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Motivations in Markov chains

Markov chains: valid tool for modeling problems of the real
world (applied probability, queueing models, performance
analysis, communication networks, population growth,
economic growth, etc.)

Source of interesting theoretical and computational problems
in Numerical Linear Algebra involving either finite or infinite
matrices

Source of very nice structured matrices: almost block
Toeplitz, generalized block Hessenberg, multilevel structures.

People from numerical linear algebra can provide useful tools
to the community of applied probabilists and engineers for
solving related problems
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Announcement

The Fifth International Conference on Matrix Analytic Methods on
Stochastic Models (MAM5)
Pisa (Italy), June 21–24, 2005
www.dm.unipi.it/˜ mam5
Deadline for paper submission: October 2004
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Introduction to Markov chains

Definition (Stochastic process)

A stochastic process is a family {Xt ∈ E : t ∈ T} where

Xt : random variables

E : state space (denumerable) (e.g. E = N)

T : time space (denumerable) (e.g. T = N)

Definition (Markov chain)

A Markov chain is a stochastic process {Xn}n∈T such that

P[Xn+1 = i |X0 = j0,X1 = j1, . . . ,Xn = jn] =

P[Xn+1 = i |Xn = jn]
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The state Xn+1 of the system at time n + 1 depends only on
the state Xn at time n. It does not depend on the past history
of the system

Homogeneity assumption:
P[Xn+1 = i |Xn = j ] = P[X1 = i |X0 = j ] ∀ n

Transition matrix of the Markov chain

P = (pi ,j)i ,j∈T , pi ,j = P[X1 = j |X0 = i ].

P is row-stochastic: pi ,j ≥ 0,
∑

j∈T pi ,j = 1.
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Status of the system

Let x(n) = (x
(n)
i ), where

x
(n)
i = P[Xn = i ], i = 0, 1, 2, · · · .

x(n) describes the status of the system at time n (say,
probability that at time n there are n customers in the queue)
From the composition lows of probability it follows that

x
(n)
i ≥ 0

‖x(n)‖1 =
∞∑
i=0

x
(n)
i = 1

x(n+1)T = x(n)TP

Great interest for π = limn x(n) (if it exists): π represents the
asymptotic behaviour of the system as the time grows.
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Classification of the states

A state i is called recurrent if, once the Markov chain has
visited state i , it will return to it over and over again.

A state i is positive recurrent if the expected return time to
state i is finite;
it is null recurrent if the expected return time is infinite.

A state i is called transient if it is not recurrent.

A state i has periodicity δ > 1 if P[Xn = i |X0 = i ] > 0 only if
n = 0 mod δ.

If P is irreducible then all the states are transient, or positive
recurrent, or null recurrent.
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Positive recurrence

Theorem

Assume that the Markov chain is irreducible. The states are
positive recurrent if and only if there exists a strictly positive
invariant probability vector, that is, a vector π = (πi ) such that
πi > 0 for all i , with

πTP = πT and
∑

i

πi = 1.

In that case, if the Markov chain is non-periodic, then
limn→+∞ P[Xn = j |X0 = i ] = πj for all j , independently of i , and π
is called steady state vector.
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The finite case

For finite matrices the Perron-Frobenius theorem allows to easily
give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If A = (ai ,j) ∈ Rn×n, ai ,j ≥ 0 and irreducible then

ρ(A) > 0.

ρ(A) > 0 is a simple eigenvalue.

If A is non-periodic, then any other eigenvalue λ of A is such
that |λ| < ρ(A).

There exist unique (up to scaling) positive vectors x, y ∈ Rn

such that Ax = ρ(A)x, yTA = ρ(A)yT .

Therefore a finite irreducible Markov chain is positive recurrent
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The infinite case

Let us assume that P = (pi ,j)i ,j∈N is semi-infinite.
If P is stochastic, the irreducibility of P does not guarantee the
existence of a vector π > 0 such that

πT = πTP, ‖π‖1 = 1.

Example

For the stochastic irreducible matrix

P =


0 1 0

1/2 0 1/2
1/2 0 1/2

0
. . .

