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Many telephone call centers that experience cyclic and random customer demand adjust their
staffing over the day in an attempt to provide a consistent target level of customer service. The
standard and widely used staffing method, which we call the stationary independent period by period
(s1pp) approach, divides the workday into planning periods and uses a series of stationary independent
Erlang-c queuing models—one for each planning period—to estimate minimum staffing needs. Our
research evaluates and improves upon this commonly used heuristic for those telephone call centers
with limited hours of operation during the workday. We show that the stPp approach often suggesis
staffing that is substantially too low to achieve the targeted customer service levels (probability of
customer delay) during critical periods. The major reasons for sipp's shortfall are as follows: (1) sipp’s
failure to account for the time lag between the peak in customer demand and when system congestion
actually peaks; and (2) sipp's use of the planning period average arrival rate, thereby assuming that
the arrival rate is constant during the period. We identify specific domains for which sipe tends to
suggest inadequate staffing. Based on an analysis of the factors that influence the magnitude of the
lag in infinite server systems that start empty and idle, we propose and test two simple “lagged” sipp
modifications that, in most situations, consistently achieve the service target with only modest
increases in staffing.

(CALL-CENTERS; STAFFING; QUEUING; NON-STATIONARY; SIPP)

1. Introduction

This paper shows that the algorithm commonly used to determine staffing levels for
telephone call centers often fails to meet targeted customer service levels. We identify why
this happens, and when the shortfalls are worst. We propose a simple modification that
eliminates the problem at modest increase in staffing cost.

Telephone call centers play an increasingly important role in the economy. Observers of
the industry estimate that there are over 100,000 call centers in the U.S. with more than 3
million customer service agents. Telephone call-center management has benefited greatly
from the use of management science medels for decision support—particularly in the areas
of forecasting, capacity planning, and staffing and scheduling (Mehrothra 1997).

Most telephone call centers experience a time-varying stream of customer calls (arrivals)
that have one or more peaks and valleys over the day. In an attempt to economically provide
a consistent level of service at all times of the day, managers typically adjust the staffing
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levels through the workday to match the anticipated demand pattern. This is often done with
the assistance of commercially available software packages that incorporate queuing analy-
sis. Unfortunately, although telephone call centers can in principle be modeled as queues, the
mathematical models that capture both the randomness and the time-varying pattern of the
demand process do not admit of solutions that are easy to use. Hence, the commercial
packages that support call-center staffing decisions typically use approximations. The clas-
sical Erlang-b and Erlang-c queuing models are the basis of most of the products used to help
make these decisions.

The primary focus of this paper is to evaluate and improve upon the most commonly used
staffing heuristic, which we call the stationary independent period by period or sipp approach,
in the context of telephone call centers with limited operating hours. Our main finding is that
the siep approach frequently suggests staffing levels that are so low that customer delays
substantially exceed management’s service target. The contributions of this paper are as
follows: (1) to demonstrate the magnitude and domain of sipp’s understaffing; (2) to provide
an understanding of the structural reasons for sipp’s understaffing, particularly regarding the
magnitude of congestion lags in systems starting empty and idle; and (3) based on this
understanding, to propose two simple modifications of sipp that, in most situations, provide
more reliable staffing with little or modest increases in costs.

The stpp approach begins by dividing the workday into planning periods, e.g., hours,
half-hours, or quarter-hours. Then a series of stationary queuing models, most often M/M/s
(Erlang)-type models, are constructed, one for each planning period. Each of these period-
specific models is independently solved for the minimum number of servers needed to meet
the service target in that period. In some implementations, workforce schedules are then
constructed by managers without the benefit of additional models, while in others, the
planning period staffing requirements generated by sipp become the right-hand sides of key
constraints in an integer programming model that derives the actual staffing schedule. (For
examples of the linear programming approach to workforce scheduling, see Segal 1974 or
Kolesar et al 1975.) An approach that integrates the optimization and queuing steps is given
in Ingolfsson, Haque, and Umnikov (2002) and Ingolfsson and Cabral (2002). While the use
of the sipp approach is common in industry, there has been little published research exploring
the conditions when using it provides reasonable minimum staffing levels. (See Green,
Kolesar, and Soares 2001 for a review of the extant literature and some proposed remedies
for sipp’s shortcomings.) :

The research reported on here builds on our earlier work on staffing in service systems that
operate continuously over time, so-called 24/7 systems (Green, Kolesar, and Soares 2001,
hereafter referred to as Gks). In that research, we found that the sipp method frequently fails
to provide adequate staffing for 24/7 systems. As this paper will show, the understaffing
problem may be substantially worse when sipp is applied to systems which shut down for
some part of each day.

