From the Stable Set Problem to Convex Algebraic Geometry

J. Gouveia ${ }^{1} \quad$ P. Parrilo ${ }^{2} \quad$ R. Thomas ${ }^{1}$

${ }^{1}$ Department of Mathematics
University of Washington
${ }^{2}$ Dept. of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

October '08

Outline

(1) Lovász's Question

- The Stable Set Problem
- Lovász's Theta Body
(2) Theta Bodies of Ideals
- Examples and Definitions
- First Theta Body
(3) Computations
- Combinatorial Moment Matrices
- Theta Body Hierarchy for Max-Cut

The Problem

We are interested in a very classical problem in combinatorics:

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph $G=(V, E)$ and some vertex weights ω find a stable set of vertices S for which the cost

$$
\omega(S):=\sum_{s \in S} \omega_{s}
$$

is maximum.

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph $G=(V, E)$ and some vertex weights ω find a stable set of vertices S for which the cost

$$
\omega(S):=\sum_{s \in S} \omega_{s}
$$

is maximum.
Remarks:

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph $G=(V, E)$ and some vertex weights ω find a stable set of vertices S for which the cost

$$
\omega(S):=\sum_{s \in S} \omega_{s}
$$

is maximum.
Remarks:

- If all weights are one, we're searching for $\alpha(G)$, the cardinality of the largest independent set;

The Problem

We are interested in a very classical problem in combinatorics:

Stable Set Problem

Given a graph $G=(V, E)$ and some vertex weights ω find a stable set of vertices S for which the cost

$$
\omega(S):=\sum_{s \in S} \omega_{s}
$$

is maximum.
Remarks:

- If all weights are one, we're searching for $\alpha(\mathcal{G})$, the cardinality of the largest independent set;
- this problem is NP-hard in general.

Stable Set Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $\operatorname{STAB}(G)$, the stable set polytope of G, in the following way:

Stable Set Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $\operatorname{STAB}(G)$, the stable set polytope of G, in the following way:

- For every stable set $S \subseteq\{1, \ldots, n\}$ consider its characteristic vector $\chi_{S} \in\{0,1\}^{n}$;

Stable Set Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $\operatorname{STAB}(G)$, the stable set polytope of G, in the following way:

- For every stable set $S \subseteq\{1, \ldots, n\}$ consider its characteristic vector $\chi_{S} \in\{0,1\}^{n}$;
- let $S_{G} \subset\{0,1\}^{n}$ be the collection of all those vectors;

Stable Set Polytope

Given a graph $G=(\{1, \ldots, n\}, E)$ we define $\operatorname{STAB}(G)$, the stable set polytope of G, in the following way:

- For every stable set $S \subseteq\{1, \ldots, n\}$ consider its characteristic vector $\chi_{s} \in\{0,1\}^{n}$;
- let $S_{G} \subset\{0,1\}^{n}$ be the collection of all those vectors;
- the polytope $\operatorname{STAB}(G)$ is then defined as the convex hull of the vectors in S_{G}.

Example

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Example

$$
S_{G}=\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)\}
$$

Reformulation of the Problem

Stable Set Problem Reformulated

Given a graph $G=(\{1, \ldots, n\}, E)$ and a weight vector $\omega \in \mathbb{R}^{n}$, solve the linear program

$$
\alpha(G, \omega):=\max _{x \in \operatorname{SAB}(G)}\langle\omega, x\rangle .
$$

Reformulation of the Problem

Stable Set Problem Reformulated

Given a graph $G=(\{1, \ldots, n\}, E)$ and a weight vector $\omega \in \mathbb{R}^{n}$, solve the linear program

$$
\alpha(G, \omega):=\max _{x \in \operatorname{SAB}(G)}\langle\omega, x\rangle .
$$

However, finding $\operatorname{STAB}(G)$ is as hard as solving the original problem, and not practical in general.

Reformulation of the Problem

Stable Set Problem Reformulated

Given a graph $G=(\{1, \ldots, n\}, E)$ and a weight vector $\omega \in \mathbb{R}^{n}$, solve the linear program

$$
\alpha(G, \omega):=\max _{x \in \operatorname{SAB}(G)}\langle\omega, x\rangle .
$$

However, finding $\operatorname{STAB}(G)$ is as hard as solving the original problem, and not practical in general.

We intend to find approximations for it.

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the fractional stable set polytope of $G, \operatorname{FRAC}(G)$, to be the set defined by the following inequalities.

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the fractional stable set polytope of $G, \operatorname{FRAC}(G)$, to be the set defined by the following inequalities.

- $x_{i} \geq 0$ for $i=1, \ldots, n$ (non-negativity constrains);

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the fractional stable set polytope of $G, \operatorname{FRAC}(G)$, to be the set defined by the following inequalities.

- $x_{i} \geq 0$ for $i=1, \ldots, n$ (non-negativity constrains);
- $x_{i}+x_{j} \leq 1$ for all $(i, j) \in E$ (edge constrains).

