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Abstract

The theoretical literature on exchange of indivisible goods �nds natural application in orga-

nizing the exchange of live donor kidneys for transplant. However, in kidney exchange, there

are constraints on the size of feasible exchanges. Initially, kidney exchanges are likely to be

pairwise exchanges, between just two patient-donor pairs, as these are logistically simpler than

larger exchanges. Furthermore, the experience of many American surgeons suggests to them

that preferences over kidneys are approximately 0-1, i.e. that patients and surgeons should be

largely indi¤erent among healthy donors whose kidneys are compatible with the patient. This

is because, in the United States, transplants of compatible live kidneys have about equal graft

survival probabilities, regardless of the closeness of tissue types between patient and donor.

We show that, although the pairwise constraint eliminates some potential exchanges, there is a

wide class of constrained-e¢ cient mechanisms that are strategy-proof when patient-donor pairs

and surgeons have 0-1 preferences. This class of mechanisms includes deterministic mechanisms

that would accomodate the kinds of priority setting that organ banks currently use to allocate

cadaver organs, as well as stochastic mechanisms that allow distributive justice issues to be

addressed. The results also clarify the combinatorics of pairwise exchange generally.
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1 Introduction

As of this writing, there are 60,752 kidney patients in the United States who are registered on a

waiting list for a transplant of a cadaver kidney. The median waiting time is from 2 to almost 6

years depending on blood type (for registrations in 1999-2000), and in 2004, 3,971 patients died while

on the waiting list, or were removed from it after having become too ill for a transplant. In 2004

there were 8,577 transplants of cadaver kidneys.1

Because healthy people have two kidneys (and can remain healthy on only one), it is also possible

for a kidney patient to receive a live-donor transplant. There were 6,086 live-donor transplants in

2004. However, a willing, healthy donor is not always able to donate to his intended patient, because

of blood type or immunological incompatibilities between them. In this case, most often, the donor

is sent home, and becomes once again invisible to the health care system.

However, in a few cases, an exchange has been arranged between one incompatible patient-donor

pair and another. In such an exchange, the donor from each pair gives a kidney to the patient

from the other pair. From 2001 through 2004, there were 5 such paired exchanges in the fourteen

transplant centers that make up the New England region, and, in the United States, there have even

been 2 exchanges among three incompatible patient-donor pairs.2 These exchanges do not violate

the 1984 National Organ Transplant Act (NOTA), which prohibits the sale or purchase of human

organs.3

While there is a national database of tissue types of kidney patients, used for allocating ca-

daver kidneys, there is as of this writing no national (and few regional) databases of incompatible

patient-donor pairs, despite earlier proposals to set up such databases (Rapaport (1986), Ross et al

(1997)).4 Nor is there yet a systematic method used for arranging exchanges between incompatible

pairs. However there are e¤orts to change this at a number of medical centers, and in September

2004 the Renal Transplant Oversight Committee of New England approved the establishment of a

clearinghouse for kidney exchange, proposed by Drs. Francis Delmonico, Susan Saidman, and the

three authors of this paper (cf. Roth, Sönmez, and Ünver, 2005).

Our initial work on kidney exchange, in Roth, Sönmez, and Ünver (2004), showed how to identify

e¢ cient exchanges in a way that gave patients and their surgeons dominant strategy incentives to

1United Network for Organ Sharing (UNOS) - The Organ Procurement and Transplantation Network (OPTN)

national data, retrieved on 2/10/2005 from http://www.optn.org/data.
2Both of these have been arranged at the Johns Hopkins Comprehensive Transplant Center in Baltimore. Lucan

et al (2003) also reports on three pair and four pair exchanges conducted in Romania.
3See the legal opinion to this e¤ect obtained by the UNOS at http://asts.org/ezefiles/UNOSSection_301_NOTA_.pdf.
4Some hospitals have started to generate their own databases of incompatible patient-donor pairs, that could be

used for exchanges. We are aware of such databases in Alabama, Baltimore (Johns Hopkins) and Ohio (Medical

College of Ohio).
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straightforwardly reveal their preferences. And, using tissue typing statistics from the Caucasian

patient population, we showed that the bene�ts of such an exchange could be very substantial,

increasing live organ donations between unrelated donors from about 54% to as much as 91% if

multiple-pair exchanges are feasible, and to as much as 75% even if only pairwise exchanges are

feasible.5

However in our subsequent discussions with medical colleagues, aimed at organizing such ex-

changes in the New England region of the transplant system, it became clear that a likely �rst step

will be to implement pairwise exchanges, between just two patient-donor pairs, as these are logis-

tically simpler than exchanges involving more than two pairs. That is because all transplantations

in an exchange need to be carried out simultaneously, for incentive reasons, since otherwise a donor

may withdraw her consent after her intended recipient receives a transplanted kidney.6 So even a

pairwise exchange involves four simultaneous surgical teams, operating rooms, etc. Furthermore,

the experience of American surgeons suggests to them that preferences over kidneys can be well ap-

proximated as 0-1, i.e. that patients and surgeons should be more or less indi¤erent among kidneys

from healthy donors that are blood type and immunologically compatible with the patient.7 This is

because, in the United States, transplants of compatible live kidneys have about equal graft survival

probabilities, regardless of the closeness of tissue types between patient and donor (Gjertson and

Cecka (2000) and Delmonico (2004)).8

The present paper explores how to organize such exchanges. The theoretical groundwork for

kidney exchange without a constraint on the size of exchanges, explored in Roth, Sönmez, and Ünver

(2004), was laid in the papers by Shapley and Scarf (1974), Roth and Postlewaite (1977), Roth

(1982a), and Abdulkadiro¼glu and Sönmez (1999). The constrained exchange problem studied in the

present paper is closely related to elegant results from graph theory, which will prove very useful, in

ways recently pioneered by Bogomolnaia and Moulin (2004). They looked at a problem of pairwise

matching with 0-1 preferences on two-sided graphs, i.e. on graphs in which the parties to the exchange

5Subsequent investigation of a database constructed by Dr. Susan Saidman of Massachusetts General Hospital, of

patients who had an incompatible donor (and who were consequently on the waiting list for a cadaver kidney), showed

that 18% of them could participate in live donor exchanges involving only paired exchanges among patient-donor pairs

in the database, and 27% could receive transplants if larger exchanges among them were feasible.
6For legal reasons related to the NOTA, it seems unlikely that legally binding contracts can be written about the

future provision of a live donor kidney.
7Bogomolnaia and Moulin (2004), on whose work the present paper builds, refer to such preferences (in settings

quite di¤erent than kidney exchange) as dichotomous. That the surgeons with whom we are working on implementing

kidney exchange have approximately dichotomous preferences was brought to our attention when we began to work

with Dr. Saidman�s database of current patients with incompatible donors, and as we began developing software to

identify potential matches for the New England program.
8This is contrary to the �European�view which maintains that the graft survival rate increases as the tissue type

mismatch decreases. See Opelz (1997, 1998).
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can be a-priori divided into two sets, e.g. into buyers and sellers, each of which can only trade with

the other. Bipartite graphs cannot be used to model kidney exchange, since any patient-donor pair

might potentially exchange with any other. The present paper therefore generalizes such a model

to the case of arbitrary graphs.

While the constraint that only pairwise exchanges be conducted means that the number of live

donor transplants that can be arranged by exchange is smaller than if larger exchanges are feasible, it

is still substantial. And, in the constrained problem, e¢ cient and strategy-proof mechanisms will be

shown to exist. This class of mechanisms includes deterministic mechanisms that would accommodate

the kinds of priority setting that organ banks currently use for the allocation of cadaver organs, and

which therefore may be especially appealing to transplant organizations. Also included are random

matching mechanisms, such as the egalitarian mechanism, a stochastic mechanism that arises in

connection with elementary notions of distributive justice.

1.1 Related Literature

This paper intersects with the literatures on transplantation, graph theory, and mechanism design.

The idea of paired kidney exchange between one incompatible patient-donor pair and another was

�rst proposed by Rapaport (1986) and then again by Ross et al (1997). UNOS initiated pilot testing

of a paired kidney exchange program in 2000, and the same year the transplantation community

issued a consensus statement indicating that the paired kidney exchange program is considered to

be �ethically acceptable�(Abecassis et al (2000)).9

While the transplantation community approved the use of kidney exchanges to increase live kidney

donation, it has provided little guidance about how to organize such exchanges. Roth, Sönmez, and

Ünver (2004) proposed an e¢ cient and strategy-proof mechanism that uses both pairwise and larger

exchanges. The present paper di¤ers from Roth, Sönmez, and Ünver (2004) in two major ways: We

only consider exchanges involving two patients and their donors, and we adopt the assumption of

many American transplant surgeons (including those we are working with in New England) that each

patient is indi¤erent between all compatible kidneys (cf. Gjertson and Cecka (2000) and Delmonico

(2004)). These two assumptions considerably change the mathematical structure of the kidney

exchange problem, and e¢ cient exchange becomes an application of what is known in the graph theory

9Another kind of exchange proposed in the transplantation literature is an indirect exchange between an incom-

patible patient-donor pair and a patient on the cadaveric waitlist (in return for a high priority on the waitlist for the

donor�s patient; Ross and Woodle (2000)). Zenios (2002) focuses on the mix of direct and indirect exchanges that

maximizes the welfare of the candidates in the participating pairs, whereas Zenios, Woodle, and Ross (2001) propose

preferential selection of O blood-type donors of patients with multiple donors to reduce the adverse a¤ect of indirect

exchange programs on patients with no donors. Roth, Sönmez, and Ünver (2004) explore how more elaborate forms

of direct and indirect exchange can increase the potential bene�ts of kidney exchange.
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literature as the cardinality matching problem (see for example Korte and Vygen (2002)).10 For

this purpose consider an undirected graph whose vertices each represent a particular patient and her

incompatible donor(s), and whose edges connect those pairs of patients between whom an exchange is

possible, i.e. pairs of patients such that each patient in the pair is compatible with a donor of the other

patient. Finding an e¢ cient matching then reduces to �nding a maximum cardinality matching in

this undirected graph (see Lemma 1), a problem well analyzed in this literature. More speci�cally the

Gallai (1963, 1964)-Edmonds (1965) Decomposition Lemma (henceforth GED Lemma) characterizes

the set of maximum cardinality matchings. Technical aspects of our contribution heavily build on

the GED Lemma.

We �rst concentrate on deterministic outcomes, and show that there exists a wide class of e¢ cient

and strategy-proof mechanisms that accommodate the kinds of priority setting that organ banks

currently use for the allocation of cadaver organs. We then allow stochastic outcomes as well,

and show that there exists an e¢ cient and strategy-proof mechanism, the egalitarian mechanism,
which equalizes as much as possible the individual probabilities of receiving a transplant. If stochastic

mechanisms can be accepted by the transplantation community, this mechanism can serve as a basis

for discussion of how to address equity issues while achieving e¢ ciency and strategy-proofness.

Our paper builds on the closely related recent paper by Bogomolnaia and Moulin (2004). They

considered two-sided matching i.e. matching between two sets of agents that can be speci�ed exoge-

nously (e.g. �rms and workers), such that an agent on one side of the market can only be matched

with an agent on the other side (cf. Roth and Sotomayor (1990)), modeled as a bipartite graph, with

0-1 preferences. It was their paper that made us aware of some of the graph-theoretic results that

we also use here. Our results on the egalitarian mechanism generalize their corresponding results to

general, not necessarily bipartite graphs. Kidney exchange cannot be modelled as a two-sided mar-

ket, since any patient with incompatible donors can potentially be matched with any other.11 The

extensions to the general case are of interest not only because of the importance of the application

to kidney exchange , but also because of the insights they give into pairwise exchange in general

graphs, and the technical challenges that the generalization to arbitrary graphs presents.