Our research indicates that a major reason for sip’s unreliability is that it implicitly
assumes that the system’s congestion in a given planning period is a result of the demand
arising in that period alone. The fallibility of this assumption is evident even in the case
when, though demand is time-varying, staffing levels are kept constant. We have shown that
in such systems the time-varying pattern of system congestion is out-of-phase with the
demand pattern (see, e.g., Green, Kolesar, and Svoronos 1991). In particular, there is a time
lag between the epoch of peak demand and the epoch of peak system congestion. For certain
system parameter values, this lag effect can be significant and if ignored, results in decreased
staffing levels just as delays are peaking, that is, somewhat after a peak in the arrival rate. As
a consequence, unacceptably long delays for service may persist for hours after the arrival
peak.

Thus, we postulated that understanding lags is central to understanding how to staff.
However, there are no analytical results for congestion lags in finite server systems with
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cyclic demands. However, Eick, Massey, and Whitt (1993) derived closed form expressions
in the case of infinite server, steady-state systems with Poisson arrivals and sinusoidal arrival
rates. In Gks, we demonstrated that two simple modifications of siep, which incorporate an
estimate of the time lag based on the work of Eick, Massey, and Whitt, perform far better than
the simple sipp approach in a broad range of practical situations. Our use of the lag to improve
sipp’s performance is related to the modified offered load (moL) approximation proposed by
Jagerman (1975) to estimate blocking probabilities in the nonstationary Erlang loss model.
Jennings et al. (1996) suggested that the mMoL could be used to determine server staffing in
nonstationary, multiserver queues. In Green and Kolesar (1997), we showed that what we
called the lagged point-wise stationary approximation (psa), a precursor to the Lag sipp
approach proposed in Gks, was far more accurate in identifying the staffing levels needed to
keep the peak probability of delay low. The lag approach is also considerably simpler
computationally than moL.

Extending the Lag sipp approach to systems with limited operating hours is not trivial for
it requires developing a foundation of knowledge about time lags in such systems. Queues
with limited operating hours and cyclic demand patterns have not been extensively studied.
Though there is fairly extensive literature on queues with service disruptions, most of it deals
with the case of random interruptions such as those due to breakdowns (see e.g., Bardhan
1993) rather than scheduled on- and off-periods. Federgruen and Green (1986, 1989)
considered a system with a single server that alternates between fixed on- and off-periods, but
with a constant arrival rate which is independent of the state of the server. Furthermore, there
is no literature on congestion lags in the first cycle of cyclic demand service systems that start
empty and idle—the problem faced here. Unlike the continuously operating case, there are
no closed form results available that characterize this lag even for infinite server models.

Therefore, a major focus of this paper is to identify the factors that affect the magnitude
of congestion lags in infinite server systems with cyclic demand patterns and limited
operating hours. In our analysis of Section 4, we show that in some cases these lags are longer
in the first cycle of a system starting empty and idle than in steady state and, more
importantly, that they are non-decreasing with the frequency of the arrival rate process. Since
the demand patterns of many call centers with limited hours have a higher frequency than
those for continuously operating centers, both of these behaviors contribute to sip’s lesser
reliability in these limited operating hours situations.

The paper is organized as follows. We describe the models and our methodology in more
detail in Section 2. In Section 3, we demonstrate how sipp reliability depends upon the system
parameters and we identify situations in which sipp performance is unacceptable. We show
that there is a broad range of parameter values and, by implication, actual telephone call
centers for which the sipp approach suggests inadequate staffing. In Section 4, we derive an
expression for the number of busy servers in an infinite server system with sinusoidal arrival
rate that starts empty and idle, and we use this expression to obtain results on the behavior
of lags in the first cycle. In Section 5 we test two modifications of the sip method and find
that they produce reliable staffing levels in the limited operating window case as well. Using
both theoretical models and empirical data, we also explore the impact of these siep
modifications on total staffing requirements. In Section 6, we offer concluding remarks.

