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The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem
Given a graph G = (V ,E) and some vertex weights ω find a
stable set of vertices S for which the cost

ω(S) :=
∑
s∈S

ωs

is maximum.

Remarks:
If all weights are one, we’re searching for α(G), the
cardinality of the largest independent set;
this problem is NP-hard in general.
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Stable Set Polytope

Given a graph G = ({1, ...,n},E) we define STAB(G), the
stable set polytope of G, in the following way:

For every stable set S ⊆ {1, ...,n} consider its
characteristic vector χS ∈ {0,1}n;
let SG ⊂ {0,1}n be the collection of all those vectors;
the polytope STAB(G) is then defined as the convex hull of
the vectors in SG.
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SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)}
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Reformulation of the Problem

Stable Set Problem Reformulated
Given a graph G = ({1, ...,n},E) and a weight vector ω ∈ Rn,
solve the linear program

α(G, ω) := max
x∈STAB(G)

〈ω, x〉 .

However, finding STAB(G) is as hard as solving the original
problem, and not practical in general.

We intend to find approximations for it.
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Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is
the fractional stable set polytope of G, FRAC(G), to be the
set defined by the following inequalities.

xi ≥ 0 for i = 1, ...,n (non-negativity constrains);
xi + xj ≤ 1 for all (i , j) ∈ E (edge constrains).

It is possible to optimize over this polytope in polynomial time.

It is in general not a very good relaxation.
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Definition of Theta Body

Definition (Lovász ∼ 1980)

Given a graph G = ({1, ...,n},E) we define its theta body,
TH(G), as the set of all vectors x ∈ Rn such that[

1 x t

x U

]
� 0

for some symmetric U ∈ Rn×n with diag(U) = x and Uij = 0 for
all (i , j) ∈ E .

STAB(G) ⊆ TH(G) since for all stable sets S,

0 � (1, χS) · (1, χS)t =

[
1 χt

S
χS χS · χt

S

]
.
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Some Properties of the Theta Body

Optimizing over the theta body is polynomial in the number
of edges of the graph.

Theorem (Lovász ∼ 1980)

The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the
graph G is perfect.
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Connection to Algebra

Let I ⊆ R[x] be a polynomial ideal. We call a polynomial k -sos
modulo the ideal I if and only if it can be written as a sum of
squares of polynomials of degree at most k modulo I.

Theorem (Lovász ∼ 1993)

TH(G) = STAB(G) if and only if any linear polynomial f (x) that
is non-negative in STAB(G) is 1-sos modulo I(SG).

This property does not depend on the graph, but only on the
ideal I(SG) and its variety.
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The Question

Lovász’s Question
Which ideals are "perfect" i.e., for what ideals I is it true that any
linear polynomial that is nonnegative in VR(I) is 1-sos modulo I?

Definition
We’ll call an ideal (1, k)-sos if and only if every linear
polynomial that is nonnegative in VR(I) is k -sos modulo I.

We want to know which ideals are (1, k)-sos for some fixed k ,
and in particular (1,1)-sos.
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Example

Consider the ideal I =
〈
yx2 − 1

〉
.

Nonnegative linear polynomials −→ y + c2 for some real c.

y + c2 ≡ (xy)2 + (c)2 mod I,

hence I is (1,2)-sos.
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Another Example

Consider the ideal I =
〈
x2〉.

Nonnegative linear polynomials −→ ±x + c2 for some real c.

(±x + c2) ≡
(

1
2c

x ± c
)2

mod I, if c 6= 0.

However x and −x cannot be written as sums of squares
hence I is not (1, k)-sos for any k .
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Theta Bodies of Ideals

A geometric approach to the problem:

Definition
Given an ideal I ⊂ R[x1, ..., xn] we define is k -th theta body,
THk (I) as the set of all points p ∈ Rn such that for all linear
polynomials f that are k -sos modulo I, f (p) ≥ 0.

Remarks:
conv(VR(I)) ⊆ · · · ⊆ THk (I) ⊆ THk−1(I) ⊆ · · · ⊆ TH1(I).
For any graph G, TH1(I(SG)) = TH(G).
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Convergence

Recall that a polynomial ideal is real radical if and only if
I = I(VR(I)) i.e., if its real variety is Zariski dense in its complex
variety.

Theorem (Parrilo)
If I is a real radical ideal whose variety is zero-dimensional then
THk (I) = conv(VR(I)) for some k.

Theorem (Scheiderer)
If I is a real radical ideal whose variety is "sufficiently smooth"
and one or two dimensional then THk (I) −→ conv(VR(I)).
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Theta Bodies and Nonnegativity

We call an ideal THk -exact if THk (I) = conv(VR(I)).