10If we instead only consider exchanges involving two pairs (as in this paper) but assume strict preferences over com-

patible kidneys (as in Roth, Sönmez, and Ünver (2004)), the problem becomes an application of what is known as the

roommates problem (Gale and Shapley (1962)). See Abeledo and Rothblum (1994), Chung (2000), Diamantoudi,

Miyagawa, and Xue (2004,) and Teo and Sethuraman (2000).
11Note that, since each donor comes to the exchange in the company of his incompatible patient, there isn�t an

option of modeling a two-sided market in which the sides are donors and patients. There is a very small population

of undirected donors, who wish to donate but not to a speci�c patient, and such a formulation might be applicable to

them, but we do not consider such unattached donors here.
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2 Pairwise Kidney Exchange

Let N = f1; 2; :::; ng be a set of patients each of whom has one or more incompatible donors. Each

patient is indi¤erent between all compatible donors and between all incompatible donors, except she

strictly prefers her donor(s) to any other incompatible donor, and any compatible donor to her own

donor(s). Since we are considering only pairwise exchanges in this paper, the above assumptions

induce the following preference relation %i for patient i over the set of patients N :

1. For any patient j with a compatible donor for patient i we have j �i i,

2. for any patient j without any compatible donor for patient i we have i �i j;

3. for any patients j; h each of whom has a compatible donor for patient i we have j �i h;

4. for any patients j; h neither of whom has a compatible donor for patient i we have j �i h:

Here �i denotes the strict preference relation and �i denotes the indi¤erence relation induced
by %i. A (pairwise kidney exchange) problem is a pair (N;%) where %= (%i)i2N denotes the
list of patient preferences. Throughout the paper with the exception of the proofs of the results on

incentives, we �x a problem (N;%).
We consider the case in which an exchange can involve only two pairs. Patients i; j 2 N are

mutually compatible if i �j j and j �i i. That is, two patients are mutually compatible if each
one has a donor whose kidney is compatible for the other patient.

A matching � : N ! N is a function such that: �(i) = j if and only if �(j) = i for any pair of

patients i; j 2 N . A matching � is individually rational if for any patient i 2 N , �(i) 6= i implies
�(i) �i i. LetM be the set of individually rational matchings for the problem (N;%). Throughout
the paper we consider only individually rational matchings. That is, exchange is possible only between

mutually compatible patients. A matching denotes an individually rational matching throughout the

rest of the paper.

For each matching � 2 M and patient i 2 N , �(i) = i means that the patient i remains

unmatched.12 For any matching � 2 M and pair of patients i; j 2 N , �(i) = j means that patient
i receives a compatible kidney from a donor of patient j and patient j receives a compatible kidney

from a donor of patient i. Since exchange is possible only among mutually compatible pairs, it is

12A patient who is unmatched does not receive a live-donor transplant, nor does her donor donate a kidney. Such

a patient may wait for a cadaver kidney, or the patient and incompatible donor may participate in an exchange

arranged at a later date when other incompatibe patient-donor pairs have become available. Note that when a patient

is matched, only one of her donors donates a kidney (no matter how many incompatible donors the patient has).
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su¢ cient for our purposes to keep track of the symmetric jN j by jN jmutual compatibility matrix
R = [ri;j]i2N;j2N de�ned by

ri;j =

(
1 if j �i i and i �j j
0 otherwise

for any pair of (not necessarily distinct) patients i; j 2 N .
We will refer to the pair (N;R) as the reduced problem of (N;%). Occasionally it will be helpful

to think of the reduced problem as a graph G = (N;R) whose vertices N are the patients (and their

incompatible donors), and whose edges R are the connections between mutually compatible pairs of

patients; i.e. there is an edge (i; j) 2 R if and only if ri;j = 1. (It will be clear from the context

whether R is the mutual compatibility matrix or the set of edges indicating mutual compatibility.)

A matching then can be thought of as a subset of the set of edges such that each patient can appear

in at most one of the edges. With this alternative representation if (i; j) is an edge in the matching

�, patients i and j are matched by � and, if patient i does not appear in any edge in the matching

�, she remains unmatched.

A mechanism is a systematic procedure that selects a matching for each problem.

3 E¢ cient Exchange

A matching � 2 M is Pareto-e¢ cient if there exists no other matching � 2 M such that �(i) %i
�(i) for all i 2 N and �(i) �i �(i) for some i 2 N . In the present setting, � is Pareto-e¢ cient if and
only if the set M� = fi 2 N : �(i) 6= ig of patients matched by � is maximal, i.e. if there does not
exist any other matching � 2M such that M� �M�. Let E be the set of Pareto-e¢ cient matchings
for the problem (N;%) : A well known result from abstract algebra will help clarify the structure of

the set of Pareto-e¢ cient matchings (see e.g. Lovász and Plummer, 1986 on matchings, and Korte

and Vygen, 2002 on matroids).

A matroid is a pair (X; I) such that X is a set and I is a collection of subsets of X (called the

independent sets) such that

M1 if I is in I and J � I then J is in I; and

M2 if I and J are in I and jIj > jJ j then there exists an i 2 InJ such that J [ fig is in I.

Proposition 1 Let I be the sets of simultaneously matchable patients, i.e. I = fI � N : 9� 2 M
such that I �M�g. Then (N; I) is a matroid.

For any matching � 2 M, let j�j = jM�j = jfi 2 N : �(i) 6= igj denote the number of patients
who are matched with another patient. The following well known property of matchings, which
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follows immediately from the second property of matroids, states that the same number of patients

will receive a transplant at every Pareto-e¢ cient matching.

Lemma 1 For any pair of Pareto-e¢ cient matchings �; � 2 E, j�j = j�j.

If exchange is possible among more than two pairs, the conclusion of Lemma 1 no longer holds.

Example 1 Let N = f1; 2; 3; 4g and suppose preferences are such that

2 �1 4 �1 1 �1 3 1 �3 3 �3 2 �3 4
3 �2 2 �2 1 �2 4 1 �4 4 �4 2 �4 3

Consider the following two Pareto e¢ cient trades:

� Patient 1 receives a kidney from a donor of Patient 4 and Patient 4 receives a kidney from a

donor of Patient 1. (This is the only possible pairwise trade, since only Patients 1 and 4 are

mutually compatible.)

� Patient 1 receives a kidney from a donor of Patient 2, Patient 2 receives a kidney from a donor
of Patient 3, and Patient 3 receives a kidney from a donor of Patient 1.

Two patients receive transplants if the �rst trade is carried out whereas three patients receive

transplants if the second trade is carried out. �

3.1 Priority Mechanisms

The experience of transplant centers is mostly with the priority allocation systems used to allocate

cadaver organs. It is therefore natural to consider how priority mechanisms would function in the

context of live kidney exchange.

A priority ordering is a permutation of patients such that the kth patient in the permutation
is the patient with the kth priority. Without loss of generality let the priority ordering of patients be

the natural ordering (1; 2; :::; n), i.e. patient k is the kth priority patient for each k.

While we will concentrate on ordinal priorities here, priorities may depend on quanti�able patient

characteristics such as the patient�s �percent reactive antibody�(PRA), which is correlated with how

di¢ cult it will be to �nd a compatible kidney for that patient. (So it might be desirable, for example,

for a high PRA patient to have a high priority for a compatible kidney in the relatively rare event

that one becomes available.) In general, we will say that a non-negative function � : N ! R+ is a
priority function if it is increasing in priority, i.e. if �(i) � �(i+ 1).
Consider a transplant center T whose decision makers wish to �nd the set of exchanges that

maximizes a preference �T de�ned over matchings (more speci�cally, over sets of matched patients).
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We will say that �T is a priority preference if it is responsive to the priority ordering (Roth,
1985), i.e. if � �T � whenever M� � M� , or when M� and M� di¤er in only one patient, i.e.

M�nM� = fig;M�nM� = fjg, for some i; j 2 N , and i < j. That is, whenever M� and M�

di¤er in only one patient, the matching with the higher priority patient is preferred, and adding

additional matched patients to an existing matching always results in a preferred matching. (For a

given priority ordering of patients, there remain many possible priority preferences �T over sets of
matched patients.)

A priority mechanism produces a matching as follows, for any problem (N;R) and priority or-

dering (1; 2; :::; n) among the patients:

� Let E0 =M (i.e. the set of all matchings).

� In general for k � n, let Ek � Ek�1 be such that

Ek =
( �

� 2 Ek�1 : � (k) 6= k
	

if 9� 2 Ek�1 s.t. � (k) 6= k
Ek�1 otherwise

For a given problem (N;R) and priority ordering (1; 2; :::; n), we refer to each matching in En as a
priority matching, and a priority mechanism is a function which selects a priority matching for

each problem. A priority matching matches as many patients as possible starting with the patient

with the highest priority and following the priority ordering, never �sacri�cing� a higher priority

patient because of a lower priority patient.

By construction, a priority matching is maximal, and hence Pareto-e¢ cient, i.e. En � E . Propo-
sition 1 implies, through the second property of matroids, that the �opportunity cost�of matching a

higher priority patient will never be more than one lower priority patient who could otherwise have

been matched. (For example, there might be two patients each of whom is mutually compatible only

with the same third patient, and so matching the higher priority of the two patients will preclude

matching the lower priority patient. But it cannot happen that, by matching a higher priority pa-

tient, two lower priority patients are excluded who otherwise could both have been matched.) And

of course, by Lemma 1, the same total number of patients will be matched at each Pareto-e¢ cient

matching, so there is no trade-o¤ between priority allocation and the number of transplants that can

be arranged. In the matroid literature, a priority mechanism is called a greedy algorithm (since it

�greedily�takes the highest priority remaining patient at each stage). The following proposition by

Rado (1957) and Edmonds (1971) from the matroid literature will be helpful in understanding the

resulting priority matchings.

Proposition 2 For a matroid (N; I) and any priority function � on N , a priority matching �
(obtained by a greedy algorithm with respect to �) identi�es an element M� of I that maximizesP

i2I �(i) over all I 2 I.

9



Example 1 shows that if larger exchanges were permitted, the conclusions of Proposition 2 would

not carry over (e.g. suppose that patient 4 has the highest priority, so the priority mechanism chooses

the pairwise trade even if the 3-way trade has a higher sum of priorities).

For ordinal priorities, Proposition 2 allows us to quickly prove the following corollary, which

helps explains the appeal that priority algorithms may have to transplant centers accustomed to

prioritizing their patients.

Corollary 1 For any priority preference �T a priority matching � maximizes �T on the set of all
matchings, i.e. � �T � for all � 2M.

3.1.1 Incentives in priority mechanisms

We turn next to consider the incentives facing patients (and their surgeon advocates) in a priority

matching mechanism. Two apparently di¤erent issues arise that turn out to be closely related. The

�rst has to do with patients who have multiple incompatible donors willing to donate on their behalf.

We show that a patient maximizes her chance of being included in an exchange by revealing all of

her willing donors. The second issue involves revealing which compatible kidneys the patient is

willing to accept. Again, we show that a patient maximizes her chance of being able to take part

in an exchange by accepting her full set of compatible kidneys. That is, we show that with respect

to both donors and kidneys, priority mechanisms do not give participants perverse incentives, but

rather make it a dominant strategy to fully reveal which willing donors are available, and which

kidneys are acceptable.

These two conclusions have the same cause. A patient enlarges the set of other patients with

whom she is mutually compatible by coming to the exchange with more donors, and by being able

to accept a kidney from more of those other patients�donors. And a patient�s probability of being

included in an exchange is monotonic in the set of other patients with whom she is compatible.

For a given set of patients and their available donors, the basic data for the problem (N;R) is

determined by the tissue typing laboratory. So, once each patient has revealed a set of donors, the

tissue typing lab establishes for each patient i a set of compatible kidneys Ki = fj 2 N : rij = 1g.
But a kidney exchange is a complicated event involving a patient and a donor on each side of the

exchange, and so there will be no way to prevent a patient from declining a medically compatible

kidney (e.g. for logistical reasons such as location of the other patient-donor pair, or, for that matter,

for unspeci�ed reasons related e.g. to the preferences of the patient�s donor). So the strategy set

of each agent (i.e. each patient and donor, or each surgeon acting on behalf of a patient) is the

set of all possible subsets of acceptable kidneys Ai � Ki that she might declare. (A kidney that is

declared not acceptable can be thought of as being incompatible for reasons not initially revealed

by the medical data.) A mechanism can only arrange exchanges between patient-donor pairs who
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are willing to accept each other�s donor kidneys. A mechanism is strategy-proof in this dimension

if a patient�s probability of being included in an exchange with a compatible donor is maximized

by declaring truthfully that Ai = Ki .13 That is, a patient would have an incentive to declare a

smaller acceptable set Ai � Ki only if this could cause the mechanism to include the patient in an

exchange when truthful revelation of preferences (Ai = Ki ) would not. The �rst part of Theorem

1 states that a patient can never bene�t by declaring a compatible kidney to be unacceptable under

a priority mechanism.14 The second part states the similar result for revelation of available donors.