2. Model and Methodology

We study M(r)/M/s(r) queuing systems with A(¢), the arrival rate at time t given by the
sinusoid

A(r) = A + A sin 27/T), O0=st=W (1)

where T is the period (or cycle length) of the sinusoid, A is the average arrival rate over period
T, A > 0 is the amplitude, and W is the length of the operating window. (All times are
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measured in hours.) To capture the shape of demand patterns that we have seen in applica-
tions, we focus on both “single-peak” and “double-peak” models. For modeling an operating
window of length W with a single arrival peak, we use the first half of the sinusoid given in
equation (1) by setting T = 2W so that the arrivals during the operating window are
symmetric around the peak. For the double-peak case we set T = 2/3W, which results in two
symmetric peaks and one trough during the operating window. To draw comparisons with the
continuously operating systems we studied in Gks, we also consider an arrival process
modeled by a full sinusoid by setting T = W. The other model parameters are pu, the service
rate, and s(f), the number of servers on duty at time 7.

We observe that, A, the average arrival rate over the operating window, W, is given by

oy Sl W
A= Wf A(D)di, (2)
1

resulting in A = A + 2A/7 for single-peak models, A = A + 2A4/37 for the double-peak
models, and X = A for the full sinusoid model.

Let p,(7) be the periodic steady-state probability that n customers are in the system at time
t. We obtain these functions numerically by solving the following standard set of differential
equations that describe the system (see Gross and Harris 1985):

polt) = —ABOpo(t) + up: (1),
Pr(®) = MO)pay (1) + (n + D ppusy (1) — (A(D) + np) p,(1), 1=n<s(),

pa(t) = M) paci (8) + s(O)ppas (1) — (X(1) + s(6) ) (1), n = s(t). (3)

As we are interested in systems which start each day empty and idle, py(0) = 1. Details
on our numerical analysis methods are given in Green et al. (1991). We focus on the
probability of delay as the main measure of customer service. Let p(f) be the instantaneous
probability that a customer arriving at time ¢ is delayed. This is also the probability that all
servers are busy at time 7 and is given by

sir=1

po()=1- 20 Pa(1) (4)

The principal output from our differential equation solver (simulator) is a vector of 60W
estimates of py(f) made at 1-minute intervals over the operating window.

3. SIPP Reliability

An Empirical Example

Before developing our sipp reliability analysis, we present an empirical example for which
siep fails. Figure 1 shows the arrival rate curve derived from an insurance company’s
incoming telephone call center that operates daily over an 8-hour window. (This two-peak
pattern is typical of many other call-center data we have seen; see Agnihotri and Taylor
1991.) We tested the performance of siep by modeling this call center using a Poisson arrival
process with this empirical time-varying pattern and parameter values that reflect the actual
call-center operations. The historical service rate was about eight calls per hour; half-hour
planning periods were used and the service performance target was a 10% probability of
delay.

The staffing levels suggested by sipp are also shown in Figure 1—a total of 719.5
staff-hours over the 8-hour operating window. Figure 2, the concomitant probability of delay
curve, illustrates that the sipp staffing is clearly inadequate. Specifically, the instantaneous
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FIGURE 2. Delay Probability in the Insurance Company Model with sipp Staffing.

peak probability of delay is over 93.5% and the service target is exceeded in 7 of the 16
half-hour planning periods. In 5 of these half-hours, the probability of delay is more than
110% of the target. Thus, if staffed per the sipp suggestions, actual customer service would

be considerably worse than desired.

A Framework for Analysis of SIPP Reliability

Our example illustrates that sipp can be unreliable in a specific actual scenario. Now, to
explore sipp’s reliability more broadly, we analyzed models of service systems with param-
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eter values that span those of many actual call centers that we have experienced personally
or have encountered in the literature. A scenario (model) is characterized by the following
seven parameters:

¢ The length of the sinusoidal period of the arrival rate function, 7

® The length of the operating “window,” i.e., the number of hours the system operates
during the day, W
The average arrival rate over the period T, A
The relative amplitude of the arrival rate function, RA = A/A
The service rate,

The target probability of delay, T

The length of the planning period, PP

An important derived measure is p = A/, an important measure of system “size.” (Recall
that A is given by equation (2).) Our core set of models has service rates starting at a low of
pv = 2 per hour, that is, with average service times as long as 30 minutes, doubling up to 64
per hour (n = 2, 4, 8, 16, 32, 64). We used average customer arrival rates starting at a low
of A = 32 customers per hour and doubling up to 4,096 per hour (A = 32, 64, 128, 256, 512,
1,024, 2048, 4,096). Not all of the 48 (g, A) combinations implied by the above were either
computationally feasible (when A > u the system of equations (3) becomes too large to
solve in any reasonable amount of time) or interesting (e.g., if p = 1, much of the time there
will be only one or two servers). So we limited most of our runs to 18 core (u, A)
combinations that correspond to p values of 16, 32, and 64. Our examination of siep reliability
used three relative amplitudes: RA = 0.1, 0.5, and 1.0; three probability delay targets: 7
= 0.05, 0.10, and 0.20; four planning period lengths: PP = 0.25, 0.05, 1.0, and 2.0 hours;
and four operating window lengths: W = 8, 12, 18, and 24 hours. (The inclusion of 24 hours
enables comparisons with the 24/7 models studied in Gks.) We also considered three cyclic
arrival patterns as described in the last section: one with a single demand peak, one with two
peaks, and a full sinusoid for a total of 7,776 scenarios. While these parameter combinations
define a broad experimental range, which includes many real call-center scenarios, we do not
contend that it covers all regions of possible interest. It is also important to note that the
scenarios are not spread uniformly over the experimental region.

