is a factorization

$$
M=\underbrace{A}_{m \times k} \times \underbrace{B}_{k \times n},
$$

where A and B are nonnnegative.
Equivalently, it is a collection of vectors a_{1}, \cdots, a_{m} and $b_{1}, \cdots b_{n}$ in \mathbb{R}_{+}^{k} such that $M_{i, j}=\left\langle a_{i}, b_{j}\right\rangle$.
The smallest size of a nonnegative factorization of M is the nonnegative rank of M, rank ${ }_{+}(M)$.

Example:

$$
M=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 3 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1
\end{array}\right]
$$

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix.

Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix. Then

$$
\mathrm{xc}(P)=\operatorname{rank}_{+}(S) .
$$

Yannakakis Theorem

Theorem (Yannakakis 1991)

Let P be any polytope and S its slack matrix. Then

$$
\mathrm{xc}(P)=\operatorname{rank}_{+}(S)
$$

We transform a very hard geometric problem into a very hard algebraic one.

Hexagon

Consider the regular hexagon.

Hexagon

Consider the regular hexagon.

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 2 & 1 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hexagon

Consider the regular hexagon.

It has a 6×6 slack matrix.

Section 3

Recent results in extension complexity

Travelling Salesman Polytope

Yannakakis did not prove exactly the result he wanted but close enough.

Travelling Salesman Polytope

Yannakakis did not prove exactly the result he wanted but close enough.

Theorem (Yannakakis 1991)

If an extension for $\operatorname{TSP}(n)$ respects the symmetry of $\operatorname{TSP}(n)$, then it has a number of facets exponential on n.

Travelling Salesman Polytope

Yannakakis did not prove exactly the result he wanted but close enough.

Theorem (Yannakakis 1991)

If an extension for $\operatorname{TSP}(n)$ respects the symmetry of $\operatorname{TSP}(n)$, then it has a number of facets exponential on n.

Recently the assumption of symmetry was questioned.
Theorem (Kaibel-Pashkovich-Theis 2010)
Symmetry matters for sizes of extended formulations.

Travelling Salesman Polytope

Yannakakis did not prove exactly the result he wanted but close enough.

Theorem (Yannakakis 1991)

If an extension for $\operatorname{TSP}(n)$ respects the symmetry of $\operatorname{TSP}(n)$, then it has a number of facets exponential on n.

Recently the assumption of symmetry was questioned.
Theorem (Kaibel-Pashkovich-Theis 2010)
Symmetry matters for sizes of extended formulations.
Finally the full result was proven.
Theorem (Fiorini-Massar-Pokutta-Tiwary-Wolf 2012) $\mathrm{xc}(\operatorname{TSP}(n))$ grows exponentially with n.

Matching Problem

Matching Problem

Given an even set of points, split them in pairs so that the sum of all distances is minimal.

Matching Problem

Matching Problem

Given an even set of points, split them in pairs so that the sum of all distances is minimal.

Matching Problem

Matching Problem

Given an even set of points, split them in pairs so that the sum of all distances is minimal.

Matching Problem

Matching Problem

Given an even set of points, split them in pairs so that the sum of all distances is minimal.

Matching Polytope

For any matching M of $2 n$ points, let $\chi_{M} \in \mathbb{R}^{\binom{2 n}{2}}$ be defined by $\left(\chi_{M}\right)_{\{i, j\}}=\delta_{\{i, j\} \in C}$.

Matching Problem

Matching Problem

Given an even set of points, split them in pairs so that the sum of all distances is minimal.

Matching Polytope

For any matching M of $2 n$ points, let $\chi_{M} \in \mathbb{R}^{\binom{2 n}{2}}$ be defined by $\left(\chi_{M}\right)_{\{i, j\}}=\delta_{\{i, j\} \in C}$. The convex hull of all such points is the matching polytope, MATCH (n).

