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SEPARATING A SUPERCLASS OF COMB INEQUALITIES
IN PLANAR GRAPHS

ADAM N. LETCHFORD

Many classes of valid and facet-inducing inequalities are known for the family of polytopes
associated with the Symmetric Travelling Salesman Problem (STSP), including subtour elimi-
nation, 2-matching and comb inequalities. For a given class of inequalities, an exact separation
algorithm is a procedure which, given an LP relaxation vector x∗, 7nds one or more inequalities
in the class which are violated by x∗, or proves that none exist. Such algorithms are at the core
of the highly successful branch-and-cut algorithms for the STSP. However, whereas polynomial
time exact separation algorithms are known for subtour elimination and 2-matching inequalities,
the complexity of comb separation is unknown.
A partial answer to the comb problem is provided in this paper. We de7ne a generalization of

comb inequalities and show that the associated separation problem can be solved e:ciently when
the subgraph induced by the edges with x∗e ¿0 is planar. The separation algorithm runs in O(n3)
time, where n is the number of vertices in the graph.

1. Introduction. The famous Symmetric Travelling Salesman Problem (STSP) is the
NP-hard problem of 7nding a minimum cost Hamiltonian cycle (or tour) in a complete
undirected graph (see Lawler et al. 1985). The most successful optimization algorithms
at present (e.g., Padberg and Rinaldi 1991, Applegate et al. 1995) are based upon a
formulation of the STSP as an integer linear program due to Dantzig, Fulkerson and
Johnson (1954), which we now describe.
Let G be a complete graph with vertex set V and edge set E. For each edge e∈E, let

ce be the cost of traversing e. Given any S ⊂V , let E(S) denote the set of edges with
both end-vertices in S and 
(S) denote the set of edges with one end-vertex in S and the
other in V\S. When S = {i}, we write 
(i) rather than 
({i}) for brevity. De7ne the 0-1
variable xe for each e∈E, taking the value 1 if e is traversed, 0 otherwise. Finally, for
any F ⊆E, let x(F) denote ∑

e∈F xe. The STSP can now be formulated as:

min cT x
subject to

x(
(i))= 2 (∀i∈V );(1)

x(E(S)) ≤ |S| − 1 (∀S ⊂V : 1≤ |S| ≤ |V | − 1);(2)

− xe≤ 0 (∀e∈E);(3)

x∈Z |E|:(4)

Equations (1) are called degree equations. The inequalities (2) are known as subtour
elimination constraints or SECs and inequalities (3) are called nonnegativity inequalities.
An SEC with |S|=2 is a mere upper bound, since, if S = e= {u; v}, then (2) reduces to
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xe≤ 1. Note that we allow ‘degenerate’ SECs in which |S|=1. A degenerate SEC reduces
to the trivial inequality 0≤ 0.
The convex hull in �|E| of vectors satisfying (1)–(4) is called a Symmetric Travelling

Salesman Polytope. The polytope de7ned by (1)–(3) is called the Subtour Elimination
Polytope. These two polytopes are denoted by STSP(n) and SEP(n), respectively, where
n := |V |. It is known (GrKotschel and Padberg 1979a) that SEP(n)=STSP(n) for n≤ 5,
but that STSP(n) is strictly contained in SEP(n) for n≥ 6. Thus, more linear inequalities
are needed to describe STSP(n) when n≥ 6. In the past twenty years, a great deal of
research has been conducted into 7nding improved linear descriptions of STSP(n) and
many classes of valid inequalities have been discovered. Moreover, many of these valid
inequalities have been proven to be induce facets — proper faces of maximum dimension
— and therefore essential in any linear description. Space does not permit a full review
of this literature and the reader is referred to Nemhauser and Wolsey (1988) and JKunger
et al. (1995, 1997).
The most famous class of facet-inducing inequalities for STSP(n) are the comb inequal-

ities of GrKotschel and Padberg (1979a,b). Let p≥ 3 be an odd integer. Let H ⊂V and
Tj ⊂V for j=1; : : : ; p be such that H ∩Tj �= ∅ and Tj\H �= ∅ for j=1; : : : ; p, and also
let the Tj be vertex-disjoint. The comb inequality is:

x(E(H)) +
p∑
j=1

x(E(Tj))≤ |H |+
p∑
j=1

|Tj| − (3p+ 1)=2:(5)

