Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

From the Stable Set Problem to Convex Algebraic Geometry

J. Gouveia¹ P. Parrilo² R. Thomas¹

¹Department of Mathematics University of Washington

²Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology

October '08

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Lovász's Question

- The Stable Set Problem
- Lovász's Theta Body
- 2 Theta Bodies of Ideals
 - Examples and Definitions
 - First Theta Body

3 Computations

- Combinatorial Moment Matrices
- Theta Body Hierarchy for Max-Cut

Lovász's Question
000000000

Computations

The Problem

We are interested in a very classical problem in combinatorics:

Computations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph G = (V, E) and some vertex weights ω find a stable set of vertices *S* for which the cost

$$\omega(\mathcal{S}) := \sum_{\mathcal{S} \in \mathcal{S}} \omega_{\mathcal{S}}$$

is maximum.

Computations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph G = (V, E) and some vertex weights ω find a stable set of vertices *S* for which the cost

$$\omega(\mathcal{S}) := \sum_{\mathcal{S} \in \mathcal{S}} \omega_{\mathcal{S}}$$

is maximum.

Remarks:

Computations

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph G = (V, E) and some vertex weights ω find a stable set of vertices *S* for which the cost

$$\omega(\mathcal{S}) := \sum_{\mathcal{S} \in \mathcal{S}} \omega_{\mathcal{S}}$$

is maximum.

Remarks:

 If all weights are one, we're searching for α(G), the cardinality of the largest independent set;

Computations

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph G = (V, E) and some vertex weights ω find a stable set of vertices *S* for which the cost

$$\omega(S) := \sum_{s \in S} \omega_s$$

is maximum.

Remarks:

- If all weights are one, we're searching for α(G), the cardinality of the largest independent set;
- this problem is NP-hard in general.

Computations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stable Set Polytope

Given a graph $G = (\{1, ..., n\}, E)$ we define STAB(*G*), the **stable set polytope** of *G*, in the following way:

Stable Set Polytope

Given a graph $G = (\{1, ..., n\}, E)$ we define STAB(*G*), the **stable set polytope** of *G*, in the following way:

For every stable set S ⊆ {1,..., n} consider its characteristic vector χ_S ∈ {0,1}ⁿ;

Stable Set Polytope

Given a graph $G = (\{1, ..., n\}, E)$ we define STAB(*G*), the **stable set polytope** of *G*, in the following way:

- For every stable set S ⊆ {1,..., n} consider its characteristic vector χ_S ∈ {0,1}ⁿ;
- let $S_G \subset \{0,1\}^n$ be the collection of all those vectors;

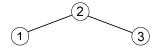
Stable Set Polytope

Given a graph $G = (\{1, ..., n\}, E)$ we define STAB(*G*), the **stable set polytope** of *G*, in the following way:

- For every stable set S ⊆ {1,..., n} consider its characteristic vector χ_S ∈ {0,1}ⁿ;
- let $S_G \subset \{0, 1\}^n$ be the collection of all those vectors;
- the polytope STAB(G) is then defined as the convex hull of the vectors in S_G.

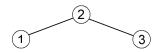
Lovász's	Question
000000	000

Computations



Computations

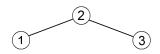
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



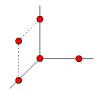
$\boldsymbol{S}_{G} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

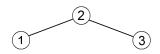


 $\boldsymbol{S}_{G} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$



END

Computations



 $\boldsymbol{S}_{G} = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Stable Set Problem Reformulated

Given a graph $G = (\{1, ..., n\}, E)$ and a weight vector $\omega \in \mathbb{R}^n$, solve the linear program

$$\alpha(\boldsymbol{G},\omega) := \max_{\boldsymbol{x}\in \mathrm{STAB}(\boldsymbol{G})} \langle \omega, \boldsymbol{x} \rangle.$$

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Reformulation of the Problem

Stable Set Problem Reformulated

Given a graph $G = (\{1, ..., n\}, E)$ and a weight vector $\omega \in \mathbb{R}^n$, solve the linear program

$$\alpha(\boldsymbol{G},\omega) := \max_{\boldsymbol{x}\in \mathrm{STAB}(\boldsymbol{G})} \langle \omega, \boldsymbol{x} \rangle.$$

However, finding STAB(G) is as hard as solving the original problem, and not practical in general.

Computations

Reformulation of the Problem

Stable Set Problem Reformulated

Given a graph $G = (\{1, ..., n\}, E)$ and a weight vector $\omega \in \mathbb{R}^n$, solve the linear program

$$\alpha(\boldsymbol{G},\omega) := \max_{\boldsymbol{x}\in \mathrm{STAB}(\boldsymbol{G})} \langle \omega, \boldsymbol{x} \rangle.$$

However, finding STAB(G) is as hard as solving the original problem, and not practical in general.

We intend to find approximations for it.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the **fractional stable set polytope** of G, FRAC(G), to be the set defined by the following inequalities.

The most common linear relaxation of the stable set polytope is the **fractional stable set polytope** of G, FRAC(G), to be the set defined by the following inequalities.

• $x_i \ge 0$ for i = 1, ..., n (non-negativity constrains);

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the **fractional stable set polytope** of G, FRAC(G), to be the set defined by the following inequalities.