Matching Problem (continued)

Matching Problem Reformulated

Given distances $d_{\{i, j\}}$ from point i to point j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{MATCH}(n)
\end{array}
$$

Matching Problem (continued)

Matching Problem Reformulated

Given distances $d_{\{i, j\}}$ from point i to point j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{MATCH}(n)
\end{array}
$$

Since the matching problem can be solved in polynomial time, one could expect potentially small lifts of MATCH (n).

Matching Problem (continued)

Matching Problem Reformulated

Given distances $d_{\{i, j\}}$ from point i to point j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{MATCH}(n)
\end{array}
$$

Since the matching problem can be solved in polynomial time, one could expect potentially small lifts of MATCH (n). However:

Theorem (Yannakakis 1991)

If an extension for $\operatorname{MATCH}(n)$ respects the symmetry of $\mathrm{MATCH}(n)$, then it has a number of facets exponential on n.

Matching Problem (continued)

Matching Problem Reformulated

Given distances $d_{\{i, j\}}$ from point i to point j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{MATCH}(n)
\end{array}
$$

Since the matching problem can be solved in polynomial time, one could expect potentially small lifts of $\operatorname{MATCH}(n)$. However:

Theorem (Yannakakis 1991)

If an extension for $\mathrm{MATCH}(n)$ respects the symmetry of $\mathrm{MATCH}(n)$, then it has a number of facets exponential on n.

Symmetry is specially demanding in this case.

Matching Problem (continued)

Matching Problem Reformulated

Given distances $d_{\{i, j\}}$ from point i to point j solve

$$
\begin{array}{ll}
\text { minimize } & \langle d, x\rangle \\
\text { subject to } & x \in \operatorname{MATCH}(n)
\end{array}
$$

Since the matching problem can be solved in polynomial time, one could expect potentially small lifts of $\operatorname{MATCH}(n)$. However:

Theorem (Yannakakis 1991)

If an extension for $\mathrm{MATCH}(n)$ respects the symmetry of $\mathrm{MATCH}(n)$, then it has a number of facets exponential on n.

Symmetry is specially demanding in this case. Still

Theorem (Rothvoss 2014)

$\mathrm{xc}(\mathrm{MATCH}(n))$ grows exponentially with n.

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

Polygons

What about extension complexity of polygons?

$$
x c\left(P_{3}\right)=3
$$

$$
x c\left(P_{4}\right)=4
$$

$$
x c\left(P_{5}\right)=5
$$

$$
x c\left(P_{6}\right)=5 \quad \text { or }
$$

$$
x c\left(P_{6}\right)=6
$$

Theorem (Shitov 2013)

All heptagons have extension complexity exactly 6.

Polygons

What about extension complexity of polygons?

$$
x c\left(P_{3}\right)=3
$$

$$
x \mathrm{c}\left(P_{4}\right)=4
$$

$$
x c\left(P_{5}\right)=5
$$

$$
x c\left(P_{6}\right)=5 \quad \text { or }
$$

$$
x c\left(P_{6}\right)=6
$$

Theorem (Shitov 2013)

All heptagons have extension complexity exactly 6.

Polygons

What about extension complexity of polygons?

$$
\mathrm{xc}\left(P_{3}\right)=3\left|\operatorname{xc}\left(P_{4}\right)=4\right| \operatorname{xc}\left(P_{5}\right)=5
$$

$\operatorname{xc}\left(P_{6}\right)=5 \quad$ or $\quad \mathrm{xc}\left(P_{6}\right)=6$

Theorem (Shitov 2013)

All heptagons have extension complexity exactly 6.

Corollary

All n-gons have extension complexity at most $\lceil 6 n / 7\rceil$.

Polygons (continued)

Lemma

The extension complexity of an n-gon is at least $\log _{2}(n)$.