The set H is called the handle of the comb and the Tj are called teeth. The validity of
comb inequalities in the special case where |H ∩Tj|=1 for all j was proved by ChvNatal
(1973a). If, in addition, |Tj\H |=1 for all j, the comb inequalities reduce to 2-matching
inequalities, 7rst discovered by Edmonds (1965).
The highly successful branch-and-cut algorithms for the STSP (see Padberg and

Rinaldi 1990, 1991; Applegate et al. 1995) use such polyhedral results in the follow-
ing way. First, linear programming is used to optimize over the polyhedron de7ned by
the degree equations and the bounds 0≤ xe≤ 1 for all e∈E. If the optimal solution vector
x∗ represents a tour, then the STSP instance has been solved. If not, then a search begins
for valid inequalities (such as SECs, 2-matching or comb inequalities) which are violated
by the current x∗. If any are found, then these are added to the linear program, which is
then resolved. This process is repeated iteratively until no more violated inequalities can
be found. If the resulting x∗ still does not represent a tour, then the entire procedure is
embedded into a branch-and-bound framework.
The success of a branch-and-cut approach therefore depends crucially on the identi7ca-

tion of violated inequalities. This leads to the idea of an exact separation algorithm (see
GrKotschel et al. 1988, Padberg and Rinaldi 1990). For a given class of inequalities (e.g.,
comb inequalities), an exact separation algorithm is a procedure which takes a given x∗

as input and returns one or more violated inequalities in that class, or a proof that none
exist.
A desirable property of an exact separation algorithm is that it runs in polynomial

time. Unfortunately, useful polynomial time exact separation algorithms are known only
for the SECs and the 2-matching inequalities (see Padberg and GrKotschel 1985, Padberg
and Rao 1982). Recently, Carr (1996, 1997) showed that the set of all valid inequalities
for the STSP can be partitioned into an in7nite number of classes such that each class
is polynomially separable, but the order of the polynomial for even the simplest classes
is large. Moreover, the complexity of comb separation is unknown. (The class of comb
inequalities is divided into an in7nite number of classes in the scheme of Carr, one for
each possible number of teeth.)
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Because of this di:culty, researchers have turned to heuristic separation algorithms,
viz., procedures which sometimes detect violated inequalities, but which may occasionally
fail (see JKunger et al. 1995, 1997 for surveys).
The present paper is inspired by three important papers due to Applegate et al. (1995),

Fleischer and Tardos (1999), and Caprara et al. (2000). In the 7rst paper, an exact
algorithm is given for 7nding maximally violated comb inequalities, i.e., comb inequalities
which are violated by 1

2 . (It is impossible for a comb inequality to be violated by more than
1
2 if x∗ ∈SEP(n).) The authors claim that this algorithm performs quite well in practice,
although it runs in exponential time in the worst case. In the second paper, it is shown
how to improve the algorithm in the case where the support graph is planar. (The support
graph, denoted by G∗, is the subgraph of G induced by the edge set E∗ := {e∈E : x∗e¿0}.)
The Fleischer-Tardos algorithm runs in O(n2 log n) time and always 7nds a violated comb
inequality whenever a maximally violated comb inequality exists. The third paper de7nes a
generalization of comb inequalities, called mod-2 cuts, and shows how to detect maximally
violated mod-2 cuts in O(n2|E∗|) time. (In fact, the ideas in this last paper are applicable
to any integer programming problem.)
The present paper represents another step forward in this line of research. We de7ne

a new class of inequalities for the STSP, called domino-parity (DP) inequalities, which
are shown to be intermediate in generality between the comb inequalities and the mod-2
cuts. Then we show that the associated separation problem can be solved exactly in O(n3)
time provided that x∗ ∈SEP(n) and G∗ is planar. This result is of practical as well as
theoretical importance, since vectors x∗ ∈SEP(n) with planar support often arise when
solving planar, Euclidean STSP instances (JKunger 1999).
The outline of the paper is as follows. In §2, the DP inequalities are de7ned and shown

to be a proper generalization of the comb inequalities. In §3, the separation algorithm is
described. In §4, it is shown how to adapt the algorithm to the so-called Graphical TSP
(CornuNejols et al. 1985, Naddef and Rinaldi 1992). Concluding comments are made in
§5.