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the fractional stable set polytope of $G, \operatorname{FRAC}(G)$, to be the set defined by the following inequalities.

- $x_{i} \geq 0$ for $i=1, \ldots, n$ (non-negativity constrains);
- $x_{i}+x_{j} \leq 1$ for all $(i, j) \in E$ (edge constrains).

It is possible to optimize over this polytope in polynomial time.

Fractional Stable Set Polytope

The most common linear relaxation of the stable set polytope is the fractional stable set polytope of $G, \operatorname{FRAC}(G)$, to be the set defined by the following inequalities.

- $x_{i} \geq 0$ for $i=1, \ldots, n$ (non-negativity constrains);
- $x_{i}+x_{j} \leq 1$ for all $(i, j) \in E$ (edge constrains).

It is possible to optimize over this polytope in polynomial time.

It is in general not a very good relaxation.

Definition of Theta Body

Definition (Lovász ~ 1980)

Given a graph $G=(\{1, \ldots, n\}, E)$ we define its theta body, $\mathrm{TH}(G)$, as the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all $(i, j) \in E$.

Definition of Theta Body

Definition (Lovász ~ 1980)

Given a graph $G=(\{1, \ldots, n\}, E)$ we define its theta body, $\operatorname{TH}(G)$, as the set of all vectors $x \in \mathbb{R}^{n}$ such that

$$
\left[\begin{array}{cc}
1 & x^{t} \\
x & U
\end{array}\right] \succeq 0
$$

for some symmetric $U \in \mathbb{R}^{n \times n}$ with $\operatorname{diag}(U)=x$ and $U_{i j}=0$ for all $(i, j) \in E$.

- $\operatorname{STAB}(G) \subseteq \mathrm{TH}(G)$ since for all stable sets S,

$$
0 \preceq\left(1, \chi_{S}\right) \cdot\left(1, \chi_{S}\right)^{t}=\left[\begin{array}{cc}
1 & \chi_{S}^{t} \\
\chi_{S} & \chi_{S} \cdot \chi_{S}^{t}
\end{array}\right]
$$

Some Properties of the Theta Body

Some Properties of the Theta Body

- Optimizing over the theta body is polynomial in the number of edges of the graph.

Some Properties of the Theta Body

- Optimizing over the theta body is polynomial in the number of edges of the graph.

Theorem (Lovász ~ 1980)

The relaxation is tight, i.e. $\operatorname{TH}(G)=\operatorname{STAB}(G)$, if and only if the graph G is perfect.

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial k-sos modulo the ideal / if and only if it can be written as a sum of squares of polynomials of degree at most k modulo l.

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial k-sos modulo the ideal / if and only if it can be written as a sum of squares of polynomials of degree at most k modulo I.

Theorem (Lovász ~ 1993)

$T H(G)=\operatorname{STAB}(G)$ if and only if any linear polynomial $f(\mathbf{x})$ that is non-negative in $\operatorname{STAB}(G)$ is 1 -sos modulo $\mathcal{I}\left(S_{G}\right)$.

Connection to Algebra

Let $I \subseteq \mathbb{R}[\mathbf{x}]$ be a polynomial ideal. We call a polynomial k-sos modulo the ideal / if and only if it can be written as a sum of squares of polynomials of degree at most k modulo l.

Theorem (Lovász ~ 1993)

$T H(G)=\operatorname{STAB}(G)$ if and only if any linear polynomial $f(\mathbf{x})$ that is non-negative in $\operatorname{STAB}(G)$ is 1 -sos modulo $\mathcal{I}\left(S_{G}\right)$.

This property does not depend on the graph, but only on the ideal $\mathcal{I}\left(S_{G}\right)$ and its variety.

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals I is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1 -sos modulo I ?

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals I is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1 -sos modulo I ?

Definition

We'll call an ideal $(1, k)$-sos if and only if every linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is k-sos modulo I.

The Question

Lovász's Question

Which ideals are "perfect" i.e., for what ideals I is it true that any linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is 1 -sos modulo I ?

Definition

We'll call an ideal $(1, k)$-sos if and only if every linear polynomial that is nonnegative in $\mathcal{V}_{\mathbb{R}}(I)$ is k-sos modulo I.

We want to know which ideals are $(1, k)$-sos for some fixed k, and in particular $(1,1)$-sos.

Example

Consider the ideal $I=\left\langle y x^{2}-1\right\rangle$.

Example

Consider the ideal $I=\left\langle y x^{2}-1\right\rangle$.

Nonnegative linear polynomials $\longrightarrow y+c^{2}$ for some real c.

Example

Consider the ideal $I=\left\langle y x^{2}-1\right\rangle$.

Nonnegative linear polynomials $\longrightarrow y+c^{2}$ for some real c.

$$
y+c^{2} \equiv(x y)^{2}+(c)^{2} \quad \bmod I
$$

hence I is $(1,2)$-sos.

Another Example

Consider the ideal $I=\left\langle x^{2}\right\rangle$.

Another Example

Consider the ideal $I=\left\langle x^{2}\right\rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x+c^{2}$ for some real c.