Polygons (continued)

Lemma

The extension complexity of an n-gon is at least $\log _{2}(n)$. (In fact at least around $1.440 \cdots \log _{2}(n)$)

Polygons (continued)

Lemma

The extension complexity of an n-gon is at least $\log _{2}(n)$. (In fact at least around $1.440 \cdots \log _{2}(n)$)

Theorem (Ben-Tal - Nemirovski 2001)

The extension complexity of a regular n-gon is at most $2\left\lceil\log _{2}(n)\right\rceil$.

Polygons (continued)

Lemma

The extension complexity of an n-gon is at least $\log _{2}(n)$. (In fact at least around $1.440 \cdots \log _{2}(n)$)

Theorem (Ben-Tal - Nemirovski 2001)

The extension complexity of a regular n-gon is at most $2\left[\log _{2}(n)\right\rceil$.

Theorem (Fiorini - Rothvoss - Tiwary 2011)

The extension complexity of a generic n-gon is at least $\sqrt{2 n}$.

Section 4

Semidefinite extension complexity

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0
$$

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \operatorname{eig}(A) \subseteq \mathbb{R}_{+}
$$

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \text { eig }(A) \subseteq \mathbb{R}_{+} \quad \text { iff } \quad \exists B, A=B B^{t}
$$

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \operatorname{eig}(A) \subseteq \mathbb{R}_{+} \quad \text { iff } \quad \exists B, A=B B^{t}
$$

A semidefinite program (SDP) is an optimization problem of the type:
maximize $\langle c, x\rangle$

$$
\sum_{i=1}^{m} A_{i} x_{i} \succeq 0
$$

subject to

$$
x \in \mathbb{R}^{n}
$$

where A_{i} are symmetric $k \times k$ matrices.

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \operatorname{eig}(A) \subseteq \mathbb{R}_{+} \quad \text { iff } \quad \exists B, A=B B^{t}
$$

A semidefinite program (SDP) is an optimization problem of the type:
maximize $\langle c, x\rangle$
$\begin{array}{ll}\text { subject to } & \left.\begin{array}{l}\sum_{i=1}^{m} A_{i} x_{i} \succeq 0 \\ \\ x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x \text { is in a spectrahedron } S\end{array}$
where A_{i} are symmetric $k \times k$ matrices.

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \text { eig }(A) \subseteq \mathbb{R}_{+} \quad \text { iff } \quad \exists B, A=B B^{t}
$$

A semidefinite program (SDP) is an optimization problem of the type: maximize $\langle c, x\rangle$ $\begin{array}{ll}\text { subject to } & \left.\begin{array}{l}\sum_{i=1}^{m} A_{i} x_{i} \succeq 0 \\ \\ x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x \text { is in a spectrahedron } S\end{array}$
where A_{i} are symmetric $k \times k$ matrices.

Note

- If we restrict A_{i} to be diagonal we get back LP.

Semidefinite programming

A symmetric matrix A is positive semidefinite $(A \succeq 0)$ if and only if

$$
\forall x \in \mathbb{R}^{n}, x^{t} A x \geq 0 \quad \text { iff } \quad \text { eig }(A) \subseteq \mathbb{R}_{+} \quad \text { iff } \quad \exists B, A=B B^{t}
$$

A semidefinite program (SDP) is an optimization problem of the type:
maximize $\langle c, x\rangle$
$\begin{array}{ll}\text { subject to } & \left.\begin{array}{l}\sum_{i=1}^{m} A_{i} x_{i} \succeq 0 \\ \\ x \in \mathbb{R}^{n}\end{array}\right\} \Rightarrow x \text { is in a spectrahedron } S\end{array}$
where A_{i} are symmetric $k \times k$ matrices.

Note

- If we restrict A_{i} to be diagonal we get back LP.
- SDP is efficiently solvable.

Semidefinite extension complexity

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

Semidefinite extension complexity

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0
$$

Semidefinite extension complexity

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0
$$

Semidefinite extension complexity

A semidefinite representation of size k of a polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

The $0 / 1$ square is the projection onto x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

The smallest k for which such a representation exists is the semidefinite extension complexity of $P, \mathrm{xc}_{\mathrm{psd}}(P)$.

Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

Semidefinite Factorizations

 set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

Semidefinite Factorizations

 set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.
$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Semidefinite Factorizations

 set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

Semidefinite Factorizations

 set of $k \times k$ positive semidefinite matrices A_{1}, \cdots, A_{m} and $B_{1}, \cdots B_{n}$ such that $M_{i, j}=\left\langle A_{i}, B_{j}\right\rangle$.

$$
\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

The smallest k for which such factorization exists is the positive semidefinite rank of M, $\operatorname{rank}_{\text {psd }}(M)$.

Generalized Yannakakis Theorem

Theorem (G-Parrilo-Thomas 2013)

Let P be any polytope and S its slack matrix.

Generalized Yannakakis Theorem

Theorem (G-Parrilo-Thomas 2013)

Let P be any polytope and S its slack matrix. Then

$$
\mathrm{xc}_{\mathrm{psd}}(P)=\operatorname{rank}_{\mathrm{psd}}(S)
$$

Generalized Yannakakis Theorem

Theorem (G-Parrilo-Thomas 2013)

Let P be any polytope and S its slack matrix. Then

$$
\mathrm{xc}_{\mathrm{psd}}(P)=\operatorname{rank}_{\mathrm{psd}}(S)
$$

In fact this theorem is more general than just polytopes and semidefinite representations.

The Hexagon

Consider again the regular hexagon.

The Hexagon

Consider again the regular hexagon.

Its 6×6 slack matrix.
$\left[\begin{array}{llllll}0 & 0 & 2 & 4 & 4 & 2 \\ 2 & 0 & 0 & 2 & 4 & 4 \\ 4 & 2 & 0 & 0 & 2 & 4 \\ 4 & 4 & 2 & 0 & 0 & 2 \\ 2 & 4 & 4 & 2 & 0 & 0 \\ 0 & 2 & 4 & 4 & 2 & 0\end{array}\right]$

The Hexagon

Consider again the regular hexagon.

Its 6×6 slack matrix.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],}
\end{aligned}
$$

The Hexagon

Consider again the regular hexagon.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 1 & -1 \\
0 & -1 & -1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 \\
0 & -1 & 1 & -1 \\
0 & 1 & -1 & 1
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Its 6×6 slack matrix.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

The Hexagon - continued

The regular hexagon must have a size 4 representation.

Consider the affinely equivalent hexagon H with vertices $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$.

$$
H=\left\{\left(x_{1}, x_{2}\right):\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & x_{1}+x_{2} \\
x_{1} & 1 & y_{1} & y_{2} \\
x_{2} & y_{1} & 1 & y_{3} \\
x_{1}+x_{2} & y_{2} & y_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

In fact:

Theorem (G-Robinson-Thomas 2013+)

All hexagons have semidefinite extension complexity 4.

Main open questions

Question 1
 Does $\mathrm{xc}_{\text {psd }}(\operatorname{TSP}(n))$ grow exponentially with n ?

Main open questions

Question 1

Does $\mathrm{xc}_{\text {psd }}(\operatorname{TSP}(n))$ grow exponentially with n ?

Question 2

Does $\mathrm{Xc}_{\mathrm{psd}}(\operatorname{MATCH}(n))$ grow exponentially with n ?

Main open questions

Question 1

Does $\mathrm{xc}_{\text {psd }}(\operatorname{TSP}(n))$ grow exponentially with n ?

Question 2
 Does $\mathrm{Xc}_{\mathrm{psd}}(\operatorname{MATCH}(n))$ grow exponentially with n ?

Question 3
 Can $\mathrm{xc}(P) \gg \mathrm{xc}_{\mathrm{psd}}(P)$?

Main open questions

Question 1

Does $\mathrm{xc}_{\mathrm{psd}}(\operatorname{TSP}(n))$ grow exponentially with n ?