2. Domino-parity inequalities. In this section, we de7ne the domino-parity (DP)
inequalities and show how they relate to known valid inequalities for the STSP. We
begin with some de7nitions and notation.
DEFINITION. A domino is a pair {A; B} with the following properties:
• ∅ �=A; B⊂V ,
• A ∩ B= ∅,
• A ∪ B �=V .
The signi7cance of dominoes to comb separation was 7rst stressed by Applegate et al.

(1995) and elaborated on by Fleischer and Tardos (1999). However, their de7nition of
domino is more restrictive than ours, since they also require the SECs for A; B and A∪B
to be tight (i.e., satis7ed at equality) for x∗. Given a domino {A; B}, we will let E(A :B)
denote the set of edges with one end-vertex in A and the other in B.
DEFINITION. Let r be a positive integer and suppose that E1; : : : ; Er are edge-sets, i.e.,

Ej ⊂E for j=1; : : : ; r. For each e∈E, de7ne

�e= |{j∈{1; : : : ; r} : e∈Ej}|:(6)

That is, �e denotes the number of edge-sets in which e appears. It may be thought of
as the multiplicity of e with respect to the chosen edge sets.
DEFINITION. A set of edge-sets E1; : : : ; Er is said to support the cut 
(H) if 
(H)=

{e∈E : �e is odd}.
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THEOREM 1. Let p be a positive odd integer; {Aj; Bj} for j=1; : : : ; p be dominoes and
let H ⊂V satisfy 1 ≤ |H | ≤ |V | − 1. Suppose that F ⊆E is such that {E(A1 :B1); : : : ;
E(Ap :Bp); F} supports the cut 
(H) and de"ne �e accordingly. Then the domino parity
inequality

x(E(H)) +
p∑
j=1

x(E(Aj ∪ Bj))−
∑
e∈E

��e=2�xe(7)

≤ |H |+
p∑
j=1

|Aj ∪ Bj| − (3p+ 1)=2

is valid for STSP(n); where �a� denotes the greatest integer not bigger than a.

PROOF. Sum the SECs for Aj; Bj and Aj ∪ Bj for j=1; : : : ; p to obtain

2
p∑
j=1

x(E(Aj ∪ Bj))−
p∑
j=1

x(E(Aj :Bj)) ≤ 2
p∑
j=1

|Aj ∪ Bj| − 3p:(8)

Add the nonnegativity inequalities for the edges e∈F to obtain:

2
p∑
j=1

x(E(Aj ∪ Bj))−
∑
e∈E

�exe ≤ 2
p∑
j=1

|Aj ∪ Bj| − 3p:(9)

Now sum together the degree equations for i∈H to obtain:

2x(E(H)) + x(
(H))= 2|H |:(10)

Add (9) and (10) to obtain:

2


x(E(H)) + p∑

j=1

x(E(Aj ∪ Bj))

−

∑
e∈
(H)

(�e − 1)xe −
∑

e∈E\
(H)
�exe(11)

≤ 2


|H |+

p∑
j=1

|Aj ∪ Bj|

− 3p:

The fact that {E(A1 :B1); : : : ; E(Ap :Bp); F} supports the cut 
(H) implies that every term
on the left-hand side of (11) is an even integer. Dividing by two and rounding down the
right-hand side yields (7).
The DP inequalities are a proper generalization of the comb inequalities, as expressed

in the following two propositions.

PROPOSITION. Comb inequalities are DP inequalities.

PROOF. For i=1; : : : ; p, set Aj =H ∩Tj and Bj =Tj\H . Set F = 
(H)\(E(A1 :B1)∪· · ·∪
E(Ap :Bp)). This gives �e=1 for e∈ 
(H); �e=0 otherwise. The result follows from the
fact that Tj =Aj ∪ Bj.

PROPOSITION. The class of comb inequalities is strictly contained in the class of facet-
inducing DP inequalities.