. . .
. . .


one has πT = πTP with πT = (1/2, 1, 1, 1, . . .)
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A simple queueing problem

4 3 2 1

One server which attends to one customer at a time, in order
of their arrivals.

Time is discretized into intervals of fixed length.

A random number of customers joins the system during each
interval.

Customers are indefinitely patient!
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A simple queueing problem

Define:

αn: the number of new arrivals in (n − 1, n);
Xn: the number of customers in the system at time n.

Then

Xn+1 =

{
Xn + αn+1 − 1 if Xn + αn+1 ≥ 1

0 if Xn + αn+1 = 0.

If {αn} are independent random variables, then {Xn} is a
Markov chain with space state N.

If in addition the αn’s are identically distributed, then
{Xn} is homogeneous.
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Introduction
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A simple queueing problem

The transition matrix P = (pi ,j)i ,j∈N, such that

pi ,j = P[X1 = j |X0 = i ], for all i , j in N.

is

P =


q0 + q1 q2 q3 . . .

q0 q1 q2
. . .

q0 q1
. . .

0
. . .

. . .


where qi is the probability that i new customers join the queue
during a unit time interval.
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Introduction
A power series matrix equation
The steady state vector

Important families of Markov chains

M/G/1-type: P is in upper block Hessenberg form, and
almost block Toeplitz

G/M/1-type: P is in lower block Hessenberg form, and almost
block Toeplitz

QBD (Quasi-Birth-Death): P is block tridiagonal, and almost
block Toeplitz

NSF (Non-Skip-Free): P is in generalized block Hessenberg
form, and almost block Toeplitz

Tree-like stohastic process: P has a “recursive structure”
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M/G/1-type: P is in upper block Hessenberg form, and
almost block Toeplitz

G/M/1-type: P is in lower block Hessenberg form, and almost
block Toeplitz

QBD (Quasi-Birth-Death): P is block tridiagonal, and almost
block Toeplitz

NSF (Non-Skip-Free): P is in generalized block Hessenberg
form, and almost block Toeplitz

Tree-like stohastic process: P has a “recursive structure”
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M/G/1-type Markov chains

Introduced by M. F. Neuts in the 80’s, they model a large
variety of queueing problems.
The transition matrix is

P =



B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
. . .

. . .


where Ai−1,Bi ∈ Rm×m, for i ≥ 0, are nonnegative such that∑+∞

i=−1 Ai ,
∑+∞

i=0 Bi , are stochastic.
P is upper block Hessenberg and is block Toeplitz except for
its first block row.
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Positive recurrence (informal)

Intuitively, positive recurrence means that the global probability
that the state changes into a “forward” state is less than the
global probability of a change into a “backward” state.
In this way, the probabilities πi of the stationary probability vector
get smaller and smaller as long as i grows.

Example (Positive recurrent Markov chain)

P =


0 1 0

3/4 0 1/4
3/4 0 1/4

0
. . .

. . .
. . .

 ,

πT =

[
1

2
,
2

3
,
2

9
,

2

27
, . . .

]
∈ L1

Beatrice Meini Numerical solution of Markov chains and queueing problems



Introduction to Markov chains
Markov chains of M/G/1-type

Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes

Tree-like stochastic processes

Introduction
A power series matrix equation
The steady state vector

Transient (informal)

Intuitively, transient means that the global probability that the
state changes into a “backward” state is less than the global
probability of a change into a “forward” state.

Example (Transient Markov chain)

P =


0 1 0

1/4 0 3/4
1/4 0 3/4

0
. . .

. . .
. . .

 ,

πT = [1, 4, 12, 16, . . .] 6∈ L∞
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Null recurrence (informal)

Intuitively, null recurrence means that the global probability that
the state changes into a “backward” state is equal to the global
probability of a change into a “forward” state.

Example (Null recurrence)

P =


0 1 0

1/2 0 1/2
1/2 0 1/2

0
. . .

. . .
. . .