The analytic sequence for each scenario is as follows:

. Fix the scenario’s exogenous parameters: 7, A, RA, and w, and fix the managerial
parameters: T, W, and PP.

2. Divide the cycle into non-overlapping intervals of length PP. For each planning period
compute the average arrival rate by using equation (2). Then use this average arrival rate and
the service rate in an iterative version of the Erlang delay equation (Cooper 1972, p. 100) to
find the minimum staffing needed in the period to achieve the target delay probability, 7. This
produces a vector of staffing levels {s(n), n = 1, W/PP).

3. Run the simulator with the exogenous parameters specified as in (1) and the {s(x)} as
determined in (2). This produces the output vector of delay probabilities {p,(f), t = 1, 60W}.

4. Using the vector {py(r)}, compute various summary performance measures.

Our analysis focuses primarily on the following performance measure: the number of
half-hours in which the target is exceeded by at least 10%.

Results

Table 1 summarizes the results of our 648 simulations for the case when the operating
window is 12 hours long and there are two peak demand epochs. For each scenario the table
contains our main reliability measure—the count of the number of half-hours in which the
probability of delay exceeds 110% of the target. By our standard, swep is “reliable” for a
scenario—a cell in the table—if that count is zero. Conversely, any scenario for which the
count exceeds zero will be called an “error.”

Overall, we see in Table 1 that sipp is reliable for only 133 of the 648 scenarios or about
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TABLE 1: Counts of half hours in which delay exceeds 110% of target.
Two-peak, 12-hour Model: SIPP Results
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20% of the cases. sipp is generally reliable in the upper left corner of the table where relative
amplitude and presented load are both low, while it is extremely unreliable in the lower right
corner where the converse is true. We also see that siep reliability tends to get worse as
service rates decrease and planning-periods increase. These results are illustrative of the
patterns we found in our analyses of the other operating windows and arrival patterns.
Furthermore, these directional conclusions about sipp reliability are essentially the same as
those we reached in our earlier study of continuously operating systems (see Gks for details
and interpretation).

We get a broader understanding of siep reliability by examining Table 2, which contains
the summary of results for all the scenarios we analyzed. Specifically, this summary
demonstrates that siep reliability is impacted by the frequency of the arrival rate curve. This
is seen first, by noting that reliability is greatest for the single-peak models where the
operating window is one-half the sinusoidal period and is worst for the double-peak models
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TABLE 2
SIPP Reliability: Percentage of Cases with No Errors

8-Hour 12-Hour 18-Hour
Single-peak 39.5 455 53.2
Double-peak 13.3 20.5 25.2

which operate for one and one-half periods; and second, by observing that sipp reliability
increases with the operating window length. Both of these observations are at least partially
the result of siep’s implicit assumption of stationarity during a planning period. As the rate
of change in the arrival rate decreases, this assumption is better and hence sipp reliability
increases.

Table 2 also shows that overall sipp reliability is almost identical for the comparable
continuously operating (steady-state) systems as for those with limited hours. Therefore, in
actual call centers, sipp is more likely to be unreliable for systems with limited operating
hours than for those with continuous operations, primarily because of the shorter operating
windows.

4. Congestion Lags in Infinite Server Queues

To exploit our conjecture that utilizing the lag concept is a key to improving sipp
performance, we study the transient behavior of infinite server Markovian systems with
sinusoidal arrival rates starting with the system empty and idle. Such a system is described
by equations (1) and (3) but with s(r) = o for r = 0. We focus on the time lag between the
peak in the arrival rate and the peak in the number of busy servers. Our goal is to identify
a simple estimate for this time lag which can be used to modify and improve the standard siep
method for service systems with a fixed length operating window. The basic idea is that since
the delay curve lags the arrival curve in cyclical demand systems, the staffing level required
at a given time can be more accurately determined by basing it on the arrival rate that
occurred approximately a lag period earlier.