PROOF. It is only necessary to produce one facet-inducing DP inequality which is not
a comb inequality. Consider the following DP inequality de7ned for STSP(12), with
H = {1; : : : ; 6} and p=7. For j=1; : : : ; 6, set Aj = {j}; Bj = {j+6}. Set A7 = {3; 4; 9; 10}
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and B7 = {5; 6; 11; 12} and construct F accordingly. It can be checked that the resulting
DP inequality takes the form:

x(E(H)) +
7∑
j=1

x(E(Aj ∪ Bj))− x(C) ≤ 15;

where C contains the edges {3; 5}; {3; 6}; {4; 5}; {4; 6}; {9; 11}; {9; 12}; {10; 11} and
{10; 12}. This inequality can be shown to be facet-inducing for STSP(12) and distinct
from the comb inequalities using techniques described in Naddef and Rinaldi (1992).
The DP inequalities can also be viewed as a special kind of mod-2 cut; see Caprara

et al. (2000). A mod-2 cut for the STSP is an inequality which is obtained by summing
together a number of degree equations, SECs and nonnegativity inequalities in such a way
that, in the resulting inequality, every left-hand side coe:cient is even but the right-hand
side is odd, and then dividing this inequality by two and rounding down the right-hand
side. This technique is a special case of the integer rounding procedure introduced by
ChvNatal (1973b) (see also Nemhauser and Wolsey 1988, Caprara and Fischetti 1996).
Inspection of the proof of Theorem 1 immediately reveals that DP inequalities are mod-2
cuts. However, DP inequalities have a special structure, in that the SECs used in the
derivation are partitioned into triplets (one triplet for each domino). It turns out that this
is a genuine limitation:

PROPOSITION. The class of facet-inducing DP inequalities is strictly contained in the
class of facet-inducing mod-2 cuts.

PROOF. In Caprara et al. (2000) it was shown that the facet-inducing extended comb
inequalities (see JKunger et al. 1995) are mod-2 cuts. The simplest extended comb inequal-
ity which is not an ordinary comb inequality is de7ned for STSP(8). It can be shown (by
exhaustive enumeration) that this inequality is not a DP inequality.
It should also be pointed out that the class of DP inequalities is not as “clean” as the

class of comb inequalities, in the following sense. There are DP inequalities which are
not facet-inducing and which are dominated by inequalities which are not DP inequalities
(Boyd 1999).
We close this section with a de7nition and a couple of useful lemmas.
DEFINITION. For a given x∗, the weight of a domino {A; B}, denoted by w(A; B); is the

quantity 2|A ∪ B| − 3− 2x∗(E(A ∪ B)) + x∗(E(A :B)).
Note that w(A; B) is the sum of the slacks of the three SECs on A; B and A ∪ B.

LEMMA 1. If x∗ ∈ SEP(n); the slack of a DP inequality is equal to


x∗(F)− 1 +

p∑
j=1

w(Aj; Bj)


/2:

PROOF. The slack of (8) is obviously equal to
∑p

j=1 w(Aj; Bj). This implies that the
slack of (9) equals x∗(F)+

∑p
j=1 w(Aj; Bj). Since x

∗ ∈SEP(n), the equation (10) must be
satis7ed. Hence, the slack of (9) and (11) are identical. The result follows from the fact
that the DP inequality is obtained from (11) by dividing by two and subtracting 1

2 from
the right-hand side.
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Obviously, a DP inequality is violated if and only if its slack is negative. Therefore:

LEMMA 2. If x∗ ∈ SEP(n); every domino used in the derivation of a violated DP
inequality must have weight less than 1.

PROOF. The weight of a domino is the sum of the slacks of three SECs. Therefore, if
x∗ ∈SEP(n), all dominoes have nonnegative weight and, of course, x∗e ≥ 0 for all e∈E.
The result then follows from Lemma 1.

3. The separation algorithm. In this section we show that DP inequalities can be
separated in polynomial time provided that x∗ ∈SEP(n) and G∗ is planar. The proof has
two main strands. First, we build on the results in Fleischer and Tardos (1999) to show
that “useful” dominoes have certain desirable properties when G∗ is planar. Then, we use
planar duality to transform the separation problem into a problem which is already known
to be well solved.
Throughout this section, we use the notation E∗ := {e∈E : x∗e¿0} and E∗(Aj :Bj)=

E(Aj :Bj) ∩ E∗. We begin with a de7nition and a lemma.
DEFINITION. A set {E1; : : : ; Er} with Ej ⊂E∗ for j=1; : : : ; r is said to support a cut in

G∗ if the edges e with �e odd form a cut in G∗.

