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Section 1

Definitions and Motivation
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Polytopes

A polytope is:

The convex hull of a finite set of
points in Rn.

A compact intersection of half
spaces in Rn.

vertices of the polytope←→ minimal set of points

facets of the polytope←→ minimal set of half-spaces
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Linear Programming and Polytopes

A linear program is an optimization problem of the type:

maximize 〈c, x〉

subject to

〈a1, x〉 ≤ b1
...
〈am, x〉 ≤ bm
x ∈ Rn

 ⇒ x is in a polytope P

So we want to optimize on some direction over a polytope

LP is easy: polynomial on the number of facets/vertices
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Combinatorial Optimization
We can canonically transform many combinatorial
optimization problems into linear programs.

Travelling Salesman Problem
Given some cities, what is the shortest circular
path through all, without repetitions?

Travelling Salesman Polytope
For any circuit C of n cities, let χC ∈ R(

n
2) be de-

fined by (χC){i,j} = δ{i,j}∈C . The convex hull of
all such points is the travelling salesman polytope,
TSP(n).

Travelling Salesman Problem Reformulated
Given distances d{i,j} from city i to city j solve

minimize 〈d , x〉
subject to x ∈ TSP(n)
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Lifts and projections

One way of possibly avoiding large numbers of facets is extra variables.

Polytopes can be projections of polytopes with many fewer facets.

Ben-Tal, Nemirovski
Regular 2n-gons can be
written as projections of
polytopes with 2n facets.

Parity Polytope
Pn, the convex hull of all 0/1 vectors with
even number of ones, has 2n−1 facets and
vertices but is the projection of a polytope
with O(n2) facets.
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Questions

The main question this poses:

Question 1
Given a polytope P, what is the smallest number of facets of a
polytope that projects to P?

This is the extension complexity of P and is denoted by xc(P).

Question 2
Is the extension complexity of TSP(n) polynomial on n?

Attempts at proving P = NP used extensions of the TSP, and one
motivation for Yannakakis was to prove them infeasible.
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Section 2

Yannakakis Theorem
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Slack Matrix

Let P be a polytope with facets given by h1(x) ≥ 0, . . . ,hf (x) ≥ 0, and
vertices p1, . . . ,pv .

The slack matrix of P is the matrix SP ∈ Rf×v given by
SP(i , j) = hi(pj).

Example: For the unit cube.

0
0
0

1
0
0

0
1
0

0
0
1

1
1
0

0
1
1

1
0
1

1
1
1

x ≥ 0
y ≥ 0
z ≥ 0

1− x ≥ 0
1− y ≥ 0
1− z ≥ 0



0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 1 0 0 0


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Nonnegative Factorizations

Let M be an m by n nonnegative matrix.

A nonnegative factorization of M of size k is a factorization

M = A︸︷︷︸
m×k

× B︸︷︷︸
k×n

,

where A and B are nonnnegative.
Equivalently, it is a collection of vectors a1, · · · ,am and b1, · · · bn in Rk

+

such that Mi,j =
〈
ai ,bj

〉
.

The smallest size of a nonnegative factorization of M is the
nonnegative rank of M, rank+(M).
Example:

M =

 1 1 2
1 3 3
0 2 1



=

 1 0
1 1
0 1

[ 1 1 2
0 2 1

]
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Yannakakis Theorem

Theorem (Yannakakis 1991)
Let P be any polytope and S its slack matrix.

Then

xc(P) = rank+(S).

We transform a very hard geometric problem into a very hard algebraic
one.
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Hexagon

Consider the regular hexagon.

It has a 6× 6 slack matrix.


0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 =



1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0


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0 0 1 1 0 0
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Section 3

Recent results in extension complexity
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Travelling Salesman Polytope

Yannakakis did not prove exactly the result he wanted but close
enough.

Theorem (Yannakakis 1991)
If an extension for TSP(n) respects the symmetry of TSP(n), then it
has a number of facets exponential on n.

Recently the assumption of symmetry was questioned.

Theorem (Kaibel-Pashkovich-Theis 2010)
Symmetry matters for sizes of extended formulations.

Finally the full result was proven.

Theorem (Fiorini-Massar-Pokutta-Tiwary-Wolf 2012)
xc(TSP(n)) grows exponentially with n.
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Matching Problem

Matching Problem
Given an even set of points, split them in pairs so that the sum of all
distances is minimal.

Matching Polytope

For any matching M of 2n points, let χM ∈ R(
2n
2 ) be defined by

(χM){i,j} = δ{i,j}∈C . The convex hull of all such points is the matching
polytope, MATCH(n).
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Matching Problem (continued)

Matching Problem Reformulated
Given distances d{i,j} from point i to point j solve

minimize 〈d , x〉
subject to x ∈ MATCH(n)

Since the matching problem can be solved in polynomial time, one
could expect potentially small lifts of MATCH(n). However:

Theorem (Yannakakis 1991)
If an extension for MATCH(n) respects the symmetry of MATCH(n),
then it has a number of facets exponential on n.

Symmetry is specially demanding in this case. Still

Theorem (Rothvoss 2014)
xc(MATCH(n)) grows exponentially with n.