- $x_i \ge 0$ for i = 1, ..., n (non-negativity constrains);
- $x_i + x_j \le 1$ for all $(i, j) \in E$ (edge constrains).

The most common linear relaxation of the stable set polytope is the **fractional stable set polytope** of G, FRAC(G), to be the set defined by the following inequalities.

- $x_i \ge 0$ for i = 1, ..., n (non-negativity constrains);
- $x_i + x_j \le 1$ for all $(i, j) \in E$ (edge constrains).

It is possible to optimize over this polytope in polynomial time.

The most common linear relaxation of the stable set polytope is the **fractional stable set polytope** of G, FRAC(G), to be the set defined by the following inequalities.

- $x_i \ge 0$ for i = 1, ..., n (non-negativity constrains);
- $x_i + x_j \le 1$ for all $(i, j) \in E$ (edge constrains).

It is possible to optimize over this polytope in polynomial time.

It is in general not a very good relaxation.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of Theta Body

Definition (Lovász \sim 1980)

Given a graph $G = (\{1, ..., n\}, E)$ we define its theta body, TH(*G*), as the set of all vectors $x \in \mathbb{R}^n$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with diag(U) = x and $U_{ij} = 0$ for all $(i, j) \in E$.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition of Theta Body

Definition (Lovász \sim 1980)

Given a graph $G = (\{1, ..., n\}, E)$ we define its theta body, TH(*G*), as the set of all vectors $x \in \mathbb{R}^n$ such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with diag(U) = x and $U_{ij} = 0$ for all $(i, j) \in E$.

• $STAB(G) \subseteq TH(G)$ since for all stable sets *S*,

$$\mathbf{0} \preceq (\mathbf{1}, \chi_{\mathcal{S}}) \cdot (\mathbf{1}, \chi_{\mathcal{S}})^{t} = \begin{bmatrix} \mathbf{1} & \chi_{\mathcal{S}}^{t} \\ \chi_{\mathcal{S}} & \chi_{\mathcal{S}} \cdot \chi_{\mathcal{S}}^{t} \end{bmatrix}$$

Computations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

END

Some Properties of the Theta Body

Computations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some Properties of the Theta Body

 Optimizing over the theta body is polynomial in the number of edges of the graph.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Some Properties of the Theta Body

 Optimizing over the theta body is polynomial in the number of edges of the graph.

Theorem (Lovász \sim 1980)

The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the graph G is perfect.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial *k*-sos modulo the ideal *I* if and only if it can be written as a sum of squares of polynomials of degree at most *k* modulo *I*.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial *k*-sos modulo the ideal *I* if and only if it can be written as a sum of squares of polynomials of degree at most *k* modulo *I*.

Theorem (Lovász \sim 1993)

TH(G) = STAB(G) if and only if any linear polynomial $f(\mathbf{x})$ that is non-negative in STAB(G) is 1-sos modulo $\mathcal{I}(S_G)$.

Computations

(日) (日) (日) (日) (日) (日) (日)

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial *k*-sos modulo the ideal *I* if and only if it can be written as a sum of squares of polynomials of degree at most *k* modulo *I*.

Theorem (Lovász \sim 1993)

TH(G) = STAB(G) if and only if any linear polynomial $f(\mathbf{x})$ that is non-negative in STAB(G) is 1-sos modulo $\mathcal{I}(S_G)$.

This property does not depend on the graph, but only on the ideal $\mathcal{I}(S_G)$ and its variety.

Computations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals *I* is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1-sos modulo *I*?

Computations

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals *I* is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1-sos modulo *I*?

Definition

We'll call an ideal (1, k)-sos if and only if every linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is *k*-sos modulo *I*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computations

(日) (日) (日) (日) (日) (日) (日)

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals *I* is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1-sos modulo *I*?

Definition

We'll call an ideal (1, k)-sos if and only if every linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is *k*-sos modulo *I*.

We want to know which ideals are (1, k)-sos for some fixed k, and in particular (1, 1)-sos.

Lovász's Question

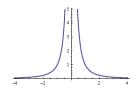
Theta Bodies of Ideals

Computations

END

Example

Consider the ideal $I = \langle yx^2 - 1 \rangle$.



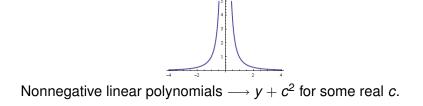
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

Consider the ideal $I = \langle yx^2 - 1 \rangle$.



Example

Theta Bodies of Ideals

Computations

Consider the ideal $I = \langle yx^2 - 1 \rangle$.

Nonnegative linear polynomials $\longrightarrow y + c^2$ for some real *c*.

-2

$$y + c^2 \equiv (xy)^2 + (c)^2 \mod I,$$

hence I is (1, 2)-sos.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

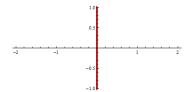
Theta Bodies of Ideals

Computations

END

Another Example

Consider the ideal $I = \langle x^2 \rangle$.



Theta Bodies of Ideals

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider the ideal $I = \langle x^2 \rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x + c^2$ for some real *c*.