 ,

πT = [1/2, 1, 1, . . .] 6∈ L1
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Positive recurrence

For M/G/1-type Markov chains positive recurrence is
equivalent to

bTa < 1,

where

bT = 1T
∞∑
i=1

iAi−1, 1T = (1, 1, . . . , 1),

aT = aT
∞∑

i=−1

Ai , aT1 = 1

Throughout we assume that the Markov chain is irreducible,
and positive recurrent, therefore there exists the steady state
vector π > 0.
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Positive recurrence

For M/G/1-type Markov chains positive recurrence is
equivalent to

bTa < 1,

where

bT = 1T
∞∑
i=1

iAi−1, 1T = (1, 1, . . . , 1),

aT = aT
∞∑

i=−1

Ai , aT1 = 1

Throughout we assume that the Markov chain is irreducible,
and positive recurrent, therefore there exists the steady state
vector π > 0.
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A power series matrix equation

Theorem (Neuts ’98)

The matrix equation

X = A−1 + A0X + A1X
2 + A2X

3 + · · ·

has a minimal component-wise solution G, among the nonnegative
solutions.
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Some properties of G

Let S(z) = zI −
∑+∞

i=−1 z i+1Ai .
If the M/G/1-type Markov chain is positive recurrent, then:

G is row stochastic.

det S(z) has exactly m zeros in the closed unit disk.

The eigenvalues of G are the zeros of det S(z) in the closed
unit disk.

Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman
’82)
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Some properties of G

Let S(z) = zI −
∑+∞

i=−1 z i+1Ai .
If the M/G/1-type Markov chain is positive recurrent, then:

G is row stochastic.

det S(z) has exactly m zeros in the closed unit disk.

The eigenvalues of G are the zeros of det S(z) in the closed
unit disk.

Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman
’82)
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Some properties of S(z)

The power series S(z) = zI −
∑+∞

i=−1 z i+1Ai belongs to the
Wiener algebra W , therefore it is analytic for |z | < 1,
continuous for |z | = 1.

Under some mild additional assumptions S(z) is analytic for
|z | < r , where r > 1, and there exists a smallest modulus zero
ξ of det S(z) such that 1 < |ξ| < r .
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Canonical factorization

Theorem

The function φ(z) = I −
∑+∞

i=−1 z iAi has a weak canonical
factorization in W

φ(z) =
(
I −

+∞∑
i=0

z iUi

)
(I − z−1G ), |z | = 1,

where:

U(z) = I −
∑+∞

i=0 z iUi is analytic for |z | < 1, det U(z) 6= 0 for
|z | ≤ 1;

L(z) = I − z−1G is analytic for |z | > 1, det L(z) 6= 0 for
|z | > 1, det L(1) = 0.
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where:
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∑+∞
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Matrix interpretation

H =


I − A0 −A1 A2 . . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0
. . .

. . .

 = UL

where

U =


U0 U1 U2 . . .

U0 U1
. . .

0
. . .

. . .

 , L =


I 0
−G I

−G I

0
. . .

. . .


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Computing π

Consider the problem of computing π = (πi )i∈N, πi ∈ Rm, such
that πT (I − P) = 0. i.e.,

[πT
0 ,πT

1 ,πT
2 , . . .]


I − B0 −B1 −B2 −B3 . . .

−A−1 I − A0 −A1 −A2 . . .

−A−1 I − A0 −A1
. . .

0
. . .

. . .
. . .

 = 0
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Computing π

Then,

0 = [πT
0 ,πT

1 ,πT
2 , . . .]


I − B0 −B1 −B2 . . .

−A−1

0 UL
...


is equivalent to

0 = [πT
0 ,πT

1 ,πT
2 , . . .]


I − B0 −B∗1 −B∗2 . . .

−A−1

0 U
...


where

[B∗1 ,B∗2 , . . .] = [B1,B1, . . .]L
−1
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0 UL
...


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0 = [πT
0 ,πT

1 ,πT
2 , . . .]
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−A−1

0 U
...
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Computing π

0 = [πT
0 ,πT

1 ,πT
2 , . . .]


I − B0 −B∗1 −B∗2 −B∗3 . . .

−A−1 U0 U1 U2 . . .

U0 U1
. . .

0 0
. . .

. . .