Hence linear programming does not capture the complexity of the
problem.
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Polygons

What about extension complexity of polygons?

xc(P3) = 3 xc(P4) = 4 xc(P5) = 5 xc(P6) = 5 or xc(P6) = 6

Theorem (Shitov 2013)
All heptagons have extension complexity exactly 6.

Corollary
All n-gons have extension complexity at most d6n/7e.

xc(P7) = 6
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Polygons (continued)

Lemma
The extension complexity of an n-gon is at least log2(n).

(In fact at
least around 1.440 · · · log2(n))

Theorem (Ben-Tal - Nemirovski 2001)
The extension complexity of a regular n-gon is at most 2dlog2(n)e.

Theorem (Fiorini - Rothvoss - Tiwary 2011)

The extension complexity of a generic n-gon is at least
√

2n.
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Section 4

Semidefinite extension complexity
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Semidefinite programming

A symmetric matrix A is positive semidefinite (A � 0) if and only if
∀x ∈ Rn, x tAx ≥ 0

iff eig(A) ⊆ R+ iff ∃B, A = BBt

A semidefinite program (SDP) is an optimization problem of the type:

maximize 〈c, x〉

subject to

∑m
i=1 Aixi � 0

x ∈ Rn

 ⇒ x is in a spectrahedron S

where Ai are symmetric k × k matrices.

Note
If we restrict Ai to be diagonal we get back LP.

SDP is efficiently solvable.
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Semidefinite extension complexity

A semidefinite representation of size k of a polytope P is a description

P =
{

x ∈ Rn
∣∣∣ ∃y s.t. A0 +

∑
Aix i +

∑
Biy i � 0

}
where Ai and Bi are k × k real symmetric matrices.

The 0/1 square is the projection
onto x1 and x2 of 1 x1 x2

x1 x1 y
x2 y x2

 � 0.

The smallest k for which such a representation exists is the
semidefinite extension complexity of P, xcpsd(P).
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Semidefinite Factorizations

Let M be a m by n nonnegative matrix.

A PSDk -factorization of M is a
set of k × k positive semidefinite matrices A1, · · · ,Am and B1, · · ·Bn
such that Mi,j =

〈
Ai ,Bj

〉
.

 1/2 −1/2

−1/2 1

  1/2 0

0 0

  0 0

0 1


[

2 0
0 0

]
[

0 0
0 1

]
[

2 1
1 1

]


1 1 0

1 0 1

1 1 1



The smallest k for which such factorization exists is the positive
semidefinite rank of M, rankpsd(M).
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Generalized Yannakakis Theorem

Theorem (G-Parrilo-Thomas 2013)
Let P be any polytope and S its slack matrix.

Then

xcpsd(P) = rankpsd(S).

In fact this theorem is more general than just polytopes and
semidefinite representations.
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The Hexagon

Consider again the regular
hexagon.

Its 6× 6 slack matrix. 0 0 2 4 4 2
2 0 0 2 4 4
4 2 0 0 2 4
4 4 2 0 0 2
2 4 4 2 0 0
0 2 4 4 2 0


[ 1 −1 0 1

−1 1 0 −1
0 0 1 0
1 −1 0 1

]
,

[ 1 0 0 0
0 1 1 −1
0 1 1 −1
0 −1 −1 1

]
,

[ 1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

]
,

[ 1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1

]
,

[ 1 0 0 0
0 1 −1 1
0 −1 1 −1
0 1 −1 1

]
,

[ 1 −1 1 0
−1 1 −1 0
1 −1 1 0
0 0 0 1

]
,

[ 1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

]
,

[ 0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

]
,

[ 1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

]
,

[ 0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

]
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The Hexagon - continued

The regular hexagon must have a size 4
representation.

Consider the affinely equivalent hexagon
H with vertices (±1,0), (0,±1), (1,−1)
and (−1,1).

H =

(x1, x2) :


1 x1 x2 x1 + x2
x1 1 y1 y2
x2 y1 1 y3

x1 + x2 y2 y3 1

 � 0


In fact:

Theorem (G-Robinson-Thomas 2013+)
All hexagons have semidefinite extension complexity 4.
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Main open questions

Question 1
Does xcpsd(TSP(n)) grow exponentially with n?

Question 2
Does xcpsd(MATCH(n)) grow exponentially with n?

Question 3
Can xc(P) >> xcpsd(P)?

A popular candidate for the last question is the polytope STAB(G) of a
perfect graph, where STAB(G) is just the LP formulation of the max
stable set problem.
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Directions of research

Examples of work done

Polytopes of dimension d have xcpsd at least d + 1. For which is it
exactly d + 1? (G-Robinson-Thomas 2013)
What can we say if instead of a true factorization we simply have
an approximate one? (G-Parrilo-Thomas 2013+)
What is the semidefinite extension complexity of a generic
polytope? (G-Robinson-Thomas 2013+)
Is the rank larger if we restrict ourselves to rational matrices?
(Fawzi-G-Robinson 2014+)

Examples of work I would really like to do
Useful upper/lower bounds for positive semidefinite rank.
Explore connection to statistics and quantum computing.
Understand the role of symmetry.
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