END

Theta Bodies of Ideals

Computations

Another Example

Consider the ideal $I = \langle x^2 \rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x + c^2$ for some real *c*.

$$(\pm x + c^2) \equiv \left(\frac{1}{2c}x \pm c\right)^2 \mod I, \text{ if } c \neq 0.$$

END

|▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Theta Bodies of Ideals

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Another Example

Consider the ideal $I = \langle x^2 \rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x + c^2$ for some real *c*.

$$(\pm x + c^2) \equiv \left(\frac{1}{2c}x \pm c\right)^2 \mod I, \text{ if } c \neq 0.$$

However x and -x cannot be written as sums of squares hence *I* is not (1, k)-sos for any *k*.

END

Theta Bodies of Ideals

Computations

Theta Bodies of Ideals

A geometric approach to the problem:

Computations

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^n$ such that for all linear polynomials *f* that are *k*-sos modulo *I*, $f(\mathbf{p}) \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^n$ such that for all linear polynomials *f* that are *k*-sos modulo *I*, $f(\mathbf{p}) \ge 0$.

Remarks:

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^n$ such that for all linear polynomials *f* that are *k*-sos modulo *I*, $f(\mathbf{p}) \ge 0$.

Remarks:

• $\overline{\operatorname{conv}(\mathcal{V}_{\mathbb{R}}(I))} \subseteq \cdots \subseteq \operatorname{TH}_{k}(I) \subseteq \operatorname{TH}_{k-1}(I) \subseteq \cdots \subseteq \operatorname{TH}_{1}(I).$

Computations

(日) (日) (日) (日) (日) (日) (日)

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$ we define is *k*-th theta body, $TH_k(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^n$ such that for all linear polynomials *f* that are *k*-sos modulo *I*, $f(\mathbf{p}) \ge 0$.

Remarks:

- $\overline{\operatorname{conv}(\mathcal{V}_{\mathbb{R}}(I))} \subseteq \cdots \subseteq \operatorname{TH}_{k}(I) \subseteq \operatorname{TH}_{k-1}(I) \subseteq \cdots \subseteq \operatorname{TH}_{1}(I).$
- For any graph G, $TH_1(\mathcal{I}(S_G)) = TH(G)$.

Lovász's	Question

Computations

Convergence

Recall that a polynomial ideal is **real radical** if and only if $I = \mathcal{I}(\mathcal{V}_{\mathbb{R}}(I))$ i.e., if its real variety is Zariski dense in its complex variety.

Recall that a polynomial ideal is **real radical** if and only if $I = \mathcal{I}(\mathcal{V}_{\mathbb{R}}(I))$ i.e., if its real variety is Zariski dense in its complex variety.

Theorem (Parrilo)

If *I* is a real radical ideal whose variety is zero-dimensional then $TH_k(I) = \overline{conv(\mathcal{V}_{\mathbb{R}}(I))}$ for some *k*.

Recall that a polynomial ideal is **real radical** if and only if $I = \mathcal{I}(\mathcal{V}_{\mathbb{R}}(I))$ i.e., if its real variety is Zariski dense in its complex variety.

Theorem (Parrilo)

If *I* is a real radical ideal whose variety is zero-dimensional then $TH_k(I) = \overline{conv(\mathcal{V}_{\mathbb{R}}(I))}$ for some *k*.

Theorem (Scheiderer)

If I is a real radical ideal whose variety is "sufficiently smooth" and one or two dimensional then $TH_k(I) \longrightarrow \overline{conv(\mathcal{V}_{\mathbb{R}}(I))}$.

Theta Bodies of Ideals

Computations

Theta Bodies and Nonnegativity

We call an ideal **TH**_{*k*}-exact if $TH_k(I) = \overline{conv(\mathcal{V}_{\mathbb{R}}(I))}$.

END

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

We call an ideal **TH**_k-exact if $\text{TH}_k(I) = \overline{\text{conv}(\mathcal{V}_{\mathbb{R}}(I))}$.

Theorem

Let I be a real radical ideal. Then I is (1, k)-sos if and only if it is TH_k -exact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We call an ideal **TH**_k-exact if $\text{TH}_k(I) = \overline{\text{conv}(\mathcal{V}_{\mathbb{R}}(I))}$.

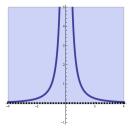
Theorem

Let I be a real radical ideal. Then I is (1, k)-sos if and only if it is TH_k -exact.

The real radical assumption cannot be dropped. We have seen for $I = \langle x^2 \rangle$ that *I* is not (1, k)-sos, but $\operatorname{TH}_1(I) = \overline{\operatorname{conv}(\mathcal{V}_{\mathbb{R}}(I))}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The closure on $\overline{\operatorname{conv}(\mathcal{V}_{\mathbb{R}}(I))}$ can also not be dropped. We have seen for $I = \langle yx^2 - 1 \rangle$ that *I* is (1,2)-sos but $\operatorname{conv}(\mathcal{V}_{\mathbb{R}}(I))$ is open.



Lovász's	Question

Computations

Structural Result

We'll focus now on the first relaxation.