Another Example

Consider the ideal $I=\left\langle x^{2}\right\rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x+c^{2}$ for some real c.

$$
\left(\pm x+c^{2}\right) \equiv\left(\frac{1}{2 c} x \pm c\right)^{2} \quad \bmod I, \text { if } c \neq 0
$$

Another Example

Consider the ideal $I=\left\langle x^{2}\right\rangle$.

Nonnegative linear polynomials $\longrightarrow \pm x+c^{2}$ for some real c.

$$
\left(\pm x+c^{2}\right) \equiv\left(\frac{1}{2 c} x \pm c\right)^{2} \quad \bmod I, \text { if } c \neq 0
$$

However x and $-x$ cannot be written as sums of squares hence $/$ is not $(1, k)$-sos for any k.

Theta Bodies of Ideals

A geometric approach to the problem:

Theta Bodies of Ideals

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^{n}$ such that for all linear polynomials f that are k-sos modulo $I, f(\mathbf{p}) \geq 0$.

Theta Bodies of Ideals

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^{n}$ such that for all linear polynomials f that are k-sos modulo $I, f(\mathbf{p}) \geq 0$.

Remarks:

Theta Bodies of Ideals

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^{n}$ such that for all linear polynomials f that are k-sos modulo $I, f(\mathbf{p}) \geq 0$.

Remarks:

- $\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)} \subseteq \cdots \subseteq \mathrm{TH}_{k}(I) \subseteq \mathrm{TH}_{k-1}(I) \subseteq \cdots \subseteq \mathrm{TH}_{1}(I)$.

Theta Bodies of Ideals

A geometric approach to the problem:

Definition

Given an ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ we define is k-th theta body, $\mathrm{TH}_{k}(I)$ as the set of all points $\mathbf{p} \in \mathbb{R}^{n}$ such that for all linear polynomials f that are k-sos modulo $I, f(\mathbf{p}) \geq 0$.

Remarks:

- $\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)} \subseteq \cdots \subseteq \mathrm{TH}_{k}(I) \subseteq \mathrm{TH}_{k-1}(I) \subseteq \cdots \subseteq \mathrm{TH}_{1}(I)$.
- For any graph $G, \mathrm{TH}_{1}\left(\mathcal{I}\left(S_{G}\right)\right)=\mathrm{TH}(G)$.

Convergence

Recall that a polynomial ideal is real radical if and only if $I=\mathcal{I}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ i.e., if its real variety is Zariski dense in its complex variety.

Convergence

Recall that a polynomial ideal is real radical if and only if $I=\mathcal{I}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ i.e., if its real variety is Zariski dense in its complex variety.

Theorem (Parrilo)

If I is a real radical ideal whose variety is zero-dimensional then $T H_{k}(I)=\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$ for some k.

Convergence

Recall that a polynomial ideal is real radical if and only if $I=\mathcal{I}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ i.e., if its real variety is Zariski dense in its complex variety.

Theorem (Parrilo)

If I is a real radical ideal whose variety is zero-dimensional then $T H_{k}(I)=\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ for some k.

Theorem (Scheiderer)

If I is a real radical ideal whose variety is "sufficiently smooth" and one or two dimensional then $T H_{k}(I) \longrightarrow \overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$.

Theta Bodies and Nonnegativity

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$.

Theta Bodies and Nonnegativity

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$.

Theorem

Let I be a real radical ideal. Then I is $(1, k)$-sos if and only if it is $T H_{k}$-exact.

Theta Bodies and Nonnegativity

We call an ideal $\mathbf{T H}_{k}$-exact if $\mathrm{TH}_{k}(I)=\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$.

Theorem

Let I be a real radical ideal. Then I is $(1, k)$-sos if and only if it is $T H_{k}$-exact.

The real radical assumption cannot be dropped.
We have seen for $I=\left\langle x^{2}\right\rangle$ that I is not $(1, k)$-sos, but $\mathrm{TH}_{1}(I)=\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$.

Theta Bodies and Nonnegativity (continued)

The closure on $\overline{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)}$ can also not be dropped. We have seen for $I=\left\langle y x^{2}-1\right\rangle$ that I is $(1,2)$-sos but $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ is open.

Structural Result

We'll focus now on the first relaxation.

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$
T H_{1}(I)=\bigcap_{F \text { convex quadric } \in I} \operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(F)\right) .
$$

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$
T H_{1}(I)=\bigcap_{F \text { convex quadric } \in I} \operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(F)\right) .
$$

Consequences:

- If F is a convex quadric then $\langle F\rangle$ is TH_{1}-exact.

Structural Result

We'll focus now on the first relaxation.

Theorem

Given any ideal $I \subseteq \mathbb{R}[\mathbf{x}]$ we have

$$
T H_{1}(I)=\bigcap_{F \text { convex quadric } \in I} \operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(F)\right) .
$$

Consequences:

- If F is a convex quadric then $\langle F\rangle$ is TH_{1}-exact.
- There are arbitrarily high dimensional TH_{1}-exact ideals.