LEMMA 3. Suppose x∗ ∈ SEP(n). A DP inequality is violated if and only if there is an
odd integer p ≥ 1; dominoes {A1; B1}; : : : ; {Ap; Bp} and a set K ⊆ E∗ of edges such that:
• {E∗(A1 :B1); : : : ; E∗(Ap :Bp); K} supports a cut in G∗;
• ∑p

j=1 w(Aj; Bj) + x∗(K)¡1.

PROOF. The necessity of the 7rst condition follows from the de7nitions and the
necessity of the second condition follows from Lemma 1. So we need only prove suf-
7ciency. If the 7rst condition holds, set H to be one shore of the cut which is sup-
ported in G∗ by {E∗(A1 :B1); : : : ; E∗(Ap :Bp); K}. There is then a unique F ⊆E such
that {E(A1 :B1); : : : ; E(Ap :Bp); F} supports the cut 
(H) in G. Now note that F satis7es
K =F∩E∗ and, therefore, x∗(F\K)= 0. Thus, if the second condition holds, the resulting
DP inequality is violated by Lemma 1.
Note that the p+ 1 edge sets of Lemma 3 are not required to be disjoint, as they are

in the case of a comb inequality.
In light of Lemmas 2 and 3, dominoes which have a weight less than 1 are of particular

interest. Next we show that such dominoes have a special structure.

LEMMA 4. If x∗ ∈ SEP(n) and {A; B} is a domino such that w(A; B)¡1; then the SECs
for A; B and A ∪ B must all have slack less than 1.

PROOF. By de7nition, w(A; B) is the sum of the slacks of the three SECs mentioned.
Since x∗ ∈ SEP(n), all of these three slacks are nonnegative and the result follows.

LEMMA 5. If x∗ ∈ SEP(n) and {A; B} is a domino such that w(A; B)¡1; then the sub-
graphs induced in G∗ by A; B and A ∪ B are all connected.

PROOF. We prove it only for A. The proofs for B and A∪ B are similar. By Lemma 4,
the slack of the SEC for A must be less than 1. If the subgraph induced by A is not
connected, then A can be partitioned into A1; A2 in such a way that x∗(E(A1 :A2))= 0.
Also, since x∗ ∈ SEP(n); x∗(E(A1))≤ |A1| − 1 and x∗(E(A2))≤ |A2| − 1 holds. But this
implies that x∗(E(A))= x∗(E(A1)) + x∗(E(A2)) + x∗(E(A1 :A2))≤ |A| − 2, contradicting
the fact that the slack of the SEC on A is less than 1.
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Next, we invoke planar duality. We denote by QG∗ the planar dual of G∗; QE∗; Qe, etc.,
are de7ned accordingly. It will be assumed that QG∗ is edge-weighted; namely, that each
Qe∈ QE∗ is given a weight of x∗e .

LEMMA 6. Suppose that G∗ is planar; x∗ ∈ SEP(n) and {A; B} is a domino such that
w(A; B)¡1. Then there are two distinct vertices s and t in QG∗ such that each of the
following edge-sets is an (s; t)-path in QG∗:
• QE∗(A :B);
• QE∗(A :V\(A ∪ B));
• QE∗(B :V\(A ∪ B)).

These three (s; t)-paths are edge-disjoint and also have no vertices in common other than
s and t.

PROOF. Lemma 5 implies that Q
∗(A ∪ B) forms a cycle in QG∗. This cycle divides the
plane into two regions, one containing A ∪ B and one containing V\(A ∪ B). The edges
in QE∗(A :B) must form a path dividing the 7rst of these regions into two planar regions:
one containing A and the other containing B. Let s be where one end of the path meets
Q
∗(A∪B) and let t be where the other end of the path meets Q
∗(A∪B). The result follows
from the fact that Q
∗(A ∪ B)= QE∗(A :V\(A ∪ B)) ∪ QE∗(B :V\(A ∪ B)).
The following lemma allows us to express the weight of a domino directly in terms of

the three paths given by Lemma 6.

LEMMA 7. When x∗ ∈ SEP(n) and G∗ is planar; the weight of a domino {A; B} is
equal to the sum of the weights of the edges in the three paths mentioned in Lemma 6;
minus 3.