The first two equations yield

0 = [πT
0 ,πT

1 ]

[
I − B0 −B∗1
−A−1 U0

]
whence we get

πT
0 (I − B0 − B∗1U−1

0 A−1) = 0
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Computing π

0 = [πT
0 ,πT

1 ,πT
2 , . . .]


I − B0 −B∗1 −B∗2 −B∗3 . . .

−A−1 U0 U1 U2 . . .

U0 U1
. . .

0 0
. . .

. . .


From the remaining equations we obtain the block triangular block
Toeplitz system

[πT
1 ,πT

2 , . . .]


U0 U1 U2 . . .

U0 U1
. . .

0
. . .

. . .

 = πT
0 [B∗1 ,B∗2 , . . .]

which can be solved either by means of forward substitution or by
FFT-based algorithms.
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Ramaswami’s formula (’89)

Summing up:

Ramaswami’s formula
πT

0 (I − B0 − B∗1U−1
0 A−1) = 0

πT
1 = πT

0 B∗1U−1
0

πT
2 = (πT

0 B∗2 − πT
1 U1)U

−1
0

πT
i = (πT

0 B∗i − πT
1 Ui−1 − · · · − πT

i−1U1)U
−1
0

where

B∗i =
+∞∑
j=i

BjG
j−i , i = 0, 1, 2, . . .

U∗0 = I −
+∞∑
j=0

AjG
j , Ui =

+∞∑
j=i

AjG
j−i , i = 1, 2, 3, . . . .
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Computational issues

For the stochasticity of P we have limi Bi = limi Ai = 0, so that in
floating point computation Bi ≈ 0 for i > N and the infinite
summations turn into finite summations

B∗i =
∞∑
j=i

BjG
j−i ≈

N∑
j=i

BjG
j−i , i = 0, 1, . . . ,N

Compute G .

Compute B∗i , Ui , i = 0, 1, 2, . . . by means of back substitution
(Horner’s rule) (O(Nm3) ops)

Compute the dominant left eigenvector π0 of an m ×m
matrix (O(m3) ops)

Computing πi for i = 1, 2, . . . , q by solving an q × q block
triangular block Toeplitz system (O(m3q log q) ops)
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Functional iterations

Natural iteration{
Xn+1 =

∑+∞
i=−1 AiX

i+1
n , n ≥ 0

X0 = 0

History Several variants proposed by Neuts (’81, ’89),
Ramaswami (’88), Latouche (’93), Bai (’97).

Convergence Convergence analysis performed by Meini (’97), Guo
(’99). Convergence is linear, and for some problems
it may be extremely slow.
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Some fixed point iterations

Natural iteration

Xn+1 =
+∞∑
i=−1

AiX
i+1
n , n ≥ 0

Traditional iteration

Xn+1 = (I − A0)
−1

(
A−1 +

+∞∑
i=1

AiX
i+1
n

)
, n ≥ 0

Iteration “based on the matrix U”

Xn+1 =
(
I −

+∞∑
i=0

AiX
i
n

)−1
A−1, n ≥ 0
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Convergence analysis: case X0 = 0

Theorem (Latouche ’91)

If X0 = 0 then the sequences {X (N)
n }n≥0, {X (T )

n }n≥0, {X (U)
n }n≥0

converge monotonically to the matrix G, that is Xn+1 − Xn ≥ 0 for

Xn being any of X
(N)
n , X

(T )
n , X

(U)
n . Moreover, for any n ≥ 0, it

holds
X

(N)
n ≤ X

(T )
n ≤ X

(U)
n .

Therefore the sequence {X (U)
n }n≥0 provides the best

approximation.
Has it the fastest convergence?
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Convergence analysis: case X0 = 0

Consider for simplicity the natural iteration.
Define En = G − Xn the error at step n.

Theorem

1 0 ≤ En+1 ≤ En for any n ≥ 0.

2 En+11 = RnEn1 where Rn =
∑+∞

i=0

∑+∞
j=i AjX

j−i
n .

3 ‖En‖∞ =
∥∥∥∏n−1

i=0 Ri

∥∥∥
∞

.