Theorem 1 A priority mechanism makes it a dominant strategy for a patient to reveal both a) her

full set of acceptable kidneys; and b) her full set of available donors.

The proof of Theorem 1 a) is contained in the Appendix. The proof of part b) follows quickly from

the proof of part a). In particular, a mechanism is donor-monotonic if a patient never su¤ers from
the addition of one additional (incompatible) donor for her. The addition of one extra donor for a

patient has the e¤ect of enlarging her set of mutually compatible patients. But the proof of part a) of

Theorem 1 shows that a patient never su¤ers from enlarging her set of mutually compatible patients

in a priority mechanism, which therefore implies that priority mechanisms are donor monotonic in

pairwise kidney exchange.

Corollary 2 A priority mechanism is donor-monotonic.

It is worth emphasizing some limits on what these results establish. When multiple potential

donors prove to be incompatible, there may be complex family preferences involved in going forward

with an exchange, e.g. a family might prefer to have a sibling donate a kidney to its patient only

after the possibility of a parent�s donation had been exhausted, and such a family might prefer to

initially look for an exchange by only revealing the availability of the parent as a donor. Theorem 1

b) does not rule out this possibility. Similarly, it might be that, even if a patient is willing to accept

all compatible kidneys, her donor is for some reason unwilling to donate a kidney to some of the

13For simplicity here we assume that all compatible kidneys are in fact acceptable, i.e. that patients do not have

logistical or other concerns not already re�ected in the mutual compatibility matrix R. More generally, we are

considering a system in which patients may freely indicate in advance that there are some kidneys that they will not

accept, but cannot back out of an exchange for a kidney that they have already indicated is acceptable without paying

an unacceptably high cost (e.g. because this would mean that they could not participate in the current exchange and

might receive very low priority for future exchanges). Consequently we do not consider any strategies at which a

patient declares unacceptable kidneys to be acceptable, but only strategies in which patients may choose which set of

acceptable kidneys to reveal.
14See Roth (1982a, 1982b), Svensson (1994, 1999), Abdulkadiro¼glu and Sönmez (1999, 2003b), Bogomolnaia, Ehlers

and Deb (2000), Papai (2000), Ehlers (2002), Ehlers, Klaus, and Papai (2002), and Ehlers and Klaus (2003), for

strategy-proofness in various related models with indivisibilities.
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patients who are compatible with him (i.e. with his kidney), which would reduce the set of acceptable

kidneys in a way not precluded by Theorem 1 a).15 What Theorem 1 does establish is that a priority

mechanism introduces no new reasons for available donors to be concealed, or compatible kidneys to

be rejected.

3.2 Gallai-Edmonds Decomposition

The structure of Pareto-e¢ cient pairwise matchings has been an active area of research in combinato-

rial optimization. Understanding this structure will yield additional insight into priority mechanisms

and also allow us to apply a central concept in distributive justice - egalitarianism - to pairwise

kidney exchange. The following partition of the set of patients is key to the structure of the set of

Pareto-e¢ cient matchings. Partition N as fNU ; NO; NPg such that

NU = fi 2 N : 9� 2 E s.t. �(i) = ig ,
NO =

�
i 2 NnNU : 9j 2 NU s.t. ri;j = 1

	
, and

NP = Nn
�
NU [NO

�
.

NU is the set of patients for each of whom there is at least one Pareto-e¢ cient matching which leaves

her unmatched. NO is the set of patients each of whom is not in NU (i.e., each of whom is matched

with another patient at each Pareto-e¢ cient matching) but is mutually compatible with at least one

patient in NU . NP is the set of remaining patients (i.e., the set of patients who are matched with

another patient at each Pareto-e¢ cient matching and who are not mutually compatible with any

patient in in NU).

Consider the reduced problem (N;R). For I � N , let RI = [ri;j]i2I;j2I . We refer to the pair (I; RI)
as the reduced subproblem restricted to I. A reduced subproblem (I; RI) is connected if there
exists a sequence of patients i1; i2; :::; im (possibly with repetition of patients) such that rik;ik+1 = 1

for all k 2 f1; 2; :::;m� 1g and I = fi1; i2; :::; img : A connected reduced subproblem (I; RI) is a

component of (N;R) if ri;j = 0 for any i 2 I and j 2 NnI: We refer to a component (I; RI) as an
odd component if jIj is odd and as an even component if jIj is even. The following result due
to Gallai (1963, 1964) and Edmonds (1965) is central to our paper:

Lemma 2 (Gallai-Edmonds Decomposition Lemma) Let (I; RI) be the reduced subproblem
with I = NnNO and let � be a Pareto-e¢ cient matching for the original problem (N;R).

1. For any patient i 2 NO; �(i) 2 NU .

15Donations of cadaver organs are often carried out under a screen of anonymity. This will be more di¢ cult in the

case of live donor exchange, since the full medical history of each donor will be an essential part of such exchange.
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2. For any even component (J;RJ) of (I; RI) ; J � NP and for any patient i 2 J , �(i) 2 Jn fig.

3. For any odd component (J;RJ) of (I; RI), J � NU and for any patient i 2 J it is possible
to match all remaining patients in J with each other (so that any patient j 2 Jn fig can be
matched with a patient in Jn fi; jg). Moreover for any odd component (J;RJ), either

(a) one and only one patient i 2 J is matched with a patient in NO under the Pareto-e¢ cient

matching � whereas all remaining patients in J are matched with each other so that � (j) 2
Jn fi; jg for any patient j 2 Jn fig, or

(b) one patient i 2 J remains unmatched under the Pareto-e¢ cient matching � whereas all
remaining patients in J are matched with each other so that � (j) 2 Jn fi; jg for any
patient j 2 Jn fig :

Based on the Gallai-Edmonds Decomposition Lemma (GED Lemma), we refer to NU as the set

of underdemanded patients, NO as the set of overdemanded patients and NP as the set of

perfectly matched patients.16

A Pareto-e¢ cient matching matches each perfectly matched patient with another perfectly

matched patient in the same even component; each overdemanded patient is matched with an under-

demanded patient; and one patient in each odd component is either matched with an overdemanded

patient or remains unmatched, whereas the remaining underdemanded patients in the same odd

component are matched with one another. So each even component is self su¢ cient whereas the odd

components compete for the overdemanded patients.

Let D = fD1; D2; :::; Dpg be the partition of the set of underdemanded patients NU such that�
Dk; RDk

�
is an odd component of

�
NnNO; RNnNO

�
for all k 2 f1; 2; :::; pg : We slightly abuse the

notation and refer each D 2 D also as an odd component.
The following is an immediate implication of the GED Lemma:

Corollary 3 jDj >
��NO

�� whenever NU is nonempty, and j�j = jN j�
�
jDj �

��NO
��� for each Pareto-

e¢ cient matching �.

That is, the e¢ cient matchings each leave unmatched jDj �
��NO

�� patients, each one in a distinct
odd component. Note that Lemma 1 is an immediate corollary to the GED Lemma as well.

16Edmonds (1965) introduced the �rst polynomial-time algorithm for construction of a Pareto-e¢ cient matching

and construction of partition fNU ; NO; NP g of N . Faster algorithms were introduced in later dates. An excellent
survey of combinatorial matching theory including matching algorithms are given in Lovász and Plummer (1986).
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3.3 The Induced Two-Sided Matching Market

Loosely speaking there is competition at two levels: At the �rst level, odd components (of under-

demanded patients) compete for overdemanded patients. With the addition of an overdemanded

patient to an odd component, all the patients in the augmented odd component can be matched to

one another. The second level of competition is between the members of odd components that do

not secure an overdemanded patient. If the odd component is of size one, its member will remain

unmatched, but members of each larger odd component compete against each other not to be the

one patient in the component who remains unmatched.

In this subsection we focus on the �rst level of competition, between odd components for overde-

manded patients. Since this competition does not involve perfectly matched patients (who are all

matched to one another at every e¢ cient outcome), we will not need to consider them for this discus-

sion. Instead, we focus on an �induced�two-sided market, one side consisting of the overdemanded

patients, and the other side consisting of the (odd) components of underdemanded patients.17

For each odd component J 2 D and overdemanded patient i 2 NO, let

~ri;J =

(
1 if 9 j 2 J s.t. ri;j = 1
0 otherwise

and let ~R = [~ri;J ]i2NO;J2D. Whenever ~ri;J = 1 for i 2 NO and J 2 D, we say there is a link between
patient i and set J .

Given the problem (N;%) ; we refer to the triple
�
NO,D; ~R

�
as the induced two-sided match-

ing market.
A pre-matching is a function ~� : NO [ D ! NO [ D [ f;g such that

1. ~�(i) 2 D [ f;g for any i 2 NO,

2. ~�(J) 2 NO [ f;g for any J 2 D,

3. ~� (i) = J , ~� (J) = i for any pair i 2 NO, J 2 D, and

4. ~� (i) = J ) ~ri;J = 1 for any pair i 2 NO, J 2 D.

Let ~M denote the set of pre-matchings. A pre-matching ~� 2 ~M is e¢ cient if it assigns each
overdemanded patient i 2 NO to an odd component J 2 D. Let ~E be the set of e¢ cient pre-
matchings. Note that ~E is non-empty by the GED Lemma.
17So the induced two-sided matching market di¤ers from natural two-sided markets (such as the medical labor

market studied in Roth, 1984) in two ways. First, one of the sides is made up not of individual patients (and

their donors), but of groups (odd components) of patients (and their donors). Second, these sides aren�t speci�ed

exogenously, but are determined by the preferences (compatibilities) of the patients.
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3.4 Priority Mechanisms Revisited

The GED Lemma allows us to see in detail how competition for compatible kidneys plays out in

priority mechanisms. The outcome of a priority mechanism is Pareto-e¢ cient and by the GED

Lemma, each overdemanded as well as each perfectly matched patient is matched at each Pareto-

e¢ cient matching. So the competition in a priority mechanism is among the underdemanded patients.

Moreover, for any odd-component J and any patient j 2 J , it is possible to match all patients in
Jn fjg among themselves. So a priority mechanism determines which odd components will be fully

matched (one member with an overdemanded patient and remaining patients with each other) and

which odd components will have all but one of its patients matched (all with each other). This will

depend on the relative priority ordering among the set of patients each of whom is the lowest priority

patient at an odd component.

For each odd component J 2 D, let `J 2 J be the lowest priority patient in J . Since if any patient
is unmatched the remaining patients in each odd component can be matched among themselves, all

patients in NUn f`J : J 2 Dg will be matched at each priority matching (i.e. if a patient remains
unmatched at an odd component, she will be the lowest priority patient in the odd component).

Relabel odd components in D such that D1 2 D hosts the highest priority patient in f`J : J 2 Dg,
D2 2 D hosts the second highest priority patient in f`J : J 2 Dg, and so on (i.e. the components are
ordered in priority order of their lowest priority patient). For each J � D and I � NO, de�ne the

neighbors of the set of odd components J among overdemanded patients in I as

C (J ; I) = fi 2 I : 9J 2 J with ~ri;J = 1g :

That is, each overdemanded patient in C (J ; I) is mutually compatible with at least one patient inS
J2J J . Which odd components will be fully matched and which ones will have all but its lowest

priority member matched will be determined by the hierarchy among the odd components (where the

priority of an odd component is determined by the priority of its lowest priority member) together

with the following version of Hall�s Theorem (Hall (1935)):

Hall�s Theorem: Let J � D. There exists a pre-matching which matches all odd components in
J with a distinct overdemanded patient in NO if and only if

8J 0 � J ,
��C �J 0,NO

��� � jJ 0j .