Computations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$TH_1(I) = \bigcap_{F \text{ convex quadric } \in I} conv(\mathcal{V}_{\mathbb{R}}(F))$$

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$TH_1(I) = \bigcap_{F \text{ convex quadric } \in I} conv(\mathcal{V}_{\mathbb{R}}(F)).$$

Consequences:

• If *F* is a convex quadric then $\langle F \rangle$ is TH₁-exact.

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$TH_1(I) = \bigcap_{F \text{ convex quadric } \in I} conv(\mathcal{V}_{\mathbb{R}}(F)).$$

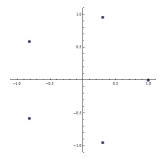
Consequences:

- If *F* is a convex quadric then $\langle F \rangle$ is TH₁-exact.
- There are arbitrarily high dimensional TH₁-exact ideals.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

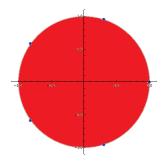
Example

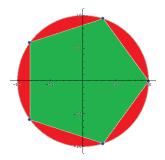
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●



Example

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●





Theta Bodies of Ideals

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

END

Another Example

Let S be the set $\{(0,0), (1,0), (0,1), (2,2)\}$.

Computations

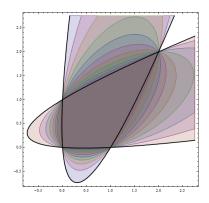
Another Example

Let *S* be the set $\{(0,0), (1,0), (0,1), (2,2)\}$. All convex quadrics that contain these four points are convex combinations of two particular parabolas.

Computations

Another Example

Let *S* be the set $\{(0,0), (1,0), (0,1), (2,2)\}$. All convex quadrics that contain these four points are convex combinations of two particular parabolas.



END

▲□▶ ▲□▶ ▲ □▶ ★ □▶ = 三 の < ⊙

Theta Bodies of Ideals

Computations

END

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Computations

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

Let I be a zero-dimensional real radical ideal, then the following are equivalent:

Computations

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

Let I be a zero-dimensional real radical ideal, then the following are equivalent:

- I is (1, 1) − sos;
- I is TH₁-exact;

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

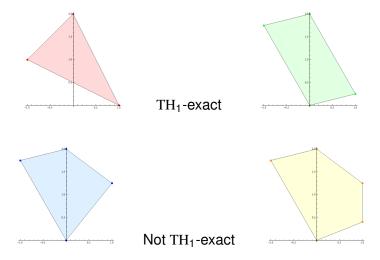
Let I be a zero-dimensional real radical ideal, then the following are equivalent:

- I is (1, 1) − sos;
- I is TH₁-exact;
- For every facet defining hyperplane H of the polytope conv(V_R(I)) we have a parallel translate H' of H such that V_R(I) ⊆ H' ∪ H.

Lovász's	Question
000000	000

Computations

Examples in \mathbb{R}^2



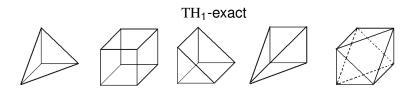
END

- ロ > ・ 個 > ・ ミ > ・ ミ > ・ ミ ・ つ へ ()

Lovász's	Question

Computations

Examples in \mathbb{R}^3



Not TH₁-exact

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Theta Bodies of Ideals

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A Small Extension

Theorem

Suppose $S \subseteq \mathbb{R}^n$ is a finite point set such that for each facet F of conv(S) there is an hyperplane H_F such that $H_F \cap conv(S) = F$ and S is contained in at most t + 1 parallel translates of H_F . Then $\mathcal{I}(S)$ is TH_t -exact.

Lovász's	Question

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

Let $S, S' \subset \mathbb{R}^n$ be exact sets (i.e. with TH_1 -exact vanishing ideals). Then

• all points of S are vertices of conv(S),

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

Let $S, S' \subset \mathbb{R}^n$ be exact sets (i.e. with TH_1 -exact vanishing ideals). Then

- all points of S are vertices of conv(S),
- the set of vertices of any face of conv(S) is again exact,

Corollary

Let $S, S' \subset \mathbb{R}^n$ be exact sets (i.e. with TH_1 -exact vanishing ideals). Then

- all points of S are vertices of conv(S),
- the set of vertices of any face of conv(S) is again exact,
- conv(S) is affinely equivalent to a 0/1 polytope.

Corollary

Let $S, S' \subset \mathbb{R}^n$ be exact sets (i.e. with TH_1 -exact vanishing ideals). Then

- all points of S are vertices of conv(S),
- the set of vertices of any face of conv(S) is again exact,
- conv(S) is affinely equivalent to a 0/1 polytope.

For simplicity, we'll call a finite set of points in \mathbb{R}^n exact, if it's vanishing ideal is TH_1 -exact.

Consequences

Corollary

Let $S, S' \subset \mathbb{R}^n$ be exact sets (i.e. with TH_1 -exact vanishing ideals). Then

- all points of S are vertices of conv(S),
- the set of vertices of any face of conv(S) is again exact,
- conv(S) is affinely equivalent to a 0/1 polytope.

For simplicity, we'll call a finite set of points in \mathbb{R}^n exact, if it's vanishing ideal is TH_1 -exact.