Denoting r = limn
n
√
‖En‖, one has r = ρ(R), where

R = lim
n

Rn =
+∞∑
i=0

+∞∑
j=i

AjG
j−i .

4
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Comparison among the 3 iterations

Theorem

One has rN = ρ(R(N)), rT = ρ(R(T )), rU = ρ(R(U)), where

R(N) =
+∞∑
i=0

A∗i ,

R(T ) = (I − A0)
−1

(+∞∑
i=0

A∗i − A0

)
,

R(U) = (I − A∗0)
−1

+∞∑
i=1

A∗i .

and

0 ≤ R(U) ≤ R(T ) ≤ R(N)

Beatrice Meini Numerical solution of Markov chains and queueing problems



Introduction to Markov chains
Markov chains of M/G/1-type

Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes

Tree-like stochastic processes

Functional iterations
Cyclic reduction
Doubling method

Convergence analysis: case X0 = I

Consider for simplicity the natural iteration.

Theorem

Under mild irreducibility assumptions, for the convergence rate

r = lim
n

n
√
‖En‖

of the sequences obtained with X0 = I , we have

rN = ρ2(R
(N)), rT = ρ2(R

(T )), rU = ρ2(R
(U)),

where ρ2 denotes the second largest modulus eigenvalue.

Starting with X0 = I the convergence is faster
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Convergence for X0 = 0 and X0 = I
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Linearization of the matrix equation


I − A0 −A1 −A2 . . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0
. . .

. . .




�� ��G
G 2

G 3

...

 =


A−1

0
0
...

 .

G can be interpreted by means of the solution of an infinite block
Hessenberg, block Toeplitz system
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Cyclic reduction: history

4 Introduced in the late ’60s by Buzbee, Golub and Nielson for
solving block tridiagonal systems in the context of elliptic
equations.

Stability and convergence properties: Amodio and Mazzia
(’94), Yalamov (’95), Yalamov and Pavlov (’96), etc.

Rediscovered by Latouche and Ramaswami (Logarithmic
reduction) in the context of Markov chains (’93);

Extended to infinite block Hessenberg, block Toeplitz systems
by Bini and Meini (starting from ’96).
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The cyclic reduction algorithm

Original system:
I − A0 −A1 −A2 . . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0
. . .

. . .




G
G 2

G 3

...

 =


A−1

0
0
...


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The cyclic reduction algorithm

Block even-odd permutation:



I − A0 −A2 . . . −A−1 −A1 . . .

I − A0

. . . −A−1

. . .

0
. . . 0

. . .

−A1 −A3 . . . I − A0 −A2 . . .

−A−1 −A1

. . . I − A0

. . .

0
. . .

. . . 0
. . .





G2

G4

...
G
G3

...


=



0
0
...

A−1

0
...



In compact form:[
I − H1 −H2

−H3 I − H4

] [
g−
g+

]
=

[
0
b

]
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The cyclic reduction algorithm

Structure of the matrix:

[
I − H1 −H2

−H3 I − H4

]
=

Schur complementation:

I − H4 − H3(I − H1)
−1H2 = +

=

Upper block Hessenberg matrix, block Toeplitz except for its first
block row
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The cyclic reduction algorithm

Resulting system:
I − Â

(1)
0 −Â

(1)
1 −Â

(1)
2 . . .

−A
(1)
−1 I − A

(1)
0 −A

(1)
1 . . .

−A
(1)
−1 I − A

(1)
0

. . .

0
. . .

. . .




G
G 3

G 5

...

 =


A−1

0
0
...


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The cyclic reduction algorithm

One more step of the same procedure:
I − Â

(2)
0 −Â

(2)
1 −Â

(2)
2 . . .

−A
(2)
−1 I − A

(2)
0 −A

(2)
1 . . .

−A
(2)
−1 I − A

(2)
0

. . .

0
. . .

. . .




G
G 5

G 9

...

 =


A−1

0
0
...


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The cyclic reduction algorithm

At the n-th step:
I − Â

(n)
0 −Â

(n)
1 −Â

(n)
2 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1 . . .

−A
(n)
−1 I − A

(n)
0

. . .