Theorem
Let I be a real radical ideal. Then I is (1, k)-sos if and only if it
is THk -exact.

The real radical assumption cannot be dropped.
We have seen for I =

〈
x2〉 that I is not (1, k)-sos, but

TH1(I) = conv(VR(I)).
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Theta Bodies and Nonnegativity (continued)

The closure on conv(VR(I)) can also not be dropped.
We have seen for I =

〈
yx2 − 1

〉
that I is (1,2)-sos but

conv(VR(I)) is open.
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Structural Result

We’ll focus now on the first relaxation.

Theorem
Given any ideal I ⊆ R[x] we have

TH1(I) =
⋂

F convex quadric ∈I

conv(VR(F )).

Consequences:
If F is a convex quadric then 〈F 〉 is TH1-exact.
There are arbitrarily high dimensional TH1-exact ideals.
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Example

Let S be the set of the five vertices of the regular pentagon
centered at the origin, and I it’s vanishing ideal.
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Another Example

Let S be the set {(0,0), (1,0), (0,1), (2,2)}.

All convex
quadrics that contain these four points are convex combinations
of two particular parabolas.
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Zero-dimensional Varieties

A full characterization is possible in the case of
zero-dimensional real radical ideals.

Theorem
Let I be a zero-dimensional real radical ideal, then the following
are equivalent:

I is (1,1)− sos;
I is TH1-exact;
For every facet defining hyperplane H of the polytope
conv(VR(I)) we have a parallel translate H ′ of H such that
VR(I) ⊆ H ′ ∪ H.
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Examples in R2

TH1-exact

Not TH1-exact
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Examples in R3

TH1-exact

Not TH1-exact
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A Small Extension

Theorem
Suppose S ⊆ Rn is a finite point set such that for each facet F
of conv(S) there is an hyperplane HF such that
HF ∩ conv(S) = F and S is contained in at most t + 1 parallel
translates of HF . Then I(S) is THt -exact.
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Consequences

Corollary

Let S,S′ ⊂ Rn be exact sets (i.e. with TH1-exact vanishing
ideals). Then

all points of S are vertices of conv(S),

the set of vertices of any face of conv(S) is again exact,
conv(S) is affinely equivalent to a 0/1 polytope.

For simplicity, we’ll call a finite set of points in Rn exact, if it’s
vanishing ideal is TH1-exact.

Theorem

If S ⊆ Rn is a finite exact point set then conv(S) has at most 2d

facets and vertices, where d = dim conv(S). Both bounds are
sharp.
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Perfect Graphs revisited

Corollary

A graph G is perfect if and only if for any facet supporting
hyperplane H of its stable set polytope there is some
hyperplane H ′ parallel to H such that SG ⊆ H ∪ H ′.

Corollary

Let P ⊆ Rn be a full-dimensional down-closed 0/1-polytope
and S be its vertex set. Then S is exact if and only if P is the
stable set polytope of a perfect graph.
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Combinatorial Moment Matrices I

Let I be a polynomial ideal and

B = {1 = f0, f1, f2, ...}

be a basis of R[x]/I and Bk = {fi : deg(fi) ≤ k} for all k .

For all i , j , k define λk
i,j such that

fi fj ≡
∑

k

λk
i,j fk .
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Combinatorial Moment Matrices II

Definition
Given a real vector y indexed by the elements in B, we define
the combinatorial moment matrix of y as the (possibly
infinite) matrix MB(y) with rows and columns indexed by B such
that

[MB(y)]fi ,fj =
∑

k

λk
i,jyfk .

The k -th truncated combinatorial moment matrix, MBk (y), is
the submatrix of the rows and columns indexed by elements of
Bk .
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Example

Let I =
〈
x2

1 − x1, x2
2 − x2, x2

3 − x3
〉
⊂ R[x1, x2, x3],

B = { 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 }
y = ( y0, y1, y2, y3, y12, y13, y23, y123 ).

Then MB(y) is given by
1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

1
x1
x2
x3

x1x2
x1x3
x2x3

x1x2x3



y0 y1 y2 y3 y12 y13 y23 y123
y1 y1 y12 y13 y12 y13 y123 y123
y2 y12 y2 y23 y12 y123 y23 y123
y3 y13 y23 y3 y123 y13 y23 y123
y12 y12 y12 y123 y12 ? y123 y123
y13 y13 y123 y13 y123 y13 y123 y123
y23 y123 y23 y23 y123 y123 y23 y123
y123 y123 y123 y123 y123 y123 y123 y123


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Theta Bodies and Moment Matrices

Theorem
Let I be a polynomial ideal and choose B = {1, x1, ..., xn, ...} as
basis for R[x]/I. Let

MB,k (I) = {y ∈ RB2k : y0 = 1; MB,k (y) � 0}

then
THk (I) = πRn(MB,k (I))

where πRn : RB2k → Rn is just the projection over the
coordinates indexed by the degree one monomials.