Theorem

If $S \subseteq \mathbb{R}^n$ is a finite exact point set then $\operatorname{conv}(S)$ has at most 2^d facets and vertices, where $d = \dim \operatorname{conv}(S)$. Both bounds are sharp.

Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

A graph G is perfect if and only if for any facet supporting hyperplane H of its stable set polytope there is some hyperplane H' parallel to H such that $S_G \subseteq H \cup H'$.

Computations

Perfect Graphs revisited

Corollary

A graph G is perfect if and only if for any facet supporting hyperplane H of its stable set polytope there is some hyperplane H' parallel to H such that $S_G \subseteq H \cup H'$.

Corollary

Let $P \subseteq \mathbb{R}^n$ be a full-dimensional down-closed 0/1-polytope and S be its vertex set. Then S is exact if and only if P is the stable set polytope of a perfect graph.

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Combinatorial Moment Matrices I

Let I be a polynomial ideal and

$$\mathcal{B} = \{1 = \mathit{f}_0, \mathit{f}_1, \mathit{f}_2, ...\}$$

be a basis of $\mathbb{R}[\mathbf{x}]/I$ and $\mathcal{B}_k = \{f_i : \deg(f_i) \leq k\}$ for all k.

Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Combinatorial Moment Matrices I

Let I be a polynomial ideal and

$$\mathcal{B} = \{1 = f_0, f_1, f_2, ...\}$$

be a basis of $\mathbb{R}[\mathbf{x}]/I$ and $\mathcal{B}_k = \{f_i : \deg(f_i) \leq k\}$ for all k.

For all i, j, k define $\lambda_{i, j}^{k}$ such that

$$f_i f_j \equiv \sum_k \lambda_{i,j}^k f_k.$$

Computations

(日) (日) (日) (日) (日) (日) (日)

Combinatorial Moment Matrices II

Definition

Given a real vector *y* indexed by the elements in \mathcal{B} , we define the **combinatorial moment matrix** of *y* as the (possibly infinite) matrix $M_{\mathcal{B}}(y)$ with rows and columns indexed by \mathcal{B} such that

$$[M_{\mathcal{B}}(\boldsymbol{y})]_{f_i,f_j} = \sum_k \lambda_{i,j}^k \boldsymbol{y}_{f_k}.$$

The *k*-th **truncated combinatorial moment matrix**, $M_{\mathcal{B}_k}(y)$, is the submatrix of the rows and columns indexed by elements of \mathcal{B}_k .

Computations

END

Example

Let
$$I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3],$$

Lovász's	Question
000000	000

Computations

Example

Let
$$I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3]$$
, pick

$$\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$$

Lovász's	Question
000000	000

Computations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

Let
$$I = \left\langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right\rangle \subset \mathbb{R}[x_1, x_2, x_3]$$
, pick

$$\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$$

$$y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123}).$$

Lovász's Question	Theta Bodies of Ideals	Computations oo●ooooooo	END
Example			

$$\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$$

$$\mathbf{y} = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Then $M_{\mathcal{B}}(y)$ is given by

Lovász's Question	Theta Bodies of Ideals	Computations 0000000000	END
Example			
		x ₁ x ₃ , x ₂ x ₃ , x ₁ x ₂ x ₃ } y ₁₃ , y ₂₃ , y ₁₂₃). x ₁ x ₂ x ₁ x ₃ x ₂ x ₃ x ₁ x ₂ x ₃	

Example $ \begin{array}{c} \mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \} \\ \mathcal{Y} = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123}). \end{array} $ Then $M_{\mathcal{B}}(y)$ is given by $ \begin{array}{c} 1 & x_1 & x_2 & x_3 & x_1x_2 & x_1x_3 & x_2x_3 & x_1x_2x_3 \\ 1 & y_0 & & & & \\ x_1 & & & & \\ x_2 & & & & \\ x_3 & & & \\ x_1x_2 & & & & & \\ \end{array} $	Lovász's Question	Theta Bodies of Ideals	Computations ooooooooo	END
$y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123}).$ Then $M_{\mathcal{B}}(y)$ is given by 1 x_1 x_2 x_3 x_1x_2 x_1x_3 x_2x_3 $x_1x_2x_3$ 1 y_0 x_1 x_2 x_3	Example			
$\begin{array}{c c} x_1 x_3 \\ x_2 x_3 \\ x_1 x_2 x_3 \end{array}$	y = (Then $M_{\mathcal{B}}(y)$ 1 x_1 x_2 x_3 $x_1 x_2$ $x_1 x_3$ $x_2 x_3$	$y_0, y_1, y_2, y_3, y_{12},$ () is given by 1 x_1 x_2 x_3	<i>y</i> ₁₃ , <i>y</i> ₂₃ , <i>y</i> ₁₂₃).	