0
. . .

. . .




G
G 2n+1

G 2·2n+1

...

 =


A−1

0
0
...


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The cyclic reduction algorithm

At the limit as n →∞:
I − Â

(∞)
0 0

−A
(∞)
−1 I − A

(∞)
0

−A
(∞)
−1 I − A

(∞)
0

0
. . .

. . .




G
G ∗

G ∗

...

 =


A−1

0
0
...


where G ∗ = limn Gn.
Therefore G = (I − Â

(∞)
0 )−1A−1
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The cyclic reduction algorithm

Functional interpretation

A(n+1)(z) = zA
(n)
odd(z) + A

(n)
even(z)(I − A

(n)
odd(z))−1A

(n)
even(z)

Â(n+1)(z) = Â
(n)
even(z) + Â

(n)
odd(z)(I − A

(n)
odd(z))−1A

(n)
even(z)

where

Â(n)(z) =
+∞∑
i=0

z i Â
(n)
i , A(n)(z) =

+∞∑
i=−1

z i+1A
(n)
i
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Applicability of CR: the role of Wiener algebra

Theorem

For any n ≥ 0 one has:

1 A(n)(z) and Â(n)(z) belong to W+.

2 I − A
(n)
odd(z) is invertible for |z | ≤ 1 and its inverse belongs to

W+.

3 φ(n)(z) = I − z−1A(n)(z) has a weak canonical factorization

φ(n)(z) =
(
I −

+∞∑
i=0

z iU
(n)
i

)
(I − z−1G 2n

), |z | = 1.
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Convergence of CR

Theorem

Let ξ be the zero of smallest modulus of det S(z) such that
|ξ| > 1. Then:

1 {A(n)(z)}n −→ A
(∞)
−1 + zA

(∞)
0 uniformly over any compact

subset of {z ∈ C : |z | < ξ}.
2 ‖A(n)

i ‖ ≤ γ|ξ|−i ·2n
and ‖Â(n)

i ‖ ≤ γ|ξ|−i ·2n
, for any i ≥ 1,

n ≥ 0.

3 ‖Â(n)
0 − Â

(∞)
0 ‖ ≤ γ|ξ|−2n

for any n ≥ 0.

4 ρ(Â
(∞)
0 ) ≤ ρ(A

(∞)
0 ) < 1.

5 ‖G − G (n)‖ ≤ γ|ξ|−2n
, where G (n) = (I − Â

(n)
0 )−1A−1.
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Computational issues

The matrix power series A(n)(z), Â(n)(z) are approximated by
matrix polynomials of degree at most dn.

The computation of such matrix polynomials by means of
evaluation/iterpolation at the roots of unity can be performed in

O(m3dn + m2dn log dn)

arithmetic operations
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Doubling method

History Introduced by W.J. Stewart (’95) to solve general
block Hessenberg systems, applied by Latouche and
Stewart (’95) for computing G , improved by Bini and
Meini (’98) by exploiting the Toeplitz structure of
the block Hessenberg matrices.

Idea Successively solve finite block Hessenberg systems of
block size which doubles at each iterative step.
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Doubling method

Truncation at block size n of the infinite system :

I − A0 −A1 −A2 . . . −An−1

−A−1 I − A0 −A1
. . .

...

−A−1 I − A0
. . . −A2

. . .
. . . −A1

0 −A−1 I − A0




X

(n)
1

X
(n)
2
...

X
(n)
n

 =


A−1

0
...
0

 .
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Doubling method: convergence

Theorem

For any n ≥ 1 one has:

0 ≤ X
(n)
1 ≤ X

(n+1)
1 ≤ G.

X
(n)
i ≤ G i for i = 1, . . . , n.

For any ε > 0 there exist positive constants γ and σ such that

‖G − X
(n)
1 ‖∞ ≤ γ(|ξ| − ε)−n,

where ξ is the zero of smallest modulus of det S(z) such that
|ξ| > 1.
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Doubling method: algorithm

The algorithm consists in successively solving systems of block size
2, 4, 8, 16, . . . .