Example

Let S be the set of the five vertices of the regular pentagon centered at the origin, and I it's vanishing ideal.

Example

Let S be the set of the five vertices of the regular pentagon centered at the origin, and $/$ it's vanishing ideal.

Example

Let S be the set of the five vertices of the regular pentagon centered at the origin, and $/$ it's vanishing ideal.

Example

Let S be the set of the five vertices of the regular pentagon centered at the origin, and $/$ it's vanishing ideal.

Another Example

Let S be the set $\{(0,0),(1,0),(0,1),(2,2)\}$.

Another Example

Let S be the set $\{(0,0),(1,0),(0,1),(2,2)\}$. All convex quadrics that contain these four points are convex combinations of two particular parabolas.

Another Example

Let S be the set $\{(0,0),(1,0),(0,1),(2,2)\}$. All convex

 quadrics that contain these four points are convex combinations of two particular parabolas.

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

Let I be a zero-dimensional real radical ideal, then the following are equivalent:

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

Let I be a zero-dimensional real radical ideal, then the following are equivalent:

- I is $(1,1)$ - sos;
- I is $T H_{1}$-exact;

Zero-dimensional Varieties

A full characterization is possible in the case of zero-dimensional real radical ideals.

Theorem

Let I be a zero-dimensional real radical ideal, then the following are equivalent:

- I is $(1,1)$ - sos;
- I is $T H_{1}$-exact;
- For every facet defining hyperplane H of the polytope $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ we have a parallel translate H^{\prime} of H such that $\mathcal{V}_{\mathbb{R}}(I) \subseteq H^{\prime} \cup H$.

Examples in \mathbb{R}^{2}

TH_{1}-exact

Not TH_{1}-exact

Examples in \mathbb{R}^{3}

TH_{1}-exact

Not TH_{1}-exact

A Small Extension

Theorem

Suppose $S \subseteq \mathbb{R}^{n}$ is a finite point set such that for each facet F of $\operatorname{conv}(S)$ there is an hyperplane H_{F} such that $H_{F} \cap \operatorname{conv}(S)=F$ and S is contained in at most $t+1$ parallel translates of H_{F}. Then $\mathcal{I}(S)$ is $T H_{t}$-exact.

Consequences

Corollary

Let $S, S^{\prime} \subset \mathbb{R}^{n}$ be exact sets (i.e. with $T H_{1}$-exact vanishing ideals). Then

- all points of S are vertices of $\operatorname{conv}(S)$,

Consequences

Corollary

Let $S, S^{\prime} \subset \mathbb{R}^{n}$ be exact sets (i.e. with $T H_{1}$-exact vanishing ideals). Then

- all points of S are vertices of conv(S),
- the set of vertices of any face of conv (S) is again exact,

Consequences

Corollary

Let $S, S^{\prime} \subset \mathbb{R}^{n}$ be exact sets (i.e. with $T H_{1}$-exact vanishing ideals). Then

- all points of S are vertices of $\operatorname{conv}(S)$,
- the set of vertices of any face of $\operatorname{conv}(S)$ is again exact,
- $\operatorname{conv}(S)$ is affinely equivalent to a 0/1 polytope.

Consequences

Corollary

Let $S, S^{\prime} \subset \mathbb{R}^{n}$ be exact sets (i.e. with $T H_{1}$-exact vanishing ideals). Then

- all points of S are vertices of $\operatorname{conv}(S)$,
- the set of vertices of any face of conv (S) is again exact,
- $\operatorname{conv}(S)$ is affinely equivalent to a 0/1 polytope.

For simplicity, we'll call a finite set of points in \mathbb{R}^{n} exact, if it's vanishing ideal is TH_{1}-exact.

Consequences

Corollary

Let $S, S^{\prime} \subset \mathbb{R}^{n}$ be exact sets (i.e. with $T H_{1}$-exact vanishing ideals). Then

- all points of S are vertices of $\operatorname{conv}(S)$,
- the set of vertices of any face of conv(S) is again exact,
- $\operatorname{conv}(S)$ is affinely equivalent to a $0 / 1$ polytope.

For simplicity, we'll call a finite set of points in \mathbb{R}^{n} exact, if it's vanishing ideal is TH_{1}-exact.

Theorem

If $S \subseteq \mathbb{R}^{n}$ is a finite exact point set then $\operatorname{conv}(S)$ has at most 2^{d} facets and vertices, where $d=\operatorname{dim} \operatorname{conv}(S)$. Both bounds are sharp.

Perfect Graphs revisited

Corollary

A graph G is perfect if and only if for any facet supporting hyperplane H of its stable set polytope there is some hyperplane H^{\prime} parallel to H such that $S_{G} \subseteq H \cup H^{\prime}$.

Perfect Graphs revisited

Corollary

A graph G is perfect if and only if for any facet supporting hyperplane H of its stable set polytope there is some hyperplane H^{\prime} parallel to H such that $S_{G} \subseteq H \cup H^{\prime}$.