Under the priority mechanism, odd components D1; D2; :::; Dp are considered one at a time and the

following iterative procedure will determine which odd components will have all its members matched

and which ones will have all but its lowest priority member matched.

Step 1: If
��C �fD1g ; NO

��� � jfD1gj = 1, then let J1 = fD1g and in this case all members of D1

will be matched. If
��C �fD1g ; NO

��� < jfD1gj = 1, then let J1 = ; and in this case all members of
D1 except its lowest priority patient `1 will be matched.
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In general, at

Step k: If
��C �J [ fDkg ; NO

��� � jJ [ fDkgj for every J � Jk�1, then let Jk = Jk�1 [ fDkg
and in this case all members of Dk will be matched. If

��C �J [ fDkg ; NO
��� < jJ [ fDkgj for some

J � Jk�1, then let Jk = Jk�1 and in this case all members of Dk but its lowest priority patient `k
will be matched.

4 Stochastic Exchange

So far our emphasis has been on deterministic exchange. One important tool to achieve equity

in resource allocation problems with indivisibilities is using lotteries and allowing for stochastic

outcomes.18 A lottery � = (��)�2M is a probability distribution over the set of matchingsM. For

each matching � 2 M, �� 2 [0; 1] is the probability of matching � in lottery �, and
P

�2M �� = 1:

Let L be the set of lotteries for the problem (N;%). A stochastic mechanism is a systematic

procedure that selects a lottery for each problem. Given a lottery � 2 L, the allocation matrix
A (�) = [ai;j (�)]i2N;j2N summarizes the total probability that patient i will be matched with patient

j for any pair of patients i; j 2 N . Note that two distinct lotteries can induce the same allocation
matrix. Let A be the set of all allocation matrices for the problem (N;%) : That is, A = fA (�)g�2L.
Each lottery (and hence each allocation matrix) speci�es the probability that each patient will receive

a transplant. Given a lottery � 2 L, de�ne the utility of patient i to be the aggregate probability
that she receives a transplant. Given � 2 L, the induced utility pro�le is a non-negative real vector
u (�) = (ui (�))i2N such that ui (�) =

P
j2Nnfig ai;j (�) for any patient i 2 N . Let U be the set of all

feasible utility pro�les for the problem (N;%) : That is, U = fu (�)g�2L.
A lottery is ex-post e¢ cient if its support is a subset of the set of Pareto-e¢ cient matchings.

That is, lottery � 2 L is ex-post e¢ cient if �� > 0 implies � 2 E . An allocation matrix A 2 A is

ex-ante e¢ cient if there exists no allocation matrix B 2 A such that
P

j2Nnfig bi;j �
P

j2Nnfig ai;j

for all i 2 N and
P

j2Nnfig bi;j >
P

j2Nnfig ai;j for some i 2 N . A utility pro�le u 2 U is e¢ cient if
there exists no other utility pro�le v 2 U such that vi � ui for all i 2 N and vi > ui for some i 2 N .
An immediate implication of Lemma 1 (as well as the GED Lemma) is the �equivalence� of

ex-ante and ex-post e¢ ciency in the present context. This result is also stated by Bogomolnaia and

Moulin (2004).

Lemma 3 An allocation matrix A 2 A is ex-ante e¢ cient if and only if there is an ex-post e¢ cient

lottery � 2 L such that A(�) = A.
18For other discussions of stochastic matching, see Roth and Vande Vate (1990), Roth, Rothblum and Vande Vate

(1993), Roth and Xing (1997), Abdulkadiro¼glu and Sönmez (1998, 2003a), Bogomolnaia and Moulin (2001), Cres and

Moulin (2001), and Sönmez and Ünver (2001).
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The notions for the induced two-sided matching market
�
NO;D; ~R

�
can be similarly extended

to allow for stochastic outcomes. A pre-lottery ~� =
�
~�~�

�
~�2 ~M

is a probability distribution over

the set of pre-matchings ~M. Let ~L be the set of all pre-lotteries. A pre-allocation (matrix)
~A=[~ai;J ]i2NO;J2D is a non-negative matrix such that

P
J2D ~ai;J � 1 for any i 2 NO,

P
i2NO ~ai;J � 1

for any J 2 D, and ~ai;J > 0 implies ~ri;J = 1 for any pair i 2 NO, J 2 D: Let ~A be the set of all

pre-allocations. A pre-lottery ~� 2 ~L induces the pre-allocation ~A 2 ~A if for each pair i 2 NO and

J 2 D, ~ai;J is the cumulative probability that patient i 2 NO is matched with set J 2 D under the

pre-lottery ~�. By Lemma 2.1 in Bogomolnaia and Moulin (2002), for each pre-allocation there is a

pre-lottery that induces it. A pre-lottery ~� 2 ~L is ex-post e¢ cient if its support is a subset of
the set of e¢ cient pre-matchings. That is, pre-lottery ~� is ex-post e¢ cient if ~�~� > 0 implies ~� 2 ~E .
Pre-matchings, pre-lotteries and pre-allocations will be very useful in our analysis.

4.1 The Egalitarian Mechanism

It is rare that a cardinal representation of preferences, i.e. a utility function, has a direct interpreta-

tion in a resource allocation problem. In the present context, however, a patient�s utility corresponds

to the probability that she receives a transplant, and thus equalizing utilities as much as possible be-

comes very plausible from an equity perspective. This approach is widely known as egalitarianism
in distributive justice.19 In this section we analyze the egalitarian mechanism. The GED Lemma

will be key to the construction of egalitarian utilities.

Recall that C (J ; I) denotes the neighbors of the set of odd components J � D among overde-

manded patients I � NO. For each J � D and I � NO, de�ne a real-valued function f through

f (J ; I) = j[J2J J j � (jJ j � jC (J ; I)j)
j[J2J J j

:

Recall that at most one patient in each odd component remains unmatched at every Pareto-e¢ cient

matching and therefore no more than jJ j patients among patients in
S
J2J J can remain unmatched

at any Pareto-e¢ cient matching. Consider a situation where only overdemanded patients in I � NO

are available to be matched with underdemanded patients in
S
J2J J . By de�nition of a neighbor,

underdemanded patients in
S
J2J J can only be matched with overdemanded patients in C (J ; I) � I

and therefore at least (jJ j � jC (J ; I)j) of these patients remain unmatched at a Pareto-e¢ cient
matching (provided that jJ j � jC (J ; I)j).20 Therefore if only overdemanded patients in I � NO

are available to be matched with patients in
S
J2J J , the quantity f (J ; I) is an upper-bound of

the utility (i.e. the probability of receiving a transplant) of the least fortunate patient in
S
J2J J ,

19The two most related economic applications of egalitarianism to our setup are Bogomolnaia and Moulin (2004)

and Dutta and Ray (1989).
20For the sets of odd components J that we consider below, jJ j > jC (J ; I)j.
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and this upper-bound can only be reached if not only all underdemanded patients in
S
J2J J receive

the same utility but also all overdemanded patients in C (J ; I) are matched to patients in
S
J2J J .

This motivates the following recursive construction that partitions D as fD1;D2; :::;Dqg and NO as�
NO
1 ; N

O
2 ; :::; N

O
q

	
:

Step 1: Let21

D1 = arg min
J�D

f
�
J ; NO

�
and NO

1 = C
�
D1; NO

�
:

In general, at

Step k: Let

Dk = arg min
J�Dn[k�1`=1D`

f

 
J ; NO

-
k�1[
`=1

NO
`

!
and NO

k = C

 
Dk; NO

-
k�1[
`=1

NO
`

!
.

For each j 2 NU , let k(j) be the step at which the odd component that contains patient j leaves

the above procedure. That is, k(j) 2 f1; 2; :::; qg is such that j 2 J 2 Dk(j):
We construct the egalitarian utility pro�le uE =

�
uEi
�
i2N as follows: uEi = 1 for each i 2

NnNU ; and uEi = f
�
Dk(i); NO

k(i)

�
for each i 2 NU .

Theorem 2 The egalitarian utility pro�le uE is a feasible utility pro�le.

Theorem 2 states that for each of the collections of under and overdemanded patients (Dk; NO
k )

in the above construction, the overdemanded patients can be probabilistically matched to all of

the indicated odd components of underdemanded patients, in lotteries that divide the resulting

probabilities equally among the underdemanded patients, and thus achieve the upper bound on the

utility of the least fortunate patients.

We next present an example that illustrates the construction of the egalitarian utilities.

Example 2 Let N = f1; : : : ; 16g be the set of patients and consider the reduced problem given by

the graph in Figure 1. Each patient except 1 and 2 can be left unmatched at some Pareto e¢ cient

matching and hence NU = f3; : : : ; 16g is the set of underdemanded patients. Since both patients 1
and 2 have links with patients in NU , NO = f1; 2g is the set of overdemanded patients.22 Therefore
the set of odd components is D = fD1; : : : ; D6g whereD1 = f3g, D2 = f4g, D3 = f5g, D4 = f6; 7; 8g,
D5 = f9; 10; 11g, D6 = f12; 13; 14; 15; 16g. Note that the egalitarian utility of members of the 3-
patient odd components D4; D5 is at least 2/3. That is because any two of the three can be matched

among themselves, by the GED Lemma. Similarly the egalitarian utility of each member of the

21If there are multiple sets that minimizes f , their union minimizes f as well and we pick the largest such set as the

argmin. See Lemma 4 in the Appendix for a proof of this result.
22Since perfectly matched patients do not play an active role in determining the egalitarian utilities, we consider an

example with no such patients.
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Figure 1: Graphical Representation for Example 2.

5-patient odd component D6 is at least 4/5. These observations are helpful for constructing the

egalitarian utility pro�le.

Consider J1 = fD1; D2g = ff3g; f4gg. Note that f(J1; NO) = 2�(2�1)
2

= 1
2
. Since f(J1; NO) =

1
2
< 2

3
< 4

5
, none of the multi-patient odd components is an element of D1. Moreover patient 5 has

two overdemanded neighbors and f(J ; NO) > f(J1; NO) for any J � ff3g; f4g; f5gg with f5g 2 J .
Therefore

D1 = J1 = ff3g; f4gg; NO
1 = f1g; and uE3 = u

E
4 =

1

2
:

Next consider J2 = fD3; D4; D5g = ff5g; f6; 7; 8g; f9; 10; 11gg. Note that f(J2; NO n NO
1 ) =

7�(3�1)
7

= 5
7
. Since f(J2; NO n NO

1 ) =
5
7
< 4

5
, the 5-patient odd component D6 is not an element of

D2. Moreover

f(fD3g; NO nNO
1 ) = f(fD4g; NO nNO

1 ) = f(fD5g; NO nNO
1 ) = 1;

f(fD3; D4g; NO nNO
1 ) = f(fD3; D5g; NO nNO

1 ) =
3
4
; and f(fD4; D5g; NO nNO

1 ) =
5
6
:

Therefore

D2 = J2 = ff5g; f6; 7; 8g; f9; 10; 11gg; NO
2 = f2g; and uE5 = � � � = uE11 =

5

7
:

Finally since NO n (NO
1 [NO

2 ) = ;,

D3 = ff12; 13; 14; 15; 16gg; NO
3 = ;; and uE12 = � � � = uE16 =

4

5
:

Hence the egalitarian utility pro�le is uE = (1; 1; 1
2
; 1
2
; 5
7
; 5
7
; 5
7
; 5
7
; 5
7
; 5
7
; 5
7
; 4
5
; 4
5
; 4
5
; 4
5
; 4
5
). �

For any utility pro�le u 2 U ; re-order individual utilities in an increasing order as
�
u(t)
�
t2f1;2;:::;ng

such that u(1) � u(2) � � � � � u(n). A utility pro�le u 2 U Lorenz-dominates a utility pro�le v 2 U
if
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1. for each t 2 f1; 2; :::; ng we have
Pt

s=1 u
(s) �

Pt
s=1 v

(s), and

2. there is some t 2 f1; 2; :::; ng such that
Pt

s=1 u
(s) >

Pt
s=1 v

(s).