PROOF. The weight was de7ned in §2 as w(A; B) := 2|A ∪ B| − 3 − 2x∗(E(A ∪ B)) +
x∗(E(A :B)). But when x∗ ∈SEP(n), the degree equations for i∈A ∪ B imply the
identity 2|A ∪ B|=2x∗(E(A ∪ B)) + x∗(
(A ∪ B)). Substituting for |A ∪ B| then yields
w(A; B)= x∗(E∗(A :B)) + x∗(
∗(A ∪ B)) − 3= x∗(E∗(A :B)) + x∗(E∗(A :V\(A ∪ B))) +
x∗(E∗(B :V\(A ∪ B)))− 3 and the result follows from the fact that the weight of a dual
edge Qe is x∗e .
We will call the path formed by QE∗(A :B) a domino path.
The next step in the argument is to formulate a dual version of Lemma 3. A graph is

Eulerian if every vertex has even degree. It is well known (see, e.g., Orlova and Dorfman
1972; Hadlock 1975), that a cut in a planar graph corresponds to an Eulerian subgraph
in the dual and vice-versa. (If the removal of the edges of the cut disconnects the graph
into more than two components, then the corresponding Eulerian subgraph will also be
disconnected. However, the arguments which follow are valid even if this is the case.)
This suggests that the following de7nition will be useful.
DEFINITION. Let r be a positive integer and suppose that E1; : : : ; Er are edge-sets satisfying

Ej ⊂E∗ for j=1; : : : ; r. The collection { QE1; : : : ; QEr} is said to support an Eulerian subgraph
in QG∗ if the edges Qe for which �e is odd form an Eulerian subgraph in QG∗.
The de7nition implies that { QE1; : : : ; QEr} supports an Eulerian subgraph in QG∗ if and only

if {E1; : : : ; Er} supports a cut in G∗. This allows us to formulate the following dual form
of Lemma 3.

LEMMA 8. Suppose x∗ ∈ SEP(n) and G∗ is planar. A DP inequality is violated if and
only if there are an odd number of domino paths and a set QK ⊆ QE∗ such that:
• The domino paths; together with the edges in QK; support an Eulerian subgraph

in QG∗.
• The weight of the dominoes associated with the domino paths and the weight of the

edges in QK sum to less than 1.
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PROOF. Follows from Lemma 3 and the de7nitions.
The problem now is that there could be a large number of domino paths and we do

not know how to 7nd them e:ciently. However, our task is made easier by the following
observation.

LEMMA 9. Suppose that a set of domino paths and a set QK ⊆ QE∗ support an Eulerian
subgraph in QG∗ as required by Lemma 8. Suppose that {A; B} is a domino corresponding
to one of these domino paths. Let s and t be vertices in QG∗ such that the domino path
corresponding to {A; B} is an (s; t)-path in QG∗. Suppose that {A′; B′} is another domino
whose domino path is also an (s; t)-path in QG∗. Then the set of domino paths obtained
by replacing {A; B} with {A′; B′}; together with QK; also supports an Eulerian subgraph
in QG∗.

PROOF. Any domino path from s to t meets every vertex apart from s and t an even
number of times. Hence, the domino paths for {A; B} and {A′; B′} are interchangeable.
This implies that, for a 7xed s and t, we need only consider one domino whose domino

path is an (s; t)-path; namely, one of minimum weight. Lemma 7 implies that we can 7nd
domino by 7nding three edge-disjoint (s; t)-paths in QG∗ of minimum total weight. This
can be done by solving a minimum cost Row problem: set all edge capacities to 1 and
send a Row of 3 units from s to t. To solve such a minimum cost Row problem, it su:ces
(see, e.g., Orlin 1993) to compute three shortest augmenting paths in QG∗. Since QG∗ is
planar, each of these shortest augmenting path problems can be solved in O(n) time using
the algorithm of Henziger et al. (1997).
One apparent complication is that the Row algorithm might return a set of 3 (s; t)-paths

such that 2 of them share vertices other than s and t, which should not be permitted if
we want the paths to represent a domino. However, it is easy to show that, if this occurs,
the two paths concerned will contain at least two edge-disjoint cycles, and therefore the
weight of the domino will be at least 1. Thus, if a ‘bad’ set of (s; t)-paths is returned,
then there is no domino with weight less than 1 whose domino path connects s and t.
By repeating this procedure O(n2) times, once for each pair (s; t), we obtain a set of

O(n2) dominoes such that a DP inequality with maximum violation, if any, uses only
dominoes in that set. We call these the optimal dominoes.
Now we de7ne a labelled supergraph of QG∗, denoted by M∗, which will prove to be

useful in what follows. First, label each edge of QE∗ even. Then, for each vertex pair (s; t),
add an edge connecting s and t, labelled odd, with weight equal to the weight of the
optimal domino whose domino path is an (s; t)-path. We can express Lemma 8 in terms
of M∗ as follows.