Corollary

Let $P \subseteq \mathbb{R}^{n}$ be a full-dimensional down-closed 0/1-polytope and S be its vertex set. Then S is exact if and only if P is the stable set polytope of a perfect graph.

Combinatorial Moment Matrices I

Let I be a polynomial ideal and

$$
\mathcal{B}=\left\{1=f_{0}, f_{1}, f_{2}, \ldots\right\}
$$

be a basis of $\mathbb{R}[\mathbf{x}] / I$ and $\mathcal{B}_{k}=\left\{f_{i}: \operatorname{deg}\left(f_{i}\right) \leq k\right\}$ for all k.

Combinatorial Moment Matrices I

Let I be a polynomial ideal and

$$
\mathcal{B}=\left\{1=f_{0}, f_{1}, f_{2}, \ldots\right\}
$$

be a basis of $\mathbb{R}[\mathbf{x}] / I$ and $\mathcal{B}_{k}=\left\{f_{i}: \operatorname{deg}\left(f_{i}\right) \leq k\right\}$ for all k.
For all i, j, k define $\lambda_{i, j}^{k}$ such that

$$
f_{i} f_{j} \equiv \sum_{k} \lambda_{i, j}^{k} f_{k}
$$

Combinatorial Moment Matrices II

Definition

Given a real vector y indexed by the elements in \mathcal{B}, we define the combinatorial moment matrix of y as the (possibly infinite) matrix $M_{\mathcal{B}}(y)$ with rows and columns indexed by \mathcal{B} such that

$$
\left[M_{\mathcal{B}}(y)\right]_{f_{i}, f_{j}}=\sum_{k} \lambda_{i, j}^{k} y_{t_{k}} .
$$

The k-th truncated combinatorial moment matrix, $M_{\mathcal{B}_{k}}(y)$, is the submatrix of the rows and columns indexed by elements of \mathcal{B}_{k}.

Example

Let $I=\left\langle x_{1}^{2}-x_{1}, x_{2}^{2}-x_{2}, x_{3}^{2}-x_{3}\right\rangle \subset \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$,

Example

Let $I=\left\langle x_{1}^{2}-x_{1}, x_{2}^{2}-x_{2}, x_{3}^{2}-x_{3}\right\rangle \subset \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$, pick

$$
\mathcal{B}=\left\{\begin{array}{lllllll}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3},
\end{array} x_{1} x_{2} x_{3}\right\}
$$

Example

Let $I=\left\langle x_{1}^{2}-x_{1}, x_{2}^{2}-x_{2}, x_{3}^{2}-x_{3}\right\rangle \subset \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$, pick

$$
\begin{aligned}
& \mathcal{B}=\left\{\begin{array}{lllllll}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3},
\end{array} x_{1} x_{2} x_{3}\right\} \\
& y=\left(\quad y_{0}, \quad y_{1}, \quad y_{2}, \quad y_{3}, \quad y_{12}, \quad y_{13}, \quad y_{23}, \quad y_{123} \quad\right) \text {. }
\end{aligned}
$$

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3} & \} \\
y & =\left(\begin{array}{lllll}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y=\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by $1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}$
$\left.\begin{array}{r}1 \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{1} x_{2} \\ x_{1} x_{3} \\ x_{2} x_{3} \\ x_{1} x_{2} x_{3}\end{array}\right]$

Example

$$
\begin{aligned}
\mathcal{B} & =\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y & =\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{aligned}
$$

Then $M_{\mathcal{B}}(y)$ is given by $1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}$
1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{l} \\ \\ \end{array}\right.$

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y=\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by

$$
1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}
$$

1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{lll}y_{0} & y_{1} \\ & & \\ & & \\ & & \\ \end{array}\right.$

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y=\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by

$$
1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}
$$

1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{llllllll}y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ & & & & & & & \\ & & & & & & & \\ \\ & & & & & & & \\ \\ & & & & & & & \end{array}\right]$

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y=\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by

$$
1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}
$$

1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{llllllll}y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ & & & & & & & \\ & & & & & & & \\ \\ & & & & & & ? & \\ \\ & & & & & & & \end{array}\right]$

Example

$$
\begin{gathered}
\mathcal{B}=\left\{\begin{array}{ccccccccc}
1, & x_{1}, & x_{2}, & x_{3}, & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}
\end{array}\right\} \\
y=\left(\begin{array}{ccccc}
y_{0}, & y_{1}, & y_{2}, & y_{3}, & y_{12}, \\
y_{13}, & y_{23}, & y_{123}
\end{array}\right) .
\end{gathered}
$$

Then $M_{\mathcal{B}}(y)$ is given by

$$
1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}
$$

1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{llllllll}y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ & & & & & & & \\ & & & & & & & \\ \\ & & & & & & y_{123} & \\ \\ & & & & & & & \end{array}\right]$

Example

$\mathcal{B}=\left\{\begin{array}{llllllll}1, & x_{1}, & x_{2}, & x_{3} & x_{1} x_{2}, & x_{1} x_{3}, & x_{2} x_{3}, & x_{1} x_{2} x_{3}\end{array}\right\}$ $y=\left(\quad y_{0}, \quad y_{1}, \quad y_{2}, \quad y_{3}, \quad y_{12}, \quad y_{13}, \quad y_{23}, \quad y_{123} \quad\right)$.