A utility pro�le is Lorenz-dominant if and only if it Lorenz-dominates every other utility pro�le.
If it exists, a Lorenz-dominant utility pro�le is e¢ cient and as �evenly�distributes the probability of

receiving a transplant among patients as possible constrained by the mutual compatibility constraints.

Theorem 3 The egalitarian utility pro�le uE is Lorenz-dominant.

We illustrate Theorem 3 with a simple example.

Example 3 Let N = f1; 2; 3; 4g and suppose patient 1 is mutually compatible with patient 2 as
well as with patient 3 but patients 2 and 3 are not mutually compatible. The two Pareto e¢ cient

matchings are

� =

 
1 2 3

2 1 3

!
and � =

 
1 2 3

3 2 1

!
and the egalitarian utility pro�le is uE = (1; 1=2; 1=2). So re-ordering the individual utilities from

smallest to largest, uE(1) = 1=2, uE(2) = 1=2, and uE(3) = 1. Next consider any ex-post e¢ cient

lottery �� + (1 � �)�. The induced utility pro�le is u� = (1; �; 1 � �) and u�(1) = minf�; 1 � �g,
u�(2) = maxf�; 1 � �g, and u�(3) = 1. Hence uE(1) > u�(1), uE(1) + uE(2) = u�(1) + u�(2), and

uE(1) + uE(2) + uE(3) = u�(1) + u�(2) + u�(3) for � 6= 1=2 showing that uE Lorenz dominates any other
e¢ cient utility pro�le. Since each ine¢ cient utility pro�le is Lorenz dominated by any e¢ cient utility

pro�le that Pareto dominates it (and since Lorenz domination is transitive), uE Lorenz dominates

any utility pro�le. �
We refer to any lottery that induces the egalitarian utility pro�le as an egalitarian lottery.

Similarly we refer to any allocation matrix that induces the egalitarian utility pro�le as an egalitar-
ian allocation matrix. We refer to a stochastic mechanism that selects an egalitarian lottery for

each problem as an egalitarian mechanism.
Our next result states that, as for priority mechanisms, truthful revelation of private information

is a dominant strategy under an egalitarian mechanism.

Theorem 4 An egalitarian mechanism makes it a dominant strategy for a patient to reveal both a)

her full set of acceptable kidneys; and b) her full set of available donors.

As discussed when we proved the similar result for the priority mechanisms, the second part of

the Theorem follows from the �rst. Revelation of the full set of acceptable kidneys increases the set

of patients with whom a given patient is mutually compatible, and, for the same reason, a patient

never su¤ers because of an addition of one more incompatible donor. That is:

Corollary 4 An egalitarian mechanism is donor-monotonic.
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5 Concluding Remarks

One of the most challenging steps in implementing new market designs is addressing the constraints

that arise in the �eld. Because all surgeries in a kidney exchange must be done simultaneously, even

the simplest exchange, between two patient-donor pairs, requires four simultaneous surgeries among

the two donors and two recipients. It therefore seems likely that some transplant centers are correct in

anticipating that they will, at least initially, only be able to proceed with exchange among two pairs.

Roth, Sönmez, and Ünver (2004, 2005) showed that, even under this constraint, implementing kidney

exchange could substantially increase the number of live organ kidney transplants. The present paper

shows that when exchange is constrained in this way, and when the 0-1 nature of American surgeons�

preferences regarding compatible/incompatible kidneys are taken into account, it is still possible to

arrange exchange in an e¢ cient and incentive compatible manner.

Another challenge in implementing new market designs arises in meeting the perceived needs and

desires of the institutions, organizations, and individuals who must adopt and use the new design.

Here too, the results are encouraging, and we show that the kinds of priority allocation that already

govern the allocation of cadaver kidneys can be adapted to work e¤ectively in organizing live donor

kidney exchange. Since there are virtually no constraints on the kinds of priorities that can be

used in an e¢ cient and incentive compatible mechanism, we anticipate that priority mechanisms

may appeal to di¤erent transplant centers that do not necessarily agree on how patients should be

prioritized.

Indeed, there is lively discussion and disagreement about, and frequent revision of the priorities

that di¤erent kinds of patients should have for cadaver organs, and we don�t doubt that similar

discussions about live organ exchange will take place as exchange becomes more common. The debate

about cadaver organs frequently refers to considerations of distributive justice, and in this connection

we have discussed stochastic mechanisms of exchange, and the egalitarian mechanism in particular.

We do not anticipate or propose that this be taken as the last word on distributive justice in kidney

exchange, but rather intend merely to show how the tools we assemble here can be used to address

the kinds of distributional questions that arise. An interesting area of future research might be the

extent to which egalitarian (and weighted-egalitarian) exchange mechanisms can be approximated

by priority mechanisms with appropriately chosen priorities, taking into account di¤erent patients�

likelihoods of �nding compatible donors with whom to exchange, the size and frequency of exchanges,

etc., in the dynamic environment in which new patients and donors arrive, and exchanges are carried

out periodically.

More generally, as economists start to take a more active role in practical market design, we

often �nd we have to deal with constraints, demands, and situations di¤erent than those that arise
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in the simplest theoretical models of mechanism design.23 In the present paper we address some

of the issues that have arisen as we try to help surgeons implement an organized exchange of live-

donor kidneys among incompatible donor-patient pairs. Not only do these issues appear to allow

satisfactory practical solutions, they suggest new directions in which to pursue the underlying theory.

6 Appendix: Proofs

The proof of Proposition 1 is a standard exercise in combinatorial optimization theory, for example

see Goemans (2004). Proposition 2 is due to Rado (1957) and Edmonds (1971). Lemma 1 and

Lemma 3 are corollaries of the GED Lemma (Lemma 2) and see Lovász and Plummer (1986) for a

proof of the GED Lemma.

Proof of Theorem 1a): W.l.o.g. we will prove the theorem for the priority mechanism � induced by

the natural ordering. Let R be a reduced problem and k be a patient. If patient k is matched with

another patient under �(R), then she has nothing to gain by revealing only a subset of her full set of

compatible kidneys. Suppose patient k remains unmatched under � = �(R) and let Q be a reduced

problem obtained from R by patient k declaring some of her compatible kidneys to be incompatible.

Observe that this implies Ek�1(Q) � Ek�1(R). Let �(Q) = �. Since �(k) = k, �0(k) = k for all

�0 2 Ek�1(R). But then �0(k) = k for all �0 2 Ek�1(Q) as well and hence �(k) = k completing the
proof. �

The following Lemma is useful to construct the egalitarian utility pro�le:

Lemma 4 Fix G � D and I � NO. Suppose G1;G2 2 argminJ�G f (J ; I) : Then G1 [ G2 2
argminJ�G f (J ; I) as well.

Proof of Lemma 4: Fix G � D and I � NO. Suppose G1;G2 2 argminJ�G f (J ; I). Let G3 = G1 \G2
and G4 = G1 [ G2. For all i 2 f1; 2; 3; 4g de�ne

ni =

����� [
J2Gi

J

����� ; Ci = C(Gi; I); and fi = f(Gi; I):

By de�nition we have

jG1j+ jG2j = jG3j+ jG4j and n1 + n2 = n3 + n4:

23See for instance Roth and Peranson (1999), Roth (2002), Wilson (2002), Abdulkadiro¼glu and Sönmez (2003b),

Milgrom (2004), Niederle and Roth (2004, 2005), Crawford (2005), Abdulkadiro¼glu, Pathak, and Roth (2005), and

Abdulkadiro¼glu, Pathak, Roth, and Sönmez (2005) for some examples. Indeed, one of the principal motivations of

Roth, Sönmez, and Ünver (2004) was to organize e¢ cient kidney exchange under the social/ethical/legal prohibitions

on monetized markets.
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Moreover

jC1j+ jC2j � jC3j+ jC4j:

That is because, in the LHS of the inequality not only the neighbors of G3 = G1 \ G2 (i.e. members
of C3) are counted twice but also there may be additional common neighbors of G1 and G2; RHS of
the inequality accounts for the double counting of members of C3 but not the remaining common

neighbors of G1 and G2.
Since G1, G2 each minimize the function f ,

(n1 � (jG1j � jC1j))
n1| {z }
=f1

=
(n2 � (jG2j � jC2j))

n2| {z }
=f2

� (n3 � (jG3j � jC3j))
n3| {z }
=f3

and hence

f1n1 = n1 � (jG1j � jC1j);
f1n2 = n2 � (jG2j � jC2j);
f1n3 � n3 � (jG3j � jC3j):

Adding the �rst two lines and subtracting the third line

f1(n1 + n2 � n3| {z }
=n4

) � (n1 + n2 � n3| {z }
=n4

)� (jG1j+ jG2j � jG3j| {z }
=jG4j

) + (jC1j+ jC2j � jC3j| {z }
�jC4j

)

and therefore f1n4 � n4 � jG4j+ jC4j, or equivalently

f1 �
(n4 � (jG4j � jC4j))

n4
= f4:

But since G1 minimizes f , we shall have f4 = f1 and hence G4 = G1 [ G2 minimizes f as well. �

We next present two lemmata that will be useful in our proof for Theorem 2. Lemma 5 is a part

of Lemma 3.2.2 in Lovász and Plummer (1986) pp 95:

Lemma 5 For each i 2 NO, the Gallai-Edmonds decomposition of the reduced subproblem�
Nn fig ; RNnfig

�
is given by

�
NU ; NOn fig ; NP

	
where NU is the set of underdemanded patients,

NOn fig is the set of overdemanded patients, and NP is the set of perfectly matched patients for the

reduced subproblem
�
Nn fig ; RNnfig

�
.

Lemma 6 For each k 2 f1; 2; :::; qg, we have

i. C
�
Dk; NO

k

�
= C

�
Dk; NO

/Sk�1
`=1 N

O
`

�
and f

�
Dk; NO

k

�
= f

�
Dk; NO

/Sk�1
`=1 N

O
`

�
,
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ii. f
�
Dk; NO

k

�
< 1:

Proof of Lemma 6: For any k 2 f1; 2; :::; qg, let Jk =
S
J2Dk J . Note that Jk is the set of patients in

sets of Dk. Pick k 2 f1; 2; :::; q � 1g.

i. First observe that C
�
Dk; NO

/Sk�1
`=1 N

O
`

�
= C

�
Dk; C

�
Dk; NO

/Sk�1
`=1 N

O
`

��
. This together

with NO
k = C

�
Dk; NO

/Sk�1
`=1 N

O
`

�
implies that C

�
Dk; NO

k

�
= C

�
Dk; NO

/Sk�1
`=1 N

O
`

�
. Fur-

thermore

f

 
Dk; NO

-
k�1[
`=1

NO
`

!
=

jJkj �
�
jDkj �

���C �Dk; NO
/Sk�1

`=1 N
O
`

�����
jJkj

=
jJkj �

�
jDkj �

��C �Dk; NO
k

����
jJkj

= f
�
Dk; NO

k

�
.

ii. Consider the construction of the partition fD1;D2; :::;Dqg of D and
�
NO
1 ; N

O
2 ; :::; N

O
q

	
of NO.

We prove Lemma 6 (ii) by iteration on steps k 2 f1; 2; :::; qg of the construction.

First consider k = 1. We have

f
�
D1; NO

1

�
= f

�
D1; NO

�
by Lemma 6 (i)

� f
�
D; NO

�
by construction of D1

=

��NU
��� (jDj � ��C(D; NO)

��)
jNU j by de�nition of f

=

��NU
��� (jDj � ��NO

��)
jNU j by C(D; NO) = NO

< 1 since
��NO

�� < jDj by Corollary 3
If D1 = D, then q = 1 and we are done. Otherwise we proceed with k = 2.