Lovász's Question	Theta Bodies of Id		END
Example			
$m{y}=($ Then $M_{\mathcal{B}}(m{y})$	$\begin{array}{cccccc} y_0, & y_1, & y_2, & y_3, \\ y) \text{ is given by} \\ 1 & x_1 & x_2 \\ & & & \\ &$	$\begin{array}{c} x_{1}x_{2}, & x_{1}x_{3}, & x_{2}x_{3}, & x_{1}x_{2}x_{3} \\ y_{12}, & y_{13}, & y_{23}, & y_{123} \end{array} \right).$ $x_{3} x_{1}x_{2} x_{1}x_{3} x_{2}x_{3} x_{1}x_{2}x_{3}$	

Lovász's Question	Theta Bodies of Ide		END
Example			
$\mathcal{B} = \{ 1, \\ y = (y_0 \$ Then $M_{\mathcal{B}}(y)$ $1 \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$	is given by $1 x_1 x_2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₁ <i>x</i> ₃			
$\begin{array}{c} x_2 x_3 \\ x_1 x_2 x_3 \end{array}$			

Lovász's Question	Theta Bodies of Id		END
Example			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 <i>x</i> 1 <i>x</i> 2 <i>x</i> 3	Yo Y1 Y2	Y3 Y12 Y13 Y23 Y123 J <td< td=""><td></td></td<>	
X ₁ X ₂ X ₁ X ₃ X ₂ X ₃ X ₁ X ₂ X ₃		?	

Lovász's Question	Theta Bodies of lo		END
Example			
$m{y}=($ Then $M_{\mathcal{B}}(m{y})$	$y_0, y_1, y_2, y_3,$ (y) is given by $1 x_1 x_2$	$\begin{array}{c} x_{1}x_{2}, & x_{1}x_{3}, & x_{2}x_{3}, & x_{1}x_{2}x_{3} \\ y_{12}, & y_{13}, & y_{23}, & y_{123} \end{array} \right).$ $\begin{array}{c} x_{3} & x_{1}x_{2} & x_{1}x_{3} & x_{2}x_{3} & x_{1}x_{2}x_{3} \\ y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \end{array}$ $\begin{array}{c} y_{123} \end{array}$	

Lovász's Question	Theta Bodies of Ideals	Computations

L \	$/ \gamma$	\mathbf{n}	\sim	\mathbf{n}
	<a< td=""><td></td><td></td><td></td></a<>			
	· CA		<u> </u>	<u> </u>

$\mathcal{B} = \{$	1,	<i>x</i> ₁ ,	<i>x</i> ₂ ,	<i>x</i> ₃ ,	<i>x</i> ₁ <i>x</i> ₂ ,	<i>x</i> ₁ <i>x</i> ₃ ,	<i>x</i> ₂ <i>x</i> ₃ ,	$x_1 x_2 x_3$	}	
<i>y</i> = (<i>y</i> ₀ ,	<i>y</i> ₁ ,	<i>y</i> ₂ ,	y 3,	y ₁₂ ,	y ₁₃ ,	y ₂₃ ,	y 123)	•

Then $M_{\mathcal{B}}(y)$ is given by

~ ()	í 1	x_1	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>x</i> ₂ <i>x</i> ₃	$x_1 x_2 x_3$
1	Γ <i>Y</i> 0	y 1	<i>y</i> ₂	y 3	y 12	y 13	y 23	y 123
<i>x</i> ₁	<i>Y</i> 1	y 1	y ₁₂	y 13	y 12	y 13	y 123	У ₁₂₃ У ₁₂₃
<i>x</i> ₂	<i>Y</i> 2	y 12	y 2	y 23	y 12	y 123	y 23	Y 123
<i>x</i> 3	<i>Y</i> 3	y 13	y 23	y 3	y 123	y 13	y 23	Y 123
$x_1 x_2$	y 12	y 12	<i>Y</i> ₁₂	y 123	y 12	y 123	y 123	Y 123
								Y 123
<i>x</i> ₂ <i>x</i> ₃	y 23	y 123	y 23	y 23	y 123	y 123	y 23	У ₁₂₃ У ₁₂₃ 」
$x_1 x_2 x_3$	L Y 123	y 123	y 123	y 123	y 123	y 123	y 123	<i>Y</i> 123

Example

$M_{\mathcal{B},1}(y)$ is given by:

	1	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>X</i> ₂ <i>X</i> ₃	$x_1 x_2 x_3$
1	y 0	<i>Y</i> 1	y 2	y 3	y 12	y 13	y 23	y 123
<i>x</i> ₁	<i>y</i> ₁	<i>Y</i> 1	<i>Y</i> ₁₂	y 13	У 12	<i>Y</i> 13	<i>Y</i> 123	У ₁₂₃ У ₁₂₃
<i>x</i> ₂	y 2	y 12	y 2	y 23	y ₁₂	y 123	y 23	y 123
<i>X</i> 3	y 3	y 13	y 23	y 3	y 123	y 13	y 23	y 123
<i>x</i> ₁ <i>x</i> ₂	y 12	y 12	y 12	y 123	y 12	Y 123	y 123	y 123
<i>x</i> ₁ <i>x</i> ₃	<i>Y</i> 13	<i>Y</i> 13	y 123	<i>Y</i> 13	y 123	y 13	y 123	y 123
<i>x</i> ₂ <i>x</i> ₃	y 23	y 123	y 23	y 23	y 123	y 123	y 23	У ₁₂₃ У ₁₂₃
$x_1 x_2 x_3$	L <i>Y</i> 123	y 123	y 123	y 123	y 123	y 123	y 123	<i>y</i> ₁₂₃