Then $M_{\mathcal{B}}(y)$ is given by
$1 \quad x_{1} \quad x_{2} \quad x_{3} \quad x_{1} x_{2} \quad x_{1} x_{3} \quad x_{2} x_{3} \quad x_{1} x_{2} x_{3}$
1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{cccccccc}y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ y_{1} & y_{1} & y_{12} & y_{13} & y_{12} & y_{13} & y_{123} & y_{123} \\ y_{2} & y_{12} & y_{2} & y_{23} & y_{12} & y_{123} & y_{23} & y_{123} \\ y_{3} & y_{13} & y_{23} & y_{3} & y_{123} & y_{13} & y_{23} & y_{123} \\ y_{12} & y_{12} & y_{12} & y_{123} & y_{12} & y_{123} & y_{123} & y_{123} \\ y_{13} & y_{13} & y_{123} & y_{13} & y_{123} & y_{13} & y_{123} & y_{123} \\ y_{23} & y_{123} & y_{23} & y_{23} & y_{123} & y_{123} & y_{23} & y_{123} \\ y_{123} & y_{123}\end{array}\right]$

Example

$M_{\mathcal{B}, 1}(y)$ is given by:
1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{cccccccc}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{3} & x_{1} x_{2} x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ y_{1} & y_{1} & y_{12} & y_{13} & y_{12} & y_{13} & y_{123} & y_{123} \\ y_{2} & y_{12} & y_{2} & y_{23} & y_{12} & y_{123} & y_{23} & y_{123} \\ y_{3} & y_{13} & y_{23} & y_{3} & y_{123} & y_{13} & y_{23} & y_{123} \\ y_{12} & y_{12} & y_{12} & y_{123} & y_{12} & y_{123} & y_{123} & y_{123} \\ y_{13} & y_{13} & y_{123} & y_{13} & y_{123} & y_{13} & y_{123} & y_{123} \\ y_{23} & y_{123} & y_{23} & y_{23} & y_{123} & y_{123} & y_{23} & y_{123} \\ y_{123} & y_{123}\end{array}\right]$

Example

$M_{\mathcal{B}, 2}(y)$ is given by:
1
x_{1}
x_{2}
x_{3}
$x_{1} x_{2}$
$x_{1} x_{3}$
$x_{2} x_{3}$
$x_{1} x_{2} x_{3}$$\left[\begin{array}{cccccccc}1 & x_{1} & x_{2} & x_{3} & x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{3} & x_{1} x_{2} x_{3} \\ y_{0} & y_{1} & y_{2} & y_{3} & y_{12} & y_{13} & y_{23} & y_{123} \\ y_{1} & y_{1} & y_{12} & y_{13} & y_{12} & y_{13} & y_{123} & y_{123} \\ y_{2} & y_{12} & y_{2} & y_{23} & y_{12} & y_{123} & y_{23} & y_{123} \\ y_{3} & y_{13} & y_{23} & y_{3} & y_{123} & y_{13} & y_{23} & y_{123} \\ y_{12} & y_{12} & y_{12} & y_{123} & y_{12} & y_{123} & y_{123} & y_{123} \\ y_{13} & y_{13} & y_{123} & y_{13} & y_{123} & y_{13} & y_{123} & y_{123} \\ y_{23} & y_{123} & y_{23} & y_{23} & y_{123} & y_{123} & y_{23} & y_{123} \\ y_{123} & y_{123} & y_{123} & y_{123} & y_{123} & y_{123} & y_{123}\end{array}\right]$

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B}=\left\{1, x_{1}, \ldots, x_{n}, \ldots\right\}$ as basis for $\mathbb{R}[\mathbf{x}] /$ I. Let

$$
\mathcal{M}_{\mathcal{B}, k}(I)=\left\{y \in \mathbb{R}^{\mathcal{B}_{2 k}}: y_{0}=1 ; M_{\mathcal{B}, k}(y) \succeq 0\right\}
$$

then

$$
T H_{k}(I)=\overline{\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)}
$$

where $\pi_{\mathbb{R}^{n}}: \mathbb{R}^{\mathcal{B}_{2 k}} \rightarrow \mathbb{R}^{n}$ is just the projection over the coordinates indexed by the degree one monomials.

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B}=\left\{1, x_{1}, \ldots, x_{n}, \ldots\right\}$ as basis for $\mathbb{R}[\mathbf{x}] /$ I. Let

$$
\mathcal{M}_{\mathcal{B}, k}(I)=\left\{y \in \mathbb{R}^{\mathcal{B}_{2 k}}: y_{0}=1 ; M_{\mathcal{B}, k}(y) \succeq 0\right\}
$$

then

$$
T H_{k}(I)=\overline{\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)}
$$

where $\pi_{\mathbb{R}^{n}}: \mathbb{R}^{\mathcal{B}_{2 k}} \rightarrow \mathbb{R}^{n}$ is just the projection over the coordinates indexed by the degree one monomials.