Next consider k = 2: Consider the reduced subproblem
�
NnNO

1 ; RNnNO
1

�
. Since NO

1 �
NO, Lemma 5 implies that the Gallai-Edmonds decomposition for the reduced subproblem�
NnNO

1 ; RNnNO
1

�
is given by

�
NU ; NOnNO

1 ; N
P
	
. Since NO

1 = C(D1; NO), there is no pa-

tient j 2 J1 =
S
J2D1 J who is mutually compatible with a patient in NnN

O
1 . Therefore,

(J;RJ) is a component of reduced subproblem
�
NnNO

1 ; RNnNO
1

�
for each J 2 D1; which in

turn implies
�
NUnJ1; NOnNO

1 ; N
P
	
is the Gallai-Edmonds decomposition for the reduced sub-

problem
�
Nn
�
NO
1 [ J1

�
; R

Nn(NO
1 [J1)

�
. Therefore, DnD1 is the set of odd components of the

reduced subproblem which is obtained by removing overdemanded patients from the reduced

subproblem
�
Nn
�
NO
1 [ J1

�
; R

Nn(NO
1 [J1)

�
.
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By Corollary 3, jDnD1j >
��NnNO

1

�� and at this point the proof of f �D2; NO
2

�
< 1 follows from

the same sequence of arguments as in k = 1:

f
�
D2; NO

2

�
= f

�
D2; NO

�
NO
1

�
� f

�
D nD1 ; NO

�
NO
1

�
=

��NU nJ1
��� (jDnD1j � ��C(D nD1 ; NO

�
NO
1 )
��)

jNU nJ1 j

=

��NU nJ1
��� (jD nD1 j � ��NO

�
NO
1

��)
jNU nJ1 j

< 1

If D1[D2 = D then q = 2 and we are done. Otherwise, we iteratively proceed in a similar way
with k = 3, and so on. �

Proof of Theorem 2: Let k 2 f1; 2; :::; qg and J 2 Dk. Recall that J is a set of underdemanded
patients and (J;RJ) is an odd component of

�
NnNO; RNnNO

�
. Under a Pareto-e¢ cient matching,

at most one patient in J is matched with an overdemanded patient, and for each j 2 J , it is possible
to match the remaining jJ j�1 patients in Jn fjg with each other by the GED Lemma. Therefore the
set J , by itself, generates an aggregate utility of jJ j � 1 for its members under each e¢ cient utility
pro�le without any help of the overdemanded patients. Moreover, jJ j :f(Dk; NO

k ) is the aggregate

utility of patients in set J under uE and jJ j :f(Dk; NO
k ) � jJ j � 1 by construction of f . Therefore,

if uE is a feasible utility pro�le, then patients in J should be matched with overdemanded patients

with a cumulative probability of jJ j :f(Dk; NO
k )� (jJ j � 1) under any lottery � that induces uE. Let

�J = jJ j :f(Dk; NO
k )� (jJ j � 1) .

Note that f(Dk; NO
k ) < 1 by Lemma 6 (ii), and therefore f(Dk; NO

k ) � �J . Also note that for each
k 2 f1; 2; :::; qg and J 2 Dk we have

�J = jJ j :f
�
Dk; NO

k

�
� (jJ j � 1) = jJ j :

��S
J 02Dk J

0
��� �jDkj � ��C �Dk; NO

k

������S
J 02Dk J

0
�� � (jJ j � 1)

=

��S
J 02Dk J

0
��� jJ j : �jDkj � ��C �Dk; NO

k

������S
J 02Dk J

0
�� (1)

We will show that uE is a feasible utility pro�le in two major steps: In the �rst step (Claim 1),

we will show that it is possible to assign overdemanded patients NO to odd components D such that
each odd component J 2 D is assigned with an overdemanded patient with an aggregate probability
of �J . In the second step (Claim 2) we will show that for each odd component J 2 Dk, it is possible
to evenly divide the aggregate utility �J + (jJ j � 1) among jJ j members as f

�
Dk; NO

k

�
.

Claim 1: There exists a pre-allocation matrix ~A 2 ~A such that

25



1. For each i 2 NO,
P

J2D ~ai;J = 1, and

2. For each k 2 f1; 2; :::; qg and J 2 Dk

(a) ~ai;J = 0 for all i 2 NOnNO
k , and

(b)
P

i2NO
k
~ai;J=�J .

Proof of Claim 1: Let k 2 f1; 2; :::; qg. We will show that it is possible to share the aggregate
��NO

k

��
units of �weight�of members of NO

k (1 unit weight from each member) among (only) members of

Dk such that the share of odd component J 2 Dk is �J . Formally, we will show that there exists a
non-negative valued matrix ~Ak;k = [~ai;J ]i2NO

k ;J2Dk
such that

1.
P

J2Dk ~ai;J = 1 for all i 2 N
O
k ,

2.
P

i2NO
k
~ai;J=�J for all J 2 Dk, and

3. ~ai;J > 0) ~ri;J = 1 for any pair i 2 NO
k , J 2 Dk.

We will show this by de�ning an auxiliary task assignment problem and applying Hall�s The-

orem to the auxiliary task assignment problem.24 Given NO
k and Dk, construct the task assignment

problem (X; T ;�) as follows:

� For each overdemanded patient i 2 NO
k ; introduce

��S
J 02Dk J

0
�� identical agents. Let Xi be the

set of the identical agents associated with patient i; and X =
S
i2NO

k
Xi.

� For each odd component J 2 Dk, introduce
��S

J 02Dk J
0
��� jJ j : �jDkj � ��C �Dk; NO

k

���� identical
tasks. Let TJ be the set of identical tasks associated with set J , and T =

S
J2Dk TJ .

� Finally, introduce a matrix � =
�

x;T

�
x2X;T2T such that 
x;T = 1 if ~ri;J = 1 for x 2 Xi and

T 2 TJ ; and 
x;T = 0 otherwise: Intuitively agent x is �t to perform task T if and only if

patient i associated with agent x has a link with the odd component J that is associated with

task T in the induced two-sided matching market
�
NO;D; ~R

�
.

24This can be interpreted as the proof of a continuous version of Hall�s theorem that deals with probabilistic

assignments.
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Given NO
k and Dk we refer to (X; T ;�) as the auxiliary task assignment problem. Note that

jT j =
X
J2Dk

 ����� [
J 02Dk

J 0

������ jJ j : �jDkj � ��C �Dk; NO
k

����!

= jDkj :
����� [
J 02Dk

J 0

������
����� [
J 02Dk

J 0

����� : �jDkj � ��C �Dk; NO
k

����
=

����� [
J 02Dk

J 0

����� : ��C �Dk; NO
k

��� = ����� [
J 02Dk

J 0

����� : ��NO
k

�� = X
i2NO

k

����� [
J 02Dk

J 0

����� = jXj :
An auxiliary task assignment is a bijection � : X �! T . An auxiliary task assignment � is

feasible if and only if � (x) = T implies that 
x;T = 1.
Here is the point of introducing the above auxiliary task assignment problem: Each agent or task

inX[T corresponds to a fraction 1

j[J02DkJ 0j
of its �owner�inNO

k [Dk. Therefore if we show that there
exists a feasible auxiliary task assignment �, this would mean that it is possible to assign each agent in

X to a distinct compatible task in T ; and therefore the aggregate
��NO

k

�� : ��SJ 02Dk J
0
�� : 1

j[J02DkJ 0j
=
��NO

k

��
weight of the patients in NO

k can be allocated among odd components of Dk such that the share of
the odd component J is

���S
J 02Dk J

0
��� jJ j : �jDkj � ��C �Dk; NO

k

�����. 1

j[J02DkJ 0j
= �J .

We next prove that there exists a feasible auxiliary task assignment � for the above task assign-

ment problem. Given �� T de�ne

C(� ;X) =
�
x 2 X : 9T 2 � with 
x;T = 1

	
That is, C(� ;X) is the set of agents each of whom is �t to perform at least one of the tasks in � : By

Hall�s Theorem there exists a feasible auxiliary task assignment if and only if

j� j � jC(� ;X)j for every � � T :

That is, no matter what subset of tasks is considered, the number of agents who are �t for at least

one of these tasks should be no less than the number of the tasks in this subset. We will prove this

by contradiction.

Suppose there exists a subset � � T of tasks such that j� j > jC(� ;X)j. Next construct the
following set of tasks � � � � . For any task T 2 � , include all tasks which are identical to task T in
set � �. Note that since C(� �; X) = C(� ;X); we have

j� �j � j� j > jC(� ;X)j = jC(� �; X)j (2)

Let J � � Dk be the set of odd components each of which is associated with a task in � �. Note
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that
S
J2J � TJ = � � and therefore

j� �j =
X
J2J �

 ����� [
J 02Dk

J 0

������ jJ j : �jDkj � ��C �Dk; NO
k

����!

= jJ �j :
����� [
J 02Dk

J 0

������
����� [
J 02J �

J 0

����� : �jDkj � ��C �Dk; NO
k

���� (3)

Moreover

jC(� �; X)j =
����� [
J 02Dk

J 0

����� : ��C(J �; NO
k )
�� (4)

By Eq (2), Eq (3), and Eq (4)

jJ �j :
����� [
J 02Dk

J 0

������
����� [
J 02J �

J 0

����� : �jDkj � ��C �Dk; NO
k

���� > ����� [
J 02Dk

J 0

����� : ��C(J �; NO
k )
�� ;

rearranging the terms, we have

�
jDkj �

��C �Dk; NO
k

�����S
J 02Dk J

0
��| {z }

=f(Dk;NO
k )�1

> �
jJ �j �

��C(J �; NO
k )
����S

J 02J � J 0
��| {z }

=f(J �;NO
k )�1

and therefore,

f
�
Dk; NO

k

�
> f

�
J �; NO

k

�
: (5)

However f
�
Dk; NO

k

�
= f

�
Dk; NO

/Sk�1
`=1 N

O
`

�
and f

�
J �; NO

k

�
= f

�
J �; NO

/Sk�1
`=1 N

O
`

�
by

Lemma 6, and this together with Eq (5) imply that

f

 
Dk; NO

-
k�1[
`=1

NO
`

!
> f

 
J �; NO

-
k�1[
`=1

NO
`

!

contradicting the de�nition of Dk and showing that for each � � T we have j� j � jC(� ;X)j. There-
fore, there exists a feasible auxiliary task assignment � by Hall�s Theorem.

We next construct matrix ~Ak;k = [~ai;J ]i2NO
k ;J2Dk

using the auxiliary task assignment �. For each

J 2 Dk and i 2 NO
k ; de�ne

�i;J = fx 2 Xi : �(x) = T for some T 2 TJg :

By de�nition j�i;J j is the total number of tasks associated with odd component J each of which is
assigned to an agent associated with the overdemanded patient i. For each J 2 Dk and i 2 NO

k , let

~ai;J =
j�i;J j��S
J 02Dk J

0
��
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and let ~Ak;k = [~ai;J ]i2NO
k ;J2Dk

: For each odd component J 2 Dk; we have

X
i2NO

k

~ai;J =

P
i2NO

k
j�i;J j��S

J 02Dk J
0
�� = jTJ j��S

J 02Dk J
0
�� =

��S
J 02Dk J

0
��� jJ j : �jDkj � ��C �Dk; NO

k

������S
J 02Dk J

0
�� = �J

where the last equality holds by Eq (1). Moreover for each overdemanded patient i 2 NO
k ; we haveX

J2Dk

~ai;J =

P
J2Dk j�i;J j��S
J 02Dk J

0
�� = jXij��S

J 02Dk J
0
�� =

��S
J 02Dk J

0
����S

J 02Dk J
0
�� = 1: (6)

We conclude the proof of Claim 1 by constructing a pre-allocation matrix ~A 2 ~A using the

matrices
n
~Ak;k
o
k2f1;2;:::;qg

constructed above.

For each k, k0 with k 6= k0, for each i 2 NO
k and each J 2 Dk0 let ~ai;J = 0. Let ~Ak;k

0
=

[~ai;J ]i2NO
k ;J2Dk0

.

Let ~A =
h
~Ak;k

0
i
k2f1;2;:::;qg;k02f1;2;:::;qg

= [~ai;J ]i2NO;J2D.

For each k and each odd component J 2 Dk; we have
P

i2NO ~ai;J =
P

i2NO
k
~ai;J = �J by Eq (??) and

for each overdemanded patient i 2 NO
k , we have

P
J2D ~ai;J =

P
J2Dk ~ai;J = 1 by Eq (6) concluding

the proof of Claim 1. �

The next claim completes the proof of Theorem 2.