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Example

$M_{\mathcal{B},2}(y)$ is given by:

	1	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₁ <i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₃	<i>X</i> ₂ <i>X</i> ₃	$x_1 x_2 x_3$
1	y 0	<i>Y</i> 1	y 2	y 3	y 12	y 13	y 23	y 123
<i>x</i> ₁	<i>y</i> ₁	<i>Y</i> 1	<i>Y</i> ₁₂	y 13	<i>Y</i> ₁₂	<i>Y</i> 13	<i>Y</i> ₁₂₃	<i>Y</i> ₁₂₃
<i>x</i> ₂	y 2	y 12	y 2	y 23	y 12	y 123	y 23	y 123
<i>x</i> 3	y 3	y 13	y 23	y 3	y 123	y 13	y 23	Y 123
<i>x</i> ₁ <i>x</i> ₂	y 12	y 12	y 12	y 123	y 12	y 123	y 123	Y 123
	y 13							
<i>x</i> ₂ <i>x</i> ₃	y 23 y123	y 123	y 23	y 23	y 123	y 123	y 23	y 123
$x_1 x_2 x_3$	<i>y</i> 123	y 123	y 123	y 123	y 123	y 123	y 123	<i>Y</i> 123

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Computations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B} = \{1, x_1, ..., x_n, ...\}$ as basis for $\mathbb{R}[\mathbf{x}]/I$. Let

$$\mathcal{M}_{\mathcal{B},k}(I) = \{y \in \mathbb{R}^{\mathcal{B}_{2k}} : y_0 = 1; M_{\mathcal{B},k}(y) \succeq 0\}$$

then

$$TH_k(I) = \overline{\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))}$$

where $\pi_{\mathbb{R}^n} : \mathbb{R}^{\mathcal{B}_{2k}} \to \mathbb{R}^n$ is just the projection over the coordinates indexed by the degree one monomials.

END

Computations

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B}=\{1,x_1,...,x_n,...\}$ as basis for $\mathbb{R}[\bm{x}]/I.$ Let

$$\mathcal{M}_{\mathcal{B},k}(I) = \{y \in \mathbb{R}^{\mathcal{B}_{2k}} : y_0 = 1; M_{\mathcal{B},k}(y) \succeq 0\}$$

then

$$TH_k(I) = \overline{\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))}$$

where $\pi_{\mathbb{R}^n} : \mathbb{R}^{\mathcal{B}_{2k}} \to \mathbb{R}^n$ is just the projection over the coordinates indexed by the degree one monomials.

Remark:

The closure is really needed as $\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))$ does not have to be closed.

Computations

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B}=\{1,x_1,...,x_n,...\}$ as basis for $\mathbb{R}[\bm{x}]/I.$ Let

$$\mathcal{M}_{\mathcal{B},k}(I) = \{y \in \mathbb{R}^{\mathcal{B}_{2k}} : y_0 = 1; M_{\mathcal{B},k}(y) \succeq 0\}$$

then

$$TH_k(I) = \overline{\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))}$$

where $\pi_{\mathbb{R}^n} : \mathbb{R}^{\mathcal{B}_{2k}} \to \mathbb{R}^n$ is just the projection over the coordinates indexed by the degree one monomials.

Remark:

The closure is really needed as $\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},k}(I))$ does not have to be closed. In our example $I = \langle yx^2 - 1 \rangle$, we have $\pi_{\mathbb{R}^n}(\mathcal{M}_{\mathcal{B},2}(I))$ to be the open upper half plane, hence not equal to $\mathrm{TH}_2(I)$.

Computations

Moment Matrices and Convex Hulls

Theorem (Curto-Fialkow, Laurent)

Given an ideal I and a basis of $\mathbb{R}[\boldsymbol{x}]/I$

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, x_2 = f_2, ..., x_n = f_n, f_{n+1}, ...\},\$$

we can consider the map $\varphi : \mathbb{R}^n \to \mathbb{R}^{\mathcal{B}}$ defined by

$$\varphi_{\mathcal{B}}(p) = (f_0(p), f_1(p), f_2(p),),$$

then we have

$$conv\{\varphi_{\mathcal{B}}(\boldsymbol{p}):\boldsymbol{p}\in\mathcal{V}_{\mathbb{R}}(\boldsymbol{l})\}=\left\{\begin{array}{ll}\boldsymbol{y}\in\mathbb{R}^{\mathcal{B}}:&M_{\mathcal{B}}(\boldsymbol{y})\succeq\boldsymbol{0},\\&rk(M_{\mathcal{B}}(\boldsymbol{y}))<\infty\end{array}\right\}$$

Theta Bodies of Ideals

Computations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The Max-Cut Problem

Definition

Given a graph G = (V, E) and a partition V_1 , V_2 of V the set C of edges between V_1 and V_2 is called a **cut**.

Theta Bodies of Ideals

Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

Given a graph G = (V, E) and a partition V_1 , V_2 of V the set C of edges between V_1 and V_2 is called a **cut**.

The Problem

Given edge weights α we want to find which cut *C* maximizes

$$\alpha(\mathbf{C}) := \sum_{(i,j)\in\mathbf{C}} \alpha_{i,j}.$$

Theta Bodies of Ideals

Computations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

Given a graph G = (V, E) and a partition V_1 , V_2 of V the set C of edges between V_1 and V_2 is called a **cut**.