Remark:
The closure is really needed as $\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)$ does not have to be closed.

Theta Bodies and Moment Matrices

Theorem

Let I be a polynomial ideal and choose $\mathcal{B}=\left\{1, x_{1}, \ldots, x_{n}, \ldots\right\}$ as basis for $\mathbb{R}[\mathbf{x}] /$ I. Let

$$
\mathcal{M}_{\mathcal{B}, k}(I)=\left\{y \in \mathbb{R}^{\mathcal{B}_{2 k}}: y_{0}=1 ; M_{\mathcal{B}, k}(y) \succeq 0\right\}
$$

then

$$
T H_{k}(I)=\overline{\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)}
$$

where $\pi_{\mathbb{R}^{n}}: \mathbb{R}^{\mathcal{B}_{2 k}} \rightarrow \mathbb{R}^{n}$ is just the projection over the coordinates indexed by the degree one monomials.

Remark:
The closure is really needed as $\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, k}(I)\right)$ does not have to be closed. In our example $I=\left\langle y x^{2}-1\right\rangle$, we have $\pi_{\mathbb{R}^{n}}\left(\mathcal{M}_{\mathcal{B}, 2}(I)\right)$ to be the open upper half plane, hence not equal to $\mathrm{TH}_{2}(I)$.

Moment Matrices and Convex Hulls

Theorem (Curto-Fialkow, Laurent)

Given an ideal I and a basis of $\mathbb{R}[\mathbf{x}] /$ /

$$
\mathcal{B}=\left\{1=f_{0}, x_{1}=f_{1}, x_{2}=f_{2}, \ldots, x_{n}=f_{n}, f_{n+1}, \ldots\right\},
$$

we can consider the map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\mathcal{B}}$ defined by

$$
\varphi_{\mathcal{B}}(p)=\left(f_{0}(p), f_{1}(p), f_{2}(p), \ldots .\right),
$$

then we have

$$
\operatorname{conv}\left\{\varphi_{\mathcal{B}}(p): p \in \mathcal{V}_{\mathbb{R}}(I)\right\}=\left\{\begin{array}{ll}
y \in \mathbb{R}^{\mathcal{B}}: & \left.\begin{array}{l}
y_{0}=1, \\
M_{\mathcal{B}}(y) \succeq 0, \\
\\
r k\left(M_{\mathcal{B}}(y)\right)<\infty
\end{array}\right\} ~ . ~
\end{array}\right\}
$$

The Max-Cut Problem

Definition

Given a graph $G=(V, E)$ and a partition V_{1}, V_{2} of V the set C of edges between V_{1} and V_{2} is called a cut.

The Max-Cut Problem

Definition

Given a graph $G=(V, E)$ and a partition V_{1}, V_{2} of V the set C of edges between V_{1} and V_{2} is called a cut.

The Problem

Given edge weights α we want to find which cut C maximizes

$$
\alpha(C):=\sum_{(i, j) \in C} \alpha_{i, j} .
$$

The Max-Cut Problem

Definition

Given a graph $G=(V, E)$ and a partition V_{1}, V_{2} of V the set C of edges between V_{1} and V_{2} is called a cut.

The Problem

Given edge weights α we want to find which cut C maximizes

$$
\alpha(C):=\sum_{(i, j) \in C} \alpha_{i, j} .
$$

Again we will look geometrically at the problem.

The Cut Polytope

Definition

The cut polytope of $G, \operatorname{CUT}(G)$, is the convex hull of the characteristic vectors $\chi_{c} \subseteq \mathbb{R}^{E}$ of the cuts of G, where $\left(\chi_{C}\right)_{i j}=-1$ if $(i, j) \in C$ and 1 otherwise.

The Cut Polytope

Definition

The cut polytope of $G, \operatorname{CUT}(G)$, is the convex hull of the characteristic vectors $\chi_{c} \subseteq \mathbb{R}^{E}$ of the cuts of G, where $\left(\chi_{c}\right)_{i j}=-1$ if $(i, j) \in C$ and 1 otherwise.

Reformulated Problem

Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$
\operatorname{mcut}(G, \alpha)=\max _{x \in \operatorname{CUT}(G)} \frac{1}{2}\langle\alpha, 1-x\rangle
$$

The Cut Polytope

Definition

The cut polytope of $G, \operatorname{CUT}(G)$, is the convex hull of the characteristic vectors $\chi_{c} \subseteq \mathbb{R}^{E}$ of the cuts of G, where $\left(\chi_{c}\right)_{i j}=-1$ if $(i, j) \in C$ and 1 otherwise.