In ks, we proposed the Lag sipp approach for 24/7 systems which uses 1/u as an estimate
of the lag. This was motivated by the exact, closed form results in Eick et al. (1993) for the
steady-state lag in infinite server systems with sinusoidal arrival rate and exponential service
times. Eick et al. (1993) showed that the time lag L between the epoch of the maximum
arrival rate and the epoch of the maximum server occupancy is a function solely of the
service rate w and the period of the sinusoid 7 and is given by:

L = (cot™ (W)Y )
where
vy = 2x/T. (6)
For p = 27/T, this can be expanded in a Taylor series:
L=1Up—y3u*+ y5u°—--- @)

indicating that 1/p is the dominant term affecting the lag. In Green and Kolesar (1998), we
numerically confirmed that 1/u is a very good approximation for L in steady-state, infinite
server systems when p = 2 and 7' = 8. Our purpose here is to find an equally simple and
effective estimate of the lag in the first cycle of an infinite server system that can be used to
improve sipp’s reliability for call centers with limited operating windows without using an
excessive number of staff.

Let N(r) denote the system occupancy at time f, that is, the expected number of busy
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servers at time 7. From equation (3) it can be shown (Feller 1968) that N(#) satisfies the
differential equation

N'(1) = A(t) — pnN(1), (&)
with N(0) = 0 and with A(¢) given by equation (1). Equation (8) is solved by
-4 RApy\ _, RA s
N(r) = s {1—(m)é’ 4t R (u* sin (y1) — pycos (Yf))}‘ 9

where y = 27/T and T is the period of the sinusoid. We are interested in determining the
value of t > 0 for which N(7) first reaches a local maximum. The difference between this
value and the ¢ where the arrival rate function first reaches its maximum defines the time lag.
An analytic solution for the maximum of (9) not being available, we solved for the time lags
numerically.

Our results show that as with steady-state lags, the magnitude of the first-cycle lag is
unaffected by the mean arrival rate. However, unlike the steady-state case, first-cycle lags are
affected by relative amplitude in addition to being affected by the service rate and the period
of the sinusoid. This is illustrated in Table 3, which also shows that, as in the steady-state
situation, the service rate is the dominant factor influencing first-cycle lags, with the lags
decreasing as the service rate increases. At low service rates, i.e.,, u = 2, the lag also
decreases as the period length T increases. This observation helps explain sirp’s lesser
reliability for shorter operating windows, which correspond to smaller values of 7. At such
low service rates, the lag also decreases as the relative amplitude increases. We believe that
this is due to the faster approach to steady-state because of the increased number of
transitions that occur at higher amplitudes. It is important to note that for values of the service
rate that are likely to correspond to many telephone call-center situations, i.e., u = 4, the
impact of both RA and T on lags is slight and the service rate remains the dominant factor.

Table 4 shows how the first-cycle lags compare with the lags in steady-state. Though the
first-cycle lags are greater for low service rates, particularly for shorter cycle lengths, these
discrepancies virtually disappear for w = 4, a parameter range which is likely to be pertinent
for many call centers. The finding that the transient lags are essentially the same as the

TABLE 3
Lags in Hours for the First Cycle

Service Rate
Cycle Length
Rel. Amp. (hrs.) 1 2 4 8 16
0.1 8 1.48 0.65 0.25 0.12 0.07
12 1.40 0.55 0.25 0.12 0.07
18 1.23 0.50 0.25 0.12 0.07
24 1.10 0.50 0.25 0.12 0.07
0.25 8 1.17 0.55 0.25 0.12 0.07
12 1.15 0.52 0.25 0.12 0.07
18 1.08 0.50 0.25 0.12 0.07
24 1.03 0.50 0.25 0.12 0.07
0.5 8 1.00 0.52 0.25 0.12 0.07
12 1.03 0.50 0.25 0.12 0.07
18 1.02 0.50 0.25 0.12 0.07
24 1.00 0.50 0.25 0.12 0.07
1 8 0.90 0.50 0.25 0.12 0.07
12 0.97 0.50 0.25 0.12 0.07
18 0.98 0.50 0.25 0.12 0.07

24 0.98 0.50 0.25 0.12 0.07
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TABLE 4: Counts of half hours in which delay exceeds 110% of target
First Cycle vs. Steady-state Lags (Relative Amplitude = 0.1)

Service Rate
Cycle Length

(hrs.) Cycle 1 2 4 8 16
8 1 1.48 0.65 0.25 0.12 0.07
infinite 0.85 : 0.48 025 0.12 0.07
12 1 1.40 0.55 0.25 0.12 0.07
infinite 0.92 0.48 0.25 0.12 0.07
18 1 123 0.50 0.25 0.12 0.07
infinite 0.97 0.50 0.25 0.12 0.07
24 1 1.10 0.50 0.25 0.12 0.07
infinite 0.98 0.50 0.25 0.12 0.07

steady-state lags for these cases suggests that the Lag sipp approaches that we had previously
proposed for continuously operating systems are likely to be reliable in the limited operating
hours case as well. We explore this in the next section.