The Problem

Given edge weights α we want to find which cut *C* maximizes

$$\alpha(\mathcal{C}) := \sum_{(i,j)\in\mathcal{C}} \alpha_{i,j}.$$

Again we will look geometrically at the problem.

Computations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The Cut Polytope

Definition

The cut polytope of *G*, CUT(*G*), is the convex hull of the characteristic vectors $\chi_C \subseteq \mathbb{R}^E$ of the cuts of *G*, where $(\chi_C)_{ij} = -1$ if $(i, j) \in C$ and 1 otherwise.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Cut Polytope

Definition

The cut polytope of *G*, CUT(*G*), is the convex hull of the characteristic vectors $\chi_C \subseteq \mathbb{R}^E$ of the cuts of *G*, where $(\chi_C)_{ij} = -1$ if $(i, j) \in C$ and 1 otherwise.

Reformulated Problem

Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$mcut(G, \alpha) = max_{x \in CUT(G)} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

Computations

(日) (日) (日) (日) (日) (日) (日)

The Cut Polytope

Definition

The cut polytope of *G*, CUT(*G*), is the convex hull of the characteristic vectors $\chi_C \subseteq \mathbb{R}^E$ of the cuts of *G*, where $(\chi_C)_{ij} = -1$ if $(i, j) \in C$ and 1 otherwise.

Reformulated Problem

Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$\mathrm{mcut}(G,\alpha) = \max_{x \in \mathrm{CUT}(G)} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

Computing the vanishing ideal I_G of these characteristic vectors and a basis for its quotient ring, and applying the moment matrix formulation we arrive to a new relaxation for this problem, using theta bodies.

Theta Bodies of Ideals

Computations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

Computations

(ロ) (同) (三) (三) (三) (○) (○)

The First Cut Theta Body

 $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

• The diagonal entries of U are all ones;

Computations

(日) (日) (日) (日) (日) (日) (日)

The First Cut Theta Body

 $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;
- $U_{e,f} = x_g$ if (e, f, g) is a triangle in G;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The First Cut Theta Body

 $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;
- $U_{e,f} = x_g$ if (e, f, g) is a triangle in *G*;
- $U_{e,f} = U_{g,h}$ and $U_{e,g} = U_{f,h}$ if (e, f, g, h) is a 4-cycle;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The First Cut Theta Body

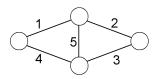
 $TH_1(I_G)$ is the set of all $x \in \mathbb{R}^E$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of *U* are all ones;
- $U_{e,f} = x_g$ if (e, f, g) is a triangle in G;
- $U_{e,f} = U_{g,h}$ and $U_{e,g} = U_{f,h}$ if (e, f, g, h) is a 4-cycle;
- The matrix

$$\left[\begin{array}{cc} 1 & x^t \\ x & U \end{array}\right]$$

is positive semidefinite.

Computations

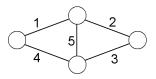


▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Lovász's	Question

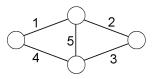
Computations

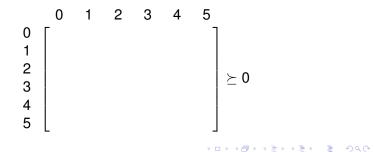
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question

Computations

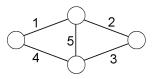




Lovász's	Question
	000

Computations

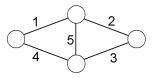
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

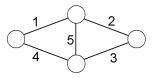
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

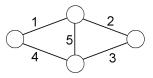
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

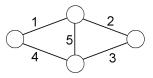
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

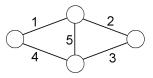
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

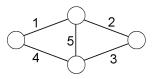
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

Computations

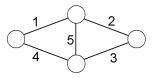
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

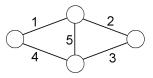
Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



Lovász's	Question
	000

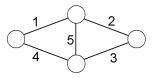
Computations



Lovász's	Question
	000

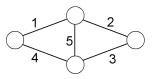
Computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



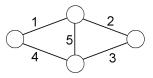
Lovász's	Question
000000000	

Computations



Lovász's	Question
000000000	

Computations



 $\operatorname{TH}_1(I_G)$ is the set of $x \in \mathbb{R}^5$ such that there exist y_1 and y_2 such that

Computations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Computations

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

Using our characterization for TH_1 -exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if $TH_1(I_G) = CUT(G)$.

Using our characterization for TH_1 -exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Theorem

A graph is cut-perfect if and only if it has no K_5 minor and no chordless cycle of size larger than 4.

Lovász's Question

Theta Bodies of Ideals

Computations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Higher Order Theta Bodies

Remarks:

• The higher order theta bodies also have interesting combinatorial descriptions.

Computations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Higher Order Theta Bodies

Remarks:

- The higher order theta bodies also have interesting combinatorial descriptions.
- This hierarchy 'refines' a hierarchy obtained by Laurent by a completely different process.

Lovász's	Question

The End

Theta Bodies of Ideals

Computations

Thank You