Claim 2: There exists an ex-post e¢ cient lottery �E 2 L such that u
�
�E
�
= uE:

Proof of Claim 2: By Claim 1 there exists a pre-allocation ~A 2 ~A such that

1. For each i 2 NO,
P

J2D ~ai;J = 1, and

2. For each k 2 f1; 2; :::; qg and J 2 Dk

(a) ~ai;J = 0 for all i 2 NOnNO
k , and

(b)
P

i2NO
k
~ai;J=�J .

For each k 2 f1; 2; :::; qg and J 2 Dk; we have
P

i2NO
k
~ai;J = �J and ~ai;J = 0 for all i 2 NnNO

k :

By Lemma 2.1 in Bogomolnaia and Moulin (2002) there exists an ex-post e¢ cient pre-lottery ~� 2 ~L
that implements ~A. We will �build on� the pre-lottery ~� to construct the lottery �E. For each

pre-matching ~� 2 ~M in the support of pre-lottery ~�, partition set D as fDm (~�) ;Du (~�)g where

� Dm (~�) = fJ 2 D : ~�(J) 6= ;g is the set of matched odd components, and

� Du (~�) = DnDm (~�) is the set of unmatched odd components.
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For each pre-matching ~� 2 ~M in the support of pre-lottery ~� construct
Q
J2Du(~�) jJ j distinct

matchings as follows:

Pick one patient from each J 2 Du (~�). Note that there are
Q
J2Du(~�) jJ j possible combinations.

For each combination construct a Pareto-e¢ cient matching � such that:

� each of the chosen patients is matched to herself,

� each remaining patient in each odd component J 2 Du (~�) is matched with another patient in
the same odd component J , and

� one patient in each odd component J 2 Dm (~�) is matched with an overdemanded patient
i 2 NO whereas all other patients in each such odd component J is matched with another

patient in J .

By the GED Lemma, there exists at least one such matching. Pick one and only one such matching

for each of the
Q
J2Du(~�) jJ j possible combinations: Let M(~�) be the resulting set of matchings.

Clearly jM(~�)j =
Q
J2Du(~�) jJ j :

We are �nally ready to construct a lottery �E which induces the utility pro�le uE. The lottery

�E is constructed from the pre-lottery ~� by simply replacing each pre-matching ~� in the support of
~� with the uniform lottery overM(~�). That is:

�E� =

( ~�~�
jM(~�)j if � 2M(~�) and ~�~� > 0

0 otherwise

Clearly, �E is a lottery:

X
�2M

�E� =
X
~�2 ~M

0@ X
�2M(~�)

�E�

1A =
X
~�2 ~M

0@ X
�2M(~�)

~�~�
jM(~�)j

1A =
X
~�2 ~M

~�~� = 1

Moreover, by construction �E is an ex-post e¢ cient lottery.

We conclude the proof of Claim 2 and Theorem 2 by showing that u(�E) = uE:

Each patient in NnNU is matched with another patient in every e¢ cient matching by the GED

Lemma. Since �E is ex-post e¢ cient, for each patient i 2 NnNU we have ui
�
�E
�
= uEi = 1:

Consider a patient i 2 NU . Let i 2 J 2 Dk for some k.
Let ~� 2 ~M be a pre-matching with ~�~� > 0:

1. If J 2 Dm (~�) then all patients in J are matched under every matching � 2M (~�).

2. If J 2 Du (~�) then jJ j � 1 patients in J are matched under every matching � 2 M (~�) and

patient i (just as any other patient in J) is matched with another patient in jJ j�1
jJ j jM (~�)j of

these matchings.
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Since
P

i2NO
k
~ai;J = �J is the probability that the odd component J is assigned a patient in NO

k

under the pre-lottery ~�, we haveX
~�2 ~M s.t. J2Dm(~�)

~�~� = �J and
X

~�2 ~M s.t. J2Du(~�)

~�~� = 1� �J (7)

Therefore

ui
�
�E
�
=

X
�2M s.t. �(i) 6=i

�E�

=
X

~�2 ~M s.t. J2Dm(~�)

0@ X
�2M(~�)

~�~�
jM(~�)j

1A+ X
~�2 ~M s.t. J2Du(~�)

0@ X
�2M(~�) s.t. �(i) 6=i

~�~�
jM(~�)j

1A
=

X
~�2 ~M s.t. J2Dm(~�)

~�~� +
X

~�2 ~M s.t. J2Du(~�)

jJ j � 1
jJ j :~�~�

= �J + (1� �J) :
jJ j � 1
jJ j =

jJ j � 1 + �J
jJ j = 1�

jDkj �
��C �Dk; NO

k

�����S
J 02Dk J

0
�� = f

�
Dk; NO

k

�
= uEi

Here the fourth equality follows from Eq (7) and the sixth equality follows from Eq (1). This

completes the proof of Claim 2 as well as the proof of Theorem 2. ��

Proof of Theorem 3 : Let Jk =
S
J2Dk J for any k 2 f1; 2; :::; qg.

Claim 1: f
�
Dk; NO

k

�
< f

�
Dk+1; NO

k+1

�
for each k 2 f1; 2; :::; q � 1g.

Proof of Claim 1: Pick k 2 f1; 2; :::; q � 1g. Let I = NO
/Sk�1

`=1 N
O
` : Consider the construction of

fD1;D2; :::;Dqg : Note that Dk [ Dk+1 � D
/Sk�1

`=1 D` . Since

f (Dk; I) = min
J�Dn[k�1`=1D`

f (J ; I)
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and Dk is the largest subset J � D
/Sk�1

`=1 D` satisfying this equality, we have

f (Dk; I) < f (Dk [ Dk+1; I)

=
jJk [ Jk+1j � (jDk [ Dk+1j � jC (Dk [ Dk+1; I)j)

jJk [ Jk+1j

=
jJkj+ jJk+1j � (jDkj+ jDk+1j � jC (Dk [ Dk+1; I)j)

jJkj+ jJk+1j
by Dk \ Dk+1 = ;

=
jJkj+ jJk+1j �

�
jDkj+ jDk+1j � jC (Dk; I)j �

��C �Dk+1; InNO
k

����
jJkj+ jJk+1j

by C (Dk [ Dk+1; I) = C (Dk; I) [ C
�
Dk+1; InNO

k

�
and C (Dk; I) \ C

�
Dk+1; InNO

k

�
= ;

=

jJkj�(jDkj�jC(Dk;I)j)
jJkj jJkj+

jJk+1j�(jDk+1j�jC(Dk+1;InNO
k )j)

jJk+1j jJk+1j
jJkj+ jJk+1j

=
f (Dk; I) jJkj+ f

�
Dk+1; InNO

k

�
jJk+1j

jJkj+ jJk+1j
by de�nition of f

Rearranging the terms in this inequality, we �nd f (Dk; I) < f
�
Dk+1; InNO

k

�
. We conclude the proof

of Claim 1 observing that f
�
Dk; NO

k

�
= f (Dk; I) and f

�
Dk+1; NO

k+1

�
= f

�
Dk+1; InNO

k

�
by Lemma

6 (i). �
By Claim 1, each patient in J1 has the lowest utility under uE, each patient in J2 has the lowest

utility among the remaining patients under uE, and so on. Since patients can only be matched

with their neighbors, patients in J1 can only be matched with patients in NO
1 = C(D1; NO) and

since C(D1; NO) = C(D1; NO
1 ) by Lemma 6 (i), at least (jD1j � jC(D1; NO

1 )j) of patients in J1
remain unmatched at any matching. Equivalently the aggregate utility of patients in J1 cannot

be more than jJ1j � (jD1j � jC(D1; NO
1 )j) = jJ1j � f(D1; NO

1 ). So for any feasible utility pro�le,

f(D1; NO
1 ) (which is the lowest utility under u

E) is the highest utility that can be received by the

lowest utility patient in J1; 2f(D1; NO
1 ) is the highest sum of utilities that can be received by the

lowest utility 2 patient in J1; : : :, and jJ1j � f(D1; NO
1 ) is the highest sum of utilities that can be

received by patients in J1. Moreover these upperbounds can only be reached, if all the overdemanded

patients in C(D1; NO
1 ) are committed to patients in J1. Repeating these arguments for patients in

J2, jJ1j � f(D1; NO
1 ) + f(D2; NO

2 ) is the highest sum of utilities that can be received by the lowest

utility jJ1j+1 patient in J1 [ J2; jJ1j � f(D1; NO
1 ) + 2f(D2; NO

2 ) is the highest sum of utilities that

can be received by the lowest utility jJ1j+2 patient in J1 [ J2; : : :, and proceeding in a similar way
with patients in J3; : : : ; Jq, we show that the utility pro�le uE Lorenz dominates any other feasible

utility pro�le. �

The next Lemma will be useful in proving Theorem 4:
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Lemma 7 Let u; v 2 U be such that u Lorenz-dominates v. Then for any � 2 (0; 1), vector

�u+ (1� �) v Lorenz-dominates v.

Proof of Lemma 7: Let u; v 2 U be such that u Lorenz-dominates v, let � 2 (0; 1) and w =

�u+(1� �) v. Since u 2 U there is a lottery � 2 L that induces u, and since v 2 U there is a lottery

 2 L that induces v. Let � = ��+ (1� �) 
. For each i 2 N , we have

ui (�) = �ui (�) + (1� �)ui (
) = �ui + (1� �) vi = wi.

This implies that � induces w = (wi)i2N 2 U .
Next, we show that w Lorenz-dominates v. By the de�nition of order statistics, for any t 2

f1; 2; :::; ng and any t member subset N 0 � N of patients we have

tX
s=1

v(s) �
X
i2N 0

vi. (8)

Moreover, since u Lorenz-dominates v,
Pt

s=1 v
(s) �

Pt
s=1 u

(s) for any t 2 f1; 2; :::; ng and this
inequality holds strictly for some t 2 f1; 2; :::; ng. This together with the de�nition of order statistics
imply that for any t 2 f1; 2; :::; ng and any t member subset N 00 � N of patients we have

tX
s=1

v(s) �
tX
s=1

u(s) �
X
i2N 00

ui (9)

where the second inequality holds strictly for some t 2 f1; 2; :::; ng. We have
Pt

s=1w
(s) =

�
�P

i2N 0 vi
�
+ (1� �)

�P
i2N 00 ui

�
for some N 0; N 00 � N with jN 0j = jN 00j = t. Therefore, Eq

(8) and Eq (9) imply that

tX
s=1

v(s) = �

 
tX
s=1

v(s)

!
+ (1� �)

 
tX
s=1

v(s)

!
� �

 X
i2N 0

vi

!
+ (1� �)

 X
i2N 00

ui

!
=

tX
s=1

w(s):

where the inequality holds strictly for some t 2 f1; 2; :::; ng, completing the proof of Lemma 7: �

Proof of Theorem 4: First we introduce some additional notation. Fix the set of agents N and hence

each mutual compatibility matrix R de�nes a distinct reduced problem. For any reduced problem

R, let

Jk (R) =
[

J2Dk(R)

J and e (R) = max
�2M(R)

j�j :

Recall that for any � 2 M(R), we have � 2 E(R)() j�j = e (R). For any reduced problem R and

any two sets I; J � N , de�ne neighbors of J among I as

C (J; I; R) = fi 2 I n J : ri;j = 1 for some j 2 Jg :
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For a singleton set J = fjg, we slightly abuse the notation and use C(j; I; R) instead of C(fjg; I; R).
Let �E denote an egalitarian mechanism and R = [ri;h]i2N;h2N be a reduced problem. Construct

the Gallai-Edmonds Decomposition
�
NU (R) ; NO (R) ; NP (R)

	
of the set of patientsN , the partition

D (R) of the set of underdemanded patients NU (R), the partition
�
D1 (R) ; : : : ;Dq(R) (R)

	
of D (R)

and the partition
n
NO
1 (R) ; : : : ; N

O
q(R) (R)

o
of NO (R), and the egalitarian utility pro�le uE (R). Note

that u
�
�E (R)

�
= uE (R).