5. Reliability of a Lagged SIPP Approach

In our study of 24-hour continuously operating systems in GKS, we proposed two modi-
fications of sipp and guidelines for their use that produce reliable staffing levels in a broad
range of applications. Both use a stationary M/M/s model for each planning period but
whereas the sipp method uses a model based on the average arrival rate during the planning
period, the proposed alternatives use arrival rates based on a “lagged” arrival rate curve.
Specifically, the “Lag Avg” method bases the staffing for each planning period on a model
where the A(f) curve is advanced by 1/ time-units and then averaged over the period. So,
for example, if w = 2 customers per hour, the average arrival rate used to determine the
staffing requirement for a planning period starting at 7, and one hour in length, ie., [f,
1y + 1], would be calculated using the arrival rates during the interval [ty — 0.5, £, + 0.5].
The “Lag Max” method also advances the A(f) curve by 1/p time-units but then uses the
maximum arrival rate during the planning period instead of the average as input to the
queuing model. We propose Lag Max for planning periods in which the arrival rate changes
substantially, to compensate for what we believe would be an underestimation of actual
delays due to use of the average arrival rate. This is based on our earlier research (Green et
al. 1991) which showed that for fixed server queuing systems with sinusoidal Poisson input
streams, the average probability of delay is monotone increasing in relative amplitude.

We tested the two lag methods on our scenarios that correspond to actual call centers with
limited operating windows, i.e., we excluded from this analysis the full sinusoid demand
pattern and the 24-hour operating window. Since, in the limited operating window situation,
the arrival rate is assumed to be zero before the first planning period of the day, we modify
the lag method for the beginning of the operating window as follows: do not lag the arrival
rate in planning period 1 or in planning period n if 1/p = n*PP.

In virtually all scenarios, the lag methods produce fewer errors than the sipp approach. This
is illustrated by Tables 5 and 6, which show the performance of Lag Avg and Lag Max,
respectively, for the same 12-hour two-peak scenarios as shown in Table 1. Comparison of
these results with the sipp results in Table 1 shows the extent of the improvement. Focusing
first on Table 5, we see that though Lag Avg generally produces fewer errors than siep, it is
consistently reliable (i.e., no half-hours over 110% of the target) only when RA = 0.1 and PP
= (.25 or 0.5. However, the Lag Max results in Table 6 show a dramatic improvement.
Whereas sipp is unreliable in over 83% of the 648 scenarios, Lag Max is unreliable in only
5.4%. Moreover, in all scenarios, there are far fewer errors with Lag Max than with sipp. Lag
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TABLE 5: Counts of half hours in which delay exceeds 110% of target
Two-peak, 12-hour Model: Lag Avg Results
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Max never produces more than three errors and is perfectly reliable for RA = 0.1, and
whenever p > 4, a parameter range that we believe is likely to be found in many actual call
centers.

Results for the other window lengths are very similar and are summarized in Table 7. For
two-peak systems, Lag Max never produces more than three errors and is perfectly reliable
for RA = 0.1 and RA = 0.5 and whenever . > 4 for the 18-hour window, and for RA = (.1
and whenever p > 4 for the 8-hour system. In all of these cases, Lag Avg again is generally
much less reliable, particularly for larger relative amplitudes and longer planning periods. For
the single-peak systems, Lag Max is always perfectly reliable. Lag Avg is perfectly reliable
for the 12- and 18-hour systems whenever planning periods are short, i.e., PP = 0.25 or 0.5.
For the 8-hour system, Lag Avg is reliable for short planning periods, but not when relative
amplitude is high, i.e., RA = 1. As for the simple sip method, Table 7 demonstrates that
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TABLE 6: Counts of half hours in which delay exceeds 110% of target.

Two-peak, 12-hour Model: Lag Max Results
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reliability of the Lag methods is generally better for the single-peak models and for longer

operating windows.