Reformulated Problem

Given a vector $\alpha \in \mathbb{R}^{E}$ solve the optimization problem

$$
\operatorname{mcut}(G, \alpha)=\max _{x \in \operatorname{CUT}(G)} \frac{1}{2}\langle\alpha, 1-x\rangle
$$

Computing the vanishing ideal I_{G} of these characteristic vectors and a basis for its quotient ring, and applying the moment matrix formulation we arrive to a new relaxation for this problem, using theta bodies.

The First Cut Theta Body

$T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

The First Cut Theta Body

$T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;

The First Cut Theta Body

$T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;
- $U_{e, f}=x_{g}$ if (e, f, g) is a triangle in G;

The First Cut Theta Body

$T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;
- $U_{e, f}=x_{g}$ if (e, f, g) is a triangle in G;
- $U_{e, f}=U_{g, h}$ and $U_{e, g}=U_{f, h}$ if (e, f, g, h) is a 4-cycle;

The First Cut Theta Body

$T H_{1}\left(I_{G}\right)$ is the set of all $x \in \mathbb{R}^{E}$ for which we can find a symmetric matrix $U \in \mathbb{R}^{E \times E}$ such that

- The diagonal entries of U are all ones;
- $U_{e, f}=x_{g}$ if (e, f, g) is a triangle in G;
- $U_{e, f}=U_{g, h}$ and $U_{e, g}=U_{f, h}$ if (e, f, g, h) is a 4-cycle;
- The matrix

$$
\left[\begin{array}{ll}
1 & x^{t} \\
x & U
\end{array}\right]
$$

is positive semidefinite.

Example

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & & & & & \\ x_{2} & & & & & \\ x_{3} & & & & & \\ x_{4} & & & & & \end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & & & & \\
x_{2} & & 1 & & & \\
x_{3} & & & 1 & & \\
x_{4} & & & & 1 & \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & & & ? & \\
x_{2} & & 1 & & & \\
x_{3} & & & 1 & & \\
x_{4} & & & & 1 & \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & & & x_{5} & \\
x_{2} & & 1 & & & \\
x_{3} & & & 1 & & \\
x_{4} & & & & 1 & \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & & & x_{5} & x_{4} \\ x_{2} & & 1 & & & \\ x_{3} & & & 1 & & \\ x_{4} & & & & 1 & \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & & & x_{5} & x_{4} \\ x_{2} & & 1 & x_{5} & & \\ x_{3} & & & 1 & & \\ x_{4} & & & & 1 & \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & & & x_{5} & x_{4} \\ x_{2} & & 1 & x_{5} & & x_{3} \\ x_{3} & & & 1 & & x_{2} \\ x_{4} & & & & 1 & x_{1} \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & ? & & x_{5} & x_{4} \\ x_{2} & & 1 & x_{5} & & x_{3} \\ x_{3} & & & 1 & ? & x_{2} \\ x_{4} & & & & 1 & x_{1} \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & y_{1} & & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & & x_{3} \\
x_{3} & & & 1 & y_{1} & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that

$$
\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1} & 1 & y_{1} & ? & x_{5} & x_{4} \\
x_{2} & & 1 & x_{5} & ? & x_{3} \\
x_{3} & & & 1 & y_{1} & x_{2} \\
x_{4} & & & & 1 & x_{1} \\
x_{5} & & & & & 1
\end{array}\right] \succeq 0
$$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & y_{1} & y_{2} & x_{5} & x_{4} \\ x_{2} & & 1 & x_{5} & y_{2} & x_{3} \\ x_{3} & & & 1 & y_{1} & x_{2} \\ x_{4} & & & & 1 & x_{1} \\ x_{5} & & & & & 1\end{array}\right] \succeq 0$

Example

$\mathrm{TH}_{1}\left(I_{G}\right)$ is the set of $x \in \mathbb{R}^{5}$ such that there exist y_{1} and y_{2} such that
0
1
2
3
4
5 $\left[\begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5 \\ 1 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ x_{1} & 1 & y_{1} & y_{2} & x_{5} & x_{4} \\ x_{2} & y_{1} & 1 & x_{5} & y_{2} & x_{3} \\ x_{3} & y_{2} & x_{5} & 1 & y_{1} & x_{2} \\ x_{4} & x_{5} & y_{2} & y_{1} & 1 & x_{1} \\ x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & 1\end{array}\right] \succeq 0$

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.
Using our characterization for TH_{1}-exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Cut-Perfect Graphs

In analogy with the stable set results, it makes sense to have the following definition:

Definition

We call a graph G cut-perfect if $\mathrm{TH}_{1}\left(I_{G}\right)=\operatorname{CUT}(G)$.
Using our characterization for TH_{1}-exact zero-dimensional ideals we get the following characterization, that answers a Lovász question.

Theorem

A graph is cut-perfect if and only if it has no K_{5} minor and no chordless cycle of size larger than 4.

Higher Order Theta Bodies

Remarks:

- The higher order theta bodies also have interesting combinatorial descriptions.

Higher Order Theta Bodies

Remarks:

- The higher order theta bodies also have interesting combinatorial descriptions.
- This hierarchy 'refines' a hierarchy obtained by Laurent by a completely different process.

The End

Thank You