THEOREM 2. A DP inequality is violated if and only if there is an odd cycle (i.e.; a
cycle containing an odd number of odd edges) in M∗; of weight less than 1.

PROOF. First we prove su:ciency. Suppose that such an odd cycle exists. By replacing
each odd edge in the cycle by the corresponding domino path, we obtain a set of domino
paths and ordinary (even) edges. This set of domino paths and edges supports and Eulerian
subgraph in M∗ and therefore in QG∗. Therefore a DP inequality is violated by Lemma 8.
Next, necessity. Suppose that a DP inequality is violated. Then, by Lemma 8, there is a
set of domino paths and a set of edges, of total weight less than 1, which supports an
Eulerian subgraph in QG∗. By replacing each domino path with the corresponding (odd)
edge, we obtain an Eulerian subgraph in M∗, which may or may not be connected. At
least one connected component must contain an odd number of odd edges. A traversal of
this connected component is an odd cycle of weight less than 1.
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The problem of 7nding a minimum weight odd cycle in M∗ can be solved in O(n3) time
by solving O(n) shortest path problems in a suitable graph (see Gerards and Schrijver,
1986). This leads to the main result of this paper:

THEOREM 3. DP inequalities can be separated in O(n3) time when x∗ ∈ SEP(n) and G∗

is planar.

PROOF. Finding the optimal dominoes takes O(n3) time. Once this is done, constructing
M∗ only takes O(n2) time. Finally, 7nding the minimum weight odd cycle takes O(n3)
time.

4. Application to the graphical TSP. An important variant of the STSP is the so-
called Graphical Travelling Salesman Problem or GTSP (CornuNejols et al. 1985, Naddef
and Rinaldi 1992). The GTSP is a relaxation of the STSP in that it is permitted to visit
vertices more than once and to traverse edges more than once. Also, it is not necessary
that G(V; E) be complete. The GTSP can be expressed as:

min cT x
subject to

x(
(S)) ≥ 2 (∀S ⊂V : 1 ≤ |S| ≤ |V | − 1);(12)

x(
(i)) is even (∀i∈V );(13)

xe ≥ 0 (∀e∈E);(14)

x∈Z |E|:(15)

We will call (12) connectivity inequalities and (13) evenness conditions. The convex
hull of feasible solutions to (12)–(15) is a polyhedron known as GTSP(G).
Since there is no upper bound on xe for any e∈E, GTSP(G) is unbounded. Therefore,

the 2-matching, comb and DP inequalities are not valid for GTSP(G) in the form in which
they were presented in §§1 and 2. However, it is possible to use the degree equations (1)
to rewrite the comb inequalities as:

x(
(H)) +
p∑
j=1

x(
(Tj)) ≥ 3p+ 1:(16)

In this form, they are valid for GTSP(G), and facet-inducing under certain mild conditions
(CornuNejols et al. 1985).
It turns out that we can apply a similar idea to the DP inequalities. With a little work,

it can be shown using the degree equations that the DP inequality (7) is equivalent to:

p∑
j=1

x(
(Aj ∪Bj)) +
∑
e∈E

�exe ≥ 3p+ 1:(17)

In this form, DP inequalities are valid for GTSP(G).

THEOREM 4. The DP inequality; when written in the form (17); is valid for GTSP(G).

PROOF. Sum the connectivity inequalities for Aj; Bj, and Aj ∪Bj for j=1; : : : ; p and divide
by two to obtain:

p∑
j=1

x(
(Aj ∪Bj)) +
p∑
j=1

x(E(Aj :Bj)) ≥ 3p:
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Add the nonnegativity inequalities (14) for the edges e∈F to obtain:

p∑
j=1

x(
(Aj ∪Bj)) +
∑
e∈E

�exe ≥ 3p:

Hence, we have that the left-hand side of (17) is at least 3p. But, the left-hand side of
(17) is equal to:

x(
(H)) +
p∑
j=1

x(
(Aj ∪Bj)) +
∑
e∈
(H)

(�e − 1)xe +
∑

e∈E\
(H)
�exe:(18)