How well do the Lag methods perform on the empirical data from the insurance company
that we considered earlier? Given the above numerical results for sinusoidal models, we

TABLE 7
Reliability of Lag Methods: Percentage of Cases with no Errors

Lag Max

Lag Avg

12-Hr. 18-Hr. 8-Hr. 12-Hr. 18-Hr.

§-Hr.

100

68.8 100

62.2

Single-peak

96.8

92.7 94.6

42.1

26.1

Double-peak




58 LINDA V. GREEN, PETER J. KOLESAR, AND JOAO SOARES

predicted that Lag Avg would not perform very well due to the two-peak arrival pattern,
while Lag Max should be very reliable. Our prediction was correct. The results for the
insurance company model show that Lag Avg results in only three half-hours in which the
target is exceeded by more than 10% with a maximum probability of delay of 0.63. (Recall
that for sipp these figures were seven half-hours and 93.5%, respectively.) Figure 3, the py(f)
curve for the Lag Max solution for the empirical demand, shows that the target is met for the
entire operating window.

What is the economic impact of using the Lag approach on total staffing levels? Use of Lag
Avg usually produces fewer errors than sipp does while using the same number of staff-hours.
Lag Max does use more staffing hours than sp. For the insurance model, the sipp solution
uses 719.5 staff-hours while Lag Max uses 763.5 staff-hours or about a 6% increase. Table
8 contains a summary of the economics and performance of the several staffing methods in
the case of 12-hour two-peak models. The table shows that sipp is optimal (no half-hours
above 110% of target and lowest staffing among these methods) for only of 96 of the 648
scenarios and that none of the three staffing methods is optimal in 35 of the scenarios. Lag
Avg is optimal in 82 scenarios and, when used in these cases, corrects the sipp average
deficiency of 3.5 half-hours over 110% of target while reducing staffing modestly. Max Lag
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800 1
Call Rate
700 - 1o
g
600 -
+07 >
=
500 - @
o +06 O
T 5
T 400 tos >
3 ;
300 - r 0.4 -ré
Probability of Del: _F
1 robabili 2

o Target Delay R X Lo

100_"_..._.K___________-__-—__—_________ S e N R |

) Mn

0 60 120 180 240 300 360 420
Grid (Mins)

FiGure 3. Delay Probability in the Insurance Company Model with Max Lag Staffing.

. TABLE 8
Staffing Requirements and Errors for the 12-Hour Two Peak Models

Optimal Staffing Method

SIPP LagAvg MaxLag None!
Average staffing cost over SIPP (%) 0.0 -0.1 11.8 8.7
Maximum staffing cost over SIPP (%) 0.0 0.0 355 18.8
Average SIPP errors (1/2 Hours) 0.0 32 9.7 12.2
Maximum SIPP errors (1/2 Hours) 0 11 20 14
Number of scenarios 96 82 435 35

! Note: For these 35 scenarios no method was optimal, but MaxLag had the least errors.
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is optimal in 435 scenarios where it corrects the sipp average deficiency of 9.7 half-hours over
110% of target while increasing staffing by 11.8% on average. Finally, examining all 648
scenarios of these two-peak models, we have calculated that the very conservative and simple
to implement policy of always using Max Lag increases staffing by 9% on average over sipp
while reducing the number of errors by 98%.

6. Summary and Conclusions

The results in this paper have practical implications for the design and management of
many types of telephone call centers. First, our findings show that siep frequently fails to
provide targeted delay probabilities and by enough to be of concern to managers of actual
telephone call centers. Results from both this research as well as our past work support the
thesis that siep’s poor performance is largely due to its failure to account for congestion lags.
Second, our findings indicate that congestion lags due to time-varying demands may, in some
cases, be significantly longer for call centers that shut down every day than those that operate
continuously over 24 hours. This is particularly true when operating windows are short or
demand patterns have a higher arrival frequency. An additional problem in these cases is that
the increased arrival rate variability runs counter to sipp’s implicit assumption of stationarity
during a planning period. The combination of these effects make sipp even more unreliable
for these limited hours systems than in the continuously operating case. sipp is particularly
unreliable for systems with a two-peak demand pattern. Of course, the degree to which actual
performance will be as bad as indicated by our results depends on how the proposed staffing
requirements are translated into actual work schedules, as well as on how rigidly worker
behavior adheres to the suggested schedules. For example, when sipp-based staffing require-
ments are used as constraints in an Lp-based scheduling model, the Lp-generated schedule
frequently adds staff (slack) in some periods due to other constraints. However, it is far from
certain that such slack would be added where needed most to compensate for siep’s
shortcomings. In summary, our results on sipp accuracy give call-center managers and
designers fair warning that staffing levels suggested by the industry standard approach are
quite likely to be inadequate.