Size doubling at each step =⇒ Quadratic convergence

Use of FFT and Toeplitz structure =⇒ The 2n × 2n block
system can be solved in O(m32n + m2n2n) arithmetic
operations.
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Quasi-Birth-Death processes

If Ai = 0 for i > 1 the M/G/1-type Markov chain is called a
Quasi-Birth-Death process (QBD).

Problem

Computation of the minimal component-wise solution G , among the
nonnegative solutions, of

X = A−1 + A0X + A1X
2
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Linearization of the matrix equation


I − A0 −A1 0
−A−1 I − A0 −A1

−A−1 I − A0
. . .

0
. . .

. . .




�� ��G
G 2

G 3

...

 =


A−1

0
0
...

 .

G can be interpreted by means of the solution of an infinite block
triangular, block Toeplitz system
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Cyclic reduction for QBD’s

At the n-th step
I − Â

(n)
0 −A

(n)
1 0

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

−A
(n)
−1 I − A

(n)
0

. . .

0
. . .

. . .




�� ��G
G 2n+1

G 2·2n+1

...

 =


A−1

0
0
...

 .
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At the limit as n →∞:
I − Â

(∞)
0 0

−A
(∞)
−1 I − A

(∞)
0

−A
(∞)
−1 I − A

(∞)
0

0
. . .

. . .




G
G ∗

G ∗

...

 =


A−1

0
0
...


where G ∗ = limn Gn.
Therefore G = (I − Â

(∞)
0 )−1A−1
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Recursive (algebraic) relations

A
(n+1)
−1 = A

(n)
−1K

(n)A
(n)
−1,

A
(n+1)
0 = A

(n)
0 + A

(n)
−1K

(n)A
(n)
1 + A

(n)
1 K (n)A

(n)
−1,

A
(n+1)
1 = A

(n)
1 K (n)A

(n)
1 ,

Â
(n+1)
0 = Â

(n)
0 + A

(n)
1 K (n)A

(n)
−1, n ≥ 0

where K (n) = (I − A
(n)
0 )−1.
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Tree-like stochastic processes

Motivation Tree-Like processes are used to model certain
queueing problems: single server queues with LIFO
service discipline, medium access control protocol
with an underlying stack structure, etc. (Latouche,
Ramaswami ’99)

Assumptions B, Ai and Di , i = 1, . . . , d , nonnegative m ×m
matrices, such that B is sub-stochastic and
B + Di + A1 + · · ·+ Ad , i = 1, . . . , d , are stochastic.
We set C = I − B.
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Tree-like stochastic processes

The generator matrix has the form

Q =


C0 Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W

 ,

where C0 is an m ×m matrix,

Λi =
[

Ai 0 0 . . .
]
, Vi =


Di

0
0
...

 , for 1 ≤ i ≤ d
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Tree-like processes

The infinite matrix W is recursively defined by

W =


C Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . .

. . . 0
Vd 0 . . . 0 W

 .
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Tree-like processes

Theorem

The matrix W can be factorized as W = UL, where

U =


S Λ1 Λ2 . . . Λd

0 U 0 . . . 0

0 0 U
.. .

...
...

...
. . .

. . . 0
0 0 . . . 0 U

 , L =


I 0 0 . . . 0

Y1 L 0 . . . 0

Y2 0 L
. . .

...
...

...
. . .

. . . 0
Yd 0 . . . 0 L


and S is the minimal solution of X +

∑d
i=1 AiX

−1Di = C.

Consequence: Once the matrix S is known, the stationary
probability vector can be computed by using the UL factorization
of W .
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Natural fixed point iteration

The sequences
Sn = C +

∑
1≤i≤d

AiGi ,n,

Gi ,n+1 = (−Sn)
−1Di , for 1 ≤ i ≤ d , n ≥ 0,

with G1,0 = . . . = Gd ,0 = 0, monotonically converge to S and
Gi = (−S)−1Di , i = 1, . . . , d , respectively (Latouche and
Ramaswami ’99)
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Cyclic reduction + fixed point iteration

Multiply

S +
d∑

j=1

AjS
−1Dj = C

by S−1Di , for i = 1, . . . , d .