Question 2

Does $\mathrm{xc}_{\text {psd }}(\operatorname{MATCH}(n))$ grow exponentially with n ?

Question 3

Can $\mathrm{xc}(P) \gg \mathrm{xc}_{\mathrm{psd}}(P)$?

A popular candidate for the last question is the polytope $\operatorname{STAB}(G)$ of a perfect graph, where $\operatorname{STAB}(G)$ is just the LP formulation of the max stable set problem.

Directions of research

Examples of work done

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{\mathrm{psd}}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{p s d}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{\text {psd }}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{p s d}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)
- Is the rank larger if we restrict ourselves to rational matrices? (Fawzi-G-Robinson 2014+)

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{p s d}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)
- Is the rank larger if we restrict ourselves to rational matrices? (Fawzi-G-Robinson 2014+)

Examples of work I would really like to do

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{p s d}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)
- Is the rank larger if we restrict ourselves to rational matrices? (Fawzi-G-Robinson 2014+)

Examples of work I would really like to do

- Useful upper/lower bounds for positive semidefinite rank.

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{\mathrm{psd}}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)
- Is the rank larger if we restrict ourselves to rational matrices? (Fawzi-G-Robinson 2014+)

Examples of work I would really like to do

- Useful upper/lower bounds for positive semidefinite rank.
- Explore connection to statistics and quantum computing.

Directions of research

Examples of work done

- Polytopes of dimension d have $\mathrm{xc}_{p s d}$ at least $d+1$. For which is it exactly $d+1$? (G-Robinson-Thomas 2013)
- What can we say if instead of a true factorization we simply have an approximate one? (G-Parrilo-Thomas 2013+)
- What is the semidefinite extension complexity of a generic polytope? (G-Robinson-Thomas 2013+)
- Is the rank larger if we restrict ourselves to rational matrices? (Fawzi-G-Robinson 2014+)

Examples of work I would really like to do

- Useful upper/lower bounds for positive semidefinite rank.
- Explore connection to statistics and quantum computing.
- Understand the role of symmetry.

Conclusion

To learn more about this work:

Fawzi, G, Parrilo, Robinson, and Thomas.
Positive semidefinite rank.
Coming soon...
G, P.A. Parrilo, and R.R. Thomas.
Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 38(2):248-264, 2013.

G, R.Z. Robinson, and R.R. Thomas.
Polytopes of minimum positive semidefinite rank. Discrete \& Computational Geometry, 50(3):679-699, 2013.

G, P.A. Parrilo, and R.R. Thomas.
Approximate cone factorizations and lifts of polytopes. arXiv preprint arXiv:1308.2162, 2013.

G, R. Z. Robinson, and R. R. Thomas.
Worst-case results for positive semidefinite rank. arXiv preprint arXiv:1305.4600, 2013.
H. Fawzi, G, and R. Z. Robinson.

Rational and real positive semidefinite rank can be different.
arXiv preprint arXiv:1404.4864, 2014.

Conclusion

To learn more about this work:

Fawzi, G, Parrilo, Robinson, and Thomas.
Positive semidefinite rank.
Coming soon...
G, P.A. Parrilo, and R.R. Thomas.
Lifts of convex sets and cone factorizations.
Mathematics of Operations Research, 38(2):248-264, 2013.

G, R.Z. Robinson, and R.R. Thomas.
Polytopes of minimum positive semidefinite rank. Discrete \& Computational Geometry, 50(3):679-699, 2013.

G, P.A. Parrilo, and R.R. Thomas.
Approximate cone factorizations and lifts of polytopes. arXiv preprint arXiv:1308.2162, 2013.
G. R. Z. Robinson, and R. R. Thomas.

Worst-case results for positive semidefinite rank.
arXiv preprint arXiv:1305.4600, 2013.
H. Fawzi, G, and R. Z. Robinson.

Rational and real positive semidefinite rank can be different.
arXiv preprint arXiv:1404.4864, 2014.

Thank you