The evenness conditions imply that, in any feasible GTSP solution, x(
(H)) will be an
even integer and so will x(
(Aj ∪Bj)) for j=1; : : : ; p. Moreover, the set F is chosen so
that the remaining terms on the left-hand side of (18) must all be even integers in any
feasible solution. Therefore the left-hand side of (17) must be an even integer which is
not less than 3p and the result follows.
It turns out that the separation algorithm presented in §3 can be adapted to separate

the inequalities (17) when solving the GTSP. The only thing which needs to be changed
is the assumption that x∗ ∈SEP(n). Instead, we need the assumption that x∗ satis7es
all connectivity and nonnegativity inequalities. Provided that the weight of a domino
is de7ned as in Lemma 7, the argument carries through unchanged. This leads to the
following result.

THEOREM 5. If a GTSP instance is de"ned on a planar graph G; then it is possible
to optimize in polynomial time over the polyhedron de"ned by all connectivity; nonneg-
ativity and DP inequalities.

PROOF. The separation problem for nonnegativity inequalities is trivial. The separation
problem for connectivity inequalities is a minimum weight cut problem and therefore
solvable in polynomial time. Once x∗ is known to satisfy the nonnegativity and connec-
tivity inequalities, the separation problem for DP inequalities can be solved in polynomial
time as described in this paper. The result follows from the polynomial equivalence of
separation and optimization (GrKotschel et al. 1988).

5. Discussion. It has been shown that the DP inequalities are a genuine generaliza-
tion of the comb inequalities and that they can be separated in O(n3) time when G∗ is
planar. It has also been shown how to adapt the results to the GTSP. The results in this
paper can also be applied to the Asymmetric Travelling Salesman Problem with minor
modi7cation: given a DP inequality for STSP(n), one obtains an obvious valid inequality
for the corresponding Asymmetric Travelling Salesman Polytope, ATSP(n), by giving
each directed arc [i; j] the same coe:cient as the corresponding undirected edge {i; j}.
The resulting class of valid inequalities is separated in an obvious way.
There are several remaining issues for further research. Of particular interest to the

author are the following:
• Is there a polynomial separation algorithm for the exact class of comb inequalities,

either in the planar case, or in general? (Boyd 1999 has shown that the DP separation
algorithm of this paper can return a violated DP inequality even when no violated comb
inequality exists, so the DP separation algorithm certainly cannot be used for this purpose.)
• Is the separation problem for mod-2 cuts for the STSP solvable in polynomial time,

either in general, or on special classes of graphs? (Mod-2 separation is known to be
NP-hard for general integer programs; see Caprara and Fischetti 1996.)
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• If the costs ce satisfy the triangle inequality, what is the worst-case ratio of the lower
bound obtained using SECs, nonnegativity and DP inequalities to the value of the optimal
STSP solution? The worst example currently known to the author is 5=6.
• ChvNatal (1973a) calls a graph weakly Hamiltonian if the system of degree equations,

nonnegativity inequalities, SECs and ChvNatal combs has a solution when restricted to the
edges in the given graph. In the same paper, various properties are proved for weakly
Hamiltonian graphs. What happens if we add the DP inequalities to the system? (The
implication is that, for certain planar graphs, one can quickly prove that they are non-
Hamiltonian.)
• Under what conditions can a nonplanar support graph G∗ be shrunk (see Padberg

and Rinaldi, 1990) without losing any violated DP inequalities?
• Are there more general classes of graphs for which the DP separation problem can

be solved in polynomial time?
This paper will conclude with some thoughts on the last of these questions.
The duality between cuts and Eulerian subgraphs, so crucial to the proofs in §3, is

also behind a classical proof that the max-cut problem is polynomially solvable in planar
graphs (Orlova and Dorfman 1972, Hadlock 1975). More recent papers show that the
max-cut problem is solvable on graphs which are not contractible to the complete graph
K5 (Barahona 1983) and also on the so-called weakly bipartite graphs (GrKotschel and
Pulleyblank 1981). Planar graphs are not contractible to K5 by the classical Kuratowski
Theorem (see, e.g., Barahona 1983); recently it was shown that graphs not contractible to
K5 are weakly bipartite (Fonlupt et al. 1992). The author therefore believes that a good
place to start would be to attempt to 7nd a polynomial DP separation algorithm for graphs
in one of these two classes.
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