Observe that Gi = (−S)−1Di , i = 1, . . . , d , is a solution

Di + (C +
∑

1≤j≤d
j 6=i

AjGj)X + AiX
2 = 0.

We may prove that Gi is the minimal solvent.
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Cyclic reduction + fixed point iteration

Set G1,0 = G2,0 = · · · = Gd ,0 = 0

For n = 0, 1, 2, . . .
For i = 1, . . . , d :

1 define

Fi,n = C +
∑

1≤j≤i−1

AjGj,n +
∑

i+1≤j≤d

AjGj,n−1.

2 compute, by means of cyclic reduction, the minimal
solvent Gi,n of

Di + Fi,nX + AiX
2 = 0,

The sequences {Gi ,n : n ≥ 0} monotonically converge to Gi , for
1 ≤ i ≤ d
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Newton’s iteration

Set S0 = C

For n = 0, 1, 2, . . .

1 Compute Ln = Sn − C +
∑d

i=1 AiS
−1
n Di .

2 Compute the solution Yn of

X −
d∑

i=1

AiS
−1
n XS−1

n Di = Ln (1)

3 Set Sn+1 = Sn − Yn

The sequence {Sn}n converges quadratically to S .

Open issues: efficient computation of the solution of (1).

Beatrice Meini Numerical solution of Markov chains and queueing problems



Introduction to Markov chains
Markov chains of M/G/1-type

Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes

Tree-like stochastic processes

Introduction
Algorithms

Newton’s iteration

Set S0 = C

For n = 0, 1, 2, . . .

1 Compute Ln = Sn − C +
∑d

i=1 AiS
−1
n Di .

2 Compute the solution Yn of

X −
d∑

i=1

AiS
−1
n XS−1

n Di = Ln (1)

3 Set Sn+1 = Sn − Yn

The sequence {Sn}n converges quadratically to S .

Open issues: efficient computation of the solution of (1).

Beatrice Meini Numerical solution of Markov chains and queueing problems



Introduction to Markov chains
Markov chains of M/G/1-type

Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes

Tree-like stochastic processes

Introduction
Algorithms

Newton’s iteration

Set S0 = C

For n = 0, 1, 2, . . .

1 Compute Ln = Sn − C +
∑d

i=1 AiS
−1
n Di .

2 Compute the solution Yn of

X −
d∑

i=1

AiS
−1
n XS−1

n Di = Ln (1)

3 Set Sn+1 = Sn − Yn

The sequence {Sn}n converges quadratically to S .

Open issues: efficient computation of the solution of (1).

Beatrice Meini Numerical solution of Markov chains and queueing problems



Introduction to Markov chains
Markov chains of M/G/1-type

Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes

Tree-like stochastic processes

Introduction
Algorithms

Cpu time
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Wiener algebra

Definition

The Wiener algebra W is the set of complex m ×m matrix valued
functions A(z) =

∑+∞
i=−∞ z iAi such that

∑+∞
i=−∞ |Ai | is finite.

Definition

The set W+ is the subalgebra of W made up by power series of
the kind

∑+∞
i=0 z iAi .
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M/G/1 Markov chain

P =


B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

O
. . .

. . .
. . .


Ai ,Bi+1 ∈ Rm×m, i = −1, 0, 1, . . .
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G/M/1 Markov chain

P =


B0 A1 0
B−1 A0 A1

B−2 A−1 A0 A1
...

...
. . .

. . .
. . .



Beatrice Meini Numerical solution of Markov chains and queueing problems



QBD Stochastic processes

P =


B0 B1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0 A1

0
. . .

. . .
. . .


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Non-Skip-Free Stochastic processes

P =



B0,1 B0,1 B0,2 B0,3 . . . . . .
...

...
...

...
...

...
Bk−1,0 Bk−1,1 Bk−1,2 Bk−1,3 . . . . . .
A−k A−k+1 A−k+2 A−k+3 . . . . . .

A−k A−k+1 A−k+2 A−k+3
. . .

A−k A−k+1 A−k+2 A−k+3
. . .

O
. . .

. . .
. . .

. . .


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