Remark:
The closure is really needed as πRn(MB,k (I)) does not have to
be closed. In our example I =

〈
yx2 − 1

〉
, we have πRn(MB,2(I))

to be the open upper half plane, hence not equal to TH2(I).



Lovász’s Question Theta Bodies of Ideals Computations END

Theta Bodies and Moment Matrices

Theorem
Let I be a polynomial ideal and choose B = {1, x1, ..., xn, ...} as
basis for R[x]/I. Let

MB,k (I) = {y ∈ RB2k : y0 = 1; MB,k (y) � 0}

then
THk (I) = πRn(MB,k (I))

where πRn : RB2k → Rn is just the projection over the
coordinates indexed by the degree one monomials.

Remark:
The closure is really needed as πRn(MB,k (I)) does not have to
be closed.

In our example I =
〈
yx2 − 1

〉
, we have πRn(MB,2(I))

to be the open upper half plane, hence not equal to TH2(I).



Lovász’s Question Theta Bodies of Ideals Computations END

Theta Bodies and Moment Matrices

Theorem
Let I be a polynomial ideal and choose B = {1, x1, ..., xn, ...} as
basis for R[x]/I. Let

MB,k (I) = {y ∈ RB2k : y0 = 1; MB,k (y) � 0}

then
THk (I) = πRn(MB,k (I))

where πRn : RB2k → Rn is just the projection over the
coordinates indexed by the degree one monomials.

Remark:
The closure is really needed as πRn(MB,k (I)) does not have to
be closed. In our example I =

〈
yx2 − 1

〉
, we have πRn(MB,2(I))

to be the open upper half plane, hence not equal to TH2(I).



Lovász’s Question Theta Bodies of Ideals Computations END

Moment Matrices and Convex Hulls

Theorem (Curto-Fialkow, Laurent)

Given an ideal I and a basis of R[x]/I

B = {1 = f0, x1 = f1, x2 = f2, ..., xn = fn, fn+1, ...},

we can consider the map ϕ : Rn → RB defined by

ϕB(p) = (f0(p), f1(p), f2(p), ....),

then we have

conv{ϕB(p) : p ∈ VR(I)} =

y ∈ RB :
y0 = 1,
MB(y) � 0,
rk(MB(y)) <∞

 .
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The Max-Cut Problem

Definition
Given a graph G = (V ,E) and a partition V1,V2 of V the set C
of edges between V1 and V2 is called a cut.

The Problem
Given edge weights α we want to find which cut C maximizes

α(C) :=
∑

(i,j)∈C

αi,j .

Again we will look geometrically at the problem.
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The Cut Polytope

Definition
The cut polytope of G, CUT(G), is the convex hull of the
characteristic vectors χC ⊆ RE of the cuts of G, where
(χC)ij = −1 if (i , j) ∈ C and 1 otherwise.

Reformulated Problem

Given a vector α ∈ RE solve the optimization problem

mcut(G, α) = maxx∈CUT(G)
1
2
〈α,1− x〉 .

Computing the vanishing ideal IG of these characteristic vectors
and a basis for its quotient ring, and applying the moment
matrix formulation we arrive to a new relaxation for this
problem, using theta bodies.
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The First Cut Theta Body

TH1(IG) is the set of all x ∈ RE for which we can find a
symmetric matrix U ∈ RE×E such that

The diagonal entries of U are all ones;
Ue,f = xg if (e, f ,g) is a triangle in G;
Ue,f = Ug,h and Ue,g = Uf ,h if (e, f ,g,h) is a 4-cycle;
The matrix [

1 x t

x U

]
is positive semidefinite.
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Example

TH1(IG) is the set of x ∈ R5 such that there exist y1 and y2 such
that

0 1 2 3 4 5
0
1
2
3
4
5



1 x1 x2 x3 x4 x5
x1 1 x4
x2 y1 1
x3 y2 x5 1
x4 x5 y2 y1 1
x5 x4 x3 x2 x1 1

 � 0
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Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have
the following definition:

Definition
We call a graph G cut-perfect if TH1(IG) = CUT(G).

Using our characterization for TH1-exact zero-dimensional
ideals we get the following characterization, that answers a
Lovász question.

Theorem
A graph is cut-perfect if and only if it has no K5 minor and no
chordless cycle of size larger than 4.
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Higher Order Theta Bodies

Remarks:
The higher order theta bodies also have interesting
combinatorial descriptions.

This hierarchy ’refines’ a hierarchy obtained by Laurent by
a completely different process.
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The End

Thank You
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