For any patient j 2 (NO(R) [ NP (R)) we have uEj (R) = 1 and therefore no such patient can

bene�t by underreporting her set of compatible patients. Let j 2 NU (R) be such that j 2 J 2 D (R).
Note that uEj (R) < 1. We will prove that patient j cannot increase her utility by declaring a mutually

compatible patient to be incompatible, and repeated application of this argument will conclude the

proof.

Let j0 2 C (j;N;R). Either j0 2 J or j0 2 NO(R). Let Q be the reduced prob-

lem obtained from R by patient j declaring patient j0 to be incompatible. Note that

C (j;N;Q) = C (j;N;R) n fj0g, C (j0; N;Q) = C (j0; N;R) n fjg, C (i; N;Q) = C (i; N;R) for all

i 2 Nn fj; j0g, and M (Q) = f� 2M (R) : � (j) 6= j0g. Construct the Gallai-Edmonds Decom-

position
�
NU (Q) ; NO (Q) ; NP (Q)

	
of the set of patients N , the partition D (Q) of the set of

underdemanded patients NU (Q), the partition
�
D1 (Q) ; : : : ;Dq(Q) (Q)

	
of D (Q) and the parti-

tion
n
NO
1 (Q) ; : : : ; N

O
q(Q) (Q)

o
of NO (Q), and the egalitarian utility pro�le uE (Q). Note that

u
�
�E (Q)

�
= uE (Q). We will prove three claims that will be useful in our proof.

Claim 1:

(i) e (Q) = e (R),

(ii) E (Q) � E (R) and � 2 E (R) \M (Q)) � 2 E (Q).

Proof of Claim 1:

(i) SinceM (Q) �M (R) we have e (Q) � e (R). Since j 2 NU (R), there exists a Pareto-e¢ cient

matching � 2 E (R) such that � (j) = j. We have j�j = e (R) and � 2 M (Q) which implies

e (Q) � j�j = e (R). Therefore e (Q) = e (R).

(ii) First let � 2 E (Q). We have � 2M (Q) �M (R). Moreover j�j = e (Q) and e (Q) = e (R) by
Claim 1 (i) implying that j�j = e (R). Therefore � 2 E (R).

Next let � 2 E (R) \M (Q). Since � 2 E (R), we have j�j = e (R) = e (Q) and this together
with � 2M (Q) imply � 2 E (Q).

Claim 2 : NO (R) � NO (Q) [NP (Q) and NU (R) � NU (Q).
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Proof of Claim 2: First suppose there exists a patient i 2 NO (R) \ NU (Q). Then there exists a

Pareto-e¢ cient matching � 2 E (Q) such that �(i) = i. By Claim 1 (ii) E (Q) � E (R), and therefore
� 2 E (R). This together with � (i) = i imply that i 2 NU (R) contradicting i 2 NO (R). Therefore

NO (R) \NU (Q) = ; and hence NO (R) � NO (Q) [NP (Q).

Next pick a patient i 2 NU (Q). There exists a Pareto-e¢ cient matching � 2 E (Q) such that
� (i) = i. By Claim 1 (ii), E (Q) � E (R) and therefore � 2 E (R). This together with � (i) = i imply
that i 2 NU (R). �
Claim 3: uEj0 (Q) � uEj (Q).
Proof of Claim 3: Recall that patient j0 is the patient who is declared to be incompatible by patient

j under Q, although they are mutually compatible under R. Also recall that either j0 2 NO (R) or

j0 2 J . First suppose j0 2 NO (R). By Claim 2, j0 2 NO (Q) [ NP (Q) and therefore in this case

uEj0 (Q) = 1 � uEj (Q).
Next suppose j0 2 J . Consider the support of lottery �E (Q). Since �E (Q) is ex-post e¢ cient,

the support of �E (Q) is a subset of E (Q). Contrary to Claim 3, suppose uEj0 (Q) < u
E
j (Q).

Since uEj0 (Q) < 1, there exists a Pareto-e¢ cient matching � 2 E (Q) with �E� (Q) > 0 such

that �(j0) = j0. By Claim 1 (ii) E (Q) � E (R), and therefore � 2 E (R). Since J 2 D (R),
by the GED Lemma there can be at most one patient in J who remains unmatched. Therefore

since �(j0) = j0, we have �(j) 2 Jn fjg. Again by the GED Lemma there exists a Pareto-e¢ cient
matching � 2 E (R) which leaves patient j unmatched instead of patient j0, but otherwise matches
the same patients as in matching �. Since � (j) = j we have � 2 M (Q). Let " be such that

0 < " � min
�
�E� (Q) ;

uEj (Q)�uEj0 (Q)
2

�
: Next construct lottery � from lottery �E (Q) by subtracting "�

and adding "�. We have

uh (�) =

8><>:
uEh (Q)� " if h = j

uEh (Q) + " if h = j0

uEh (Q) otherwise

Since there is �utility transfer� from the higher utility patient j to the lower utility patient j0,

utility pro�le u (�) Lorenz-dominates the egalitarian pro�le uE (Q) under Q contradicting Theorem

3. Therefore uEj0 (Q) � uEj (Q). �
We are ready to proceed with the proof of Theorem 4. Suppose uEj (Q) > u

E
j (R). We will show

that this will lead to a contradiction. Let J 2 Dk (R). Since �E (Q) is an ex-post e¢ cient lottery
under Q; �E (R) is an ex-post e¢ cient lottery under R; and e (Q) = e (R) by Claim 1 (i), we haveX

i2N
uEi (Q) = e (Q) = e (R) =

X
i2N

uEi (R) .

Therefore, since uEj (Q) > uEj (R), there exists a patient h 2 N such that uEh (Q) < uEh (R). This

implies uEh (Q) < 1 which in turn implies h 2 NU (Q). Since NU (Q) � NU (R) by Claim 2,
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h 2 NU (R) as well. In a way of speaking, the utility of patient j increases under �E (Q) with respect

to �E (R) at the expense of the utility of some other patients each of whom is underdemanded under

R. That is, some utility is transferred from some underdemanded patients under R to patient j. We

partition NU (R) as
nSk

`=1 J` (R) ;
Sq(R)
`=k+1 J` (R)

o
.

Consider patients in
Sq(R)
`=k+1 J` (R) : By the construction of u

E (R), at any matching � 2 E (R)
in the support of �E (R), any patient in

Sq(R)
`=k+1 J` (R) either remains unmatched or she is matched

with another underdemanded patient in
Sq(R)
`=k+1 J` (R) or is matched with an overdemanded patient

in
Sq(R)
`=k+1N

O
` (R). Since patients in

Sk
`=1 J` (R) are handled before patients in

Sq(R)
`=k+1 J` (R) during

the construction of uE (R), there is no patient in
Sk
`=1 J` (R) that is mutually compatible with any

patient in
Sq(R)
`=k+1N

O
` (R). Since any patient in

Sk
`=1 J` (R) and any patient in

Sq(R)
`=k+1 J` (R) are

in di¤erent odd components, there is no patient in
Sk
`=1 J` (R) that is mutually compatible with a

patient in
Sq(R)
`=k+1 J` (R), either. Therefore for any i 2

Sk
`=1 J` (R) ; we have

C (i; N;R) \
q(R)[
`=k+1

�
NO
` (R) [ J` (R)

�
= ;.

Therefore, patients in
Sq(R)
`=k+1N

O
` (R) shall be committed for patients in

Sq(R)
`=k+1 J` (R) under the

pro�le Q as well, and therefore the aggregate utility of patients in
Sq(R)
`=k+1 J` (R) cannot decrease

under Q. Since aggregate utility remains constant at e (Q) = e (R), and since only patients in

NU (Q) � NU (R) can have a utility reduction,

9 h 2
k[
`=1

J` (R) s.t. uEh (Q) < u
E
h (R) :

Since j 2 Jk (R), we have uEh (R) � uEj (R) by Claim 1 in the proof of Theorem 3. This together

with uEj (Q) > u
E
j (R) and Claim 3 imply that

uEh (Q) < u
E
h (R) � uEj (R) < uEj (Q) � uEj0 (Q) . (10)

Let � = �E (R) and ' = �E (Q). Given �, construct lottery � as follows: For any matching � in the

support of �;

1. If � (j) 6= j0, then do not alter this �portion�of the lottery (i.e. let �� = �� for any � in the
support of � with � (j) 6= j0):

2. If � (j) = j0, then

(a) construct the matching ��j;j0 from � by �breaking�the match between j and j0 (leaving

each one unmatched) and preserving the rest of the matching �; and
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(b) replace matching � with ��j;j0 for each such matching in lottery � (i.e. let ���j;j0 = �� for

any � in the support of � with � (j) = j0).

Note that � is feasible underQ and ui (�) = ui (�) = uEi (R) for all i 2 Nn fj; j0g. Given " 2 (0; 1),
let


" = "�+ (1� ")' and �" = "�+ (1� ")'.

Note that ui (�
") = ui (


") for all i 2 Nn fj; j0g by construction of � from �.

Since ' is feasible under R, ' 2 L (R). Therefore since � is a Lorenz-dominant lottery for
the reduced problem R by Theorem 3; � Lorenz-dominates ' which in turn implies 
" Lorenz-

dominates ' by Lemma 7. Pick " 2 (0; 1) small enough such that uj (�") > uh (�
") = uh (


") and

uj0 (�
") > uh (�

") = uh (

"). This can be done by Eq (10). Let h be the patient with sth1 lowest

utility under ' and sth2 lowest utility under 
". Let s = min fs1; s2g. Since 
" Lorenz-dominates '
by Lemma 7,

tX
`=1

(u (
"))(`) �
tX
`=1

(u ('))(`) for all t � n.

Since " 2 (0; 1) is such that uj (
") > uj (�
") > uh (


") and uj0 (
") > uj0 (�
") > uh (


"), neither j

nor j0 is one of the s lowest utility agents under 
". Therefore, since only patients j,j0 are a¤ected

between lotteries 
" and �",

tX
`=1

(u (�"))(`) �
tX
`=1

(u ('))(`) for all t � s. (11)

We will show that Inequality (11) holds strictly for some t � s which in turn will contradict ' is

Lorenz-dominant under Q completing the proof. Suppose not. Then Inequality (11) holds with

equality which in turn implies

(u (�"))(t) = (u ('))(t) for all t � s. (12)

Observe that there is t � s such that the tth smallest utility patient is di¤erent under these two

lotteries. In particular this is the case for t = s, because (1) uh (�
") = uh (


") > uh (') and (2) h

is the sth smallest utility agent under one of the two lotteries �",' although not in both since that

would contradict Eq (12). Pick the smallest such t. That is under �" and ', not only the t̂th smallest

utility patient is the same patient for any t̂ < t, but she also has the same utility. On the other hand

the tth lowest utility patient di¤ers under the two lotteries although they have the same utility by

Eq (12).

Now consider the lottery 1
2
�"+ 1

2
'. Since �" and ' are both feasible under Q, the lottery 1

2
�"+ 1

2
'

is feasible under Q as well. Under this lottery
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� the smallest utility patient is the same patient as in both �",' and she has the same utility�
u
�
1
2
�" + 1

2
'
��(1)

= (u (�"))(1) = (u ('))(1);

...
...

� the (t� 1)th smallest utility patient is the same patient as in both �",' and she has the same
utility

�
u
�
1
2
�" + 1

2
'
��(t�1)

= (u (�"))(t�1) = (u ('))(t�1).

But the utility of the tth smallest utility patient under 1
2
�" + 1

2
' is strictly larger than the utility of

the tth smallest utility patient under '. That is because, whoever she is, her utility is no less than

(u ('))(t) under both �"; ' by Eq (12) and strictly larger in at least one, since the tth smallest utility

patient di¤ers under �" and '. Hence ' does not Lorenz-dominate 1
2
�"+ 1

2
', a feasible lottery under

Q, a contradiction. Therefore Inequality (11) holds strictly for some t � s. But then ' does not

Lorenz-dominate �", a feasible lottery under Q, leading to another contradiction and completing the

proof. �
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