Third, our results indicate that the same approximation for the lag used in the 24/7 case is
good for many limited hours systems as well and that the Lag approach is a reliable and
simple-to-implement alternative for those scenarios in which siep is likely to be unreliable.
Our findings suggest the following implementation guidelines:

1. swp can be reliably used for single-peak systems when RA is low, ie, RA = 0.1
planning periods are short, i.e., PP = 0.25 or 0.5, and service rate is high, i.e., u > 4. For
longer operating windows, i.e., W = 18, the area of reliability can be extended to include PP
= land p > 2.

2. For two-peak systems, sipp can also be reliably used when RA is low, planning periods
are short, and service rate is high, except when the operating window is short, i.e.,, W = 8.
In this latter case, siep is only reliable if, in addition, the offered load is not too high, i.e., p
=32.

3. Lag Avg is generally reliable for single-peak systems when planning periods are short
and the operating window is longer, i.e., W = 12. For shorter windows, Lag Avg is not
reliable if RA is high, i.e., RA = 1. In the case of two-peak demand patterns, Lag Avg is only
reliable if RA is low and planning periods are short.

4. 1In all other cases, Lag Max will be significantly more reliable.

As a simple and safe guideline for practitioners, we recommend that, as in the continuously
operating case, Lag Avg be used for low values of RA and short planning periods, while Lag
Max be used for all other situations. Of course, Lag Max will typically use more staff-hours
than siep or Lag Avg. However, our results indicate that the required increase in staffing is
modest in most cases. A call-center manager may want to consider the tradeoff between



60 LINDA V. GREEN, PETER J. KOLESAR, AND JOAO SOARES

higher labor costs and what may sometimes be infrequent or small violations of a target
service level. In situations in which even a small percentage increase in staff hours may be
considered too costly, managers would be well advised to closely examine the tradeoffs
between using the Lag Avg and Lag Max methods. The methodology described in this paper
could be easily adapted to assess almost any real situation.

Finally, we observe that while this work clarifies and solves an important aspect of the
dynamics of call-center staffing, there are other serious call-center staffing issues that merit
more research. We mention two that have attracted our attention:

Forecasting. Call-center staffing models, including sipp and our lagged sipp alternatives,
presume that there is, in effect, a perfect forecast of the periodic mean customer arrival rate
and that all deviations from that forecasted mean arrival rate are encompassed by the
variability of a Poisson process. The staffing levels are chosen as insurance against the upper
tails of the resulting delay distribution. Clearly, this is not true in practice. Examination of the
deviations of actual customer arrivals from forecasted mean arrival rates in many call centers
shows that the variability is substantially above that predicted by a Poisson process. Note that
we do not speak here about deviations caused by extraordinary events such as new product
offerings, a stock market crash, public emergencies, or the like. Rather, this is “ordinary”
variation from forecasts. So, what is needed for adequate call-center staffing are models that
contain both the deviations of the actual mean demand from forecasts as well as the variation
inherent in the Poisson process itself.

Work rFLow coMpLEXITY. The standard queuing models used in telephone call-center
analysis assume that all customers, all jobs, and all servers are statistically identical.
Increasingly, this is not true in modern telephone call centers. Customers are broken into
classes depending on their importance or on the nature of the service they require. The trend
to “mass customization” in which customers are offered more variety and choice is increasing
this tendency (Pine, 1993). In modern call centers, these customers are then steered,
according to their class and requirements, to banks of specialized servers. Service rates
typically vary by customer-server class and class-related priority schemes are frequently
imposed. When these workflow complexities are ignored, as they are in simple Erlang
models, there is again a tendency for the model to understaff. (The disaggregated real world
system is less efficient than the aggregated model, see e.g., Kolesar and Green 1998.) The
usual analytic prescription for such complex systems is simulation, but even given the
tremendous advances in computing speed and the increased ease in building simulation
models, such an approach remains an awkward tool for tactical and strategic decision-
making. The call center industry would benefit from a modeling approach that is intermediate
between the two extremes of Erlang’s simplicity and simulation’s complexity. What is
needed is a set of staffing models that are able to capture at least the essence of this workflow
of complexity. Some work that has addressed some of these complexities under the assump-
tion of a stationary arrival stream include Gans and van Ryzin (1997), Shumsky (1999), and
Aksin and Harker (2000).
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