An Infinity of Proofs for the Infinity of Primes

Alexander Kovačec, Dep. Math. Univ. Coimbra, 3001-454 Coimbra, Portugal. kovacec@mat.uc.pt

Introductory courses in number theory frequently include as exercises the surprising results on Fermatand Mersenne primes along with considerations concerning divisors of integers of the form $a^k \pm 1$, see [1, p.] and [2, p. 16].

It seems though that the following two theorems that give a complete discussion of the possible values of $\gcd(a^k \pm 1, a^l \pm 1)$, permit to put these exercises in a more general setting and will make appear them less of isolated, if beautiful, gems. Theorem 1 states the aesthetically pleasing result that for any integer $a \ge 2$ the set $\{1, 2, a+1, a-1, a^2-1, a^2+1, \ldots\}$ is closed with respect to taking greatest common divisors; its proof comprises the first part of that of theorem 2 and it is notable that it does not use any polynomial identities. Some generalizations of the exercises referred are immediate consequences of theorem 2.

THEOREM 1 Given an integer $a \ge 2$, any two numbers selected from the set $\mathcal{A} = \{1, 2, a-1, a+1, a^2 - 1, a^2 + 1, a^3 - 1, a^3 + 1, \ldots\}$ have their greatest common divisor again in \mathcal{A} .

A more precise statement implying the above, is the following:

THEOREM 2 Given integers $k, l \ge 1$ and $a \ge 2$, and signs $\varepsilon, \delta \in \{\pm 1\}$ there holds with $d = \gcd(k, l)$ the following:

$$\gcd(a^k+\varepsilon,a^l+\delta) = \left\{ \begin{array}{ll} a^d+1 & \text{iff } \varepsilon = -(-1)^{k/d}, \delta = -(-1)^{l/d}. \\ a^d-1 & \text{if } \varepsilon = \delta = -1 \\ a^d-1 & \text{if } (\varepsilon \neq \delta, \frac{k}{d} \equiv \frac{l}{d} \bmod 2) \wedge (d \geq 2 \vee a \geq 3). \\ 2 \text{ or } 1 & \text{in all other cases according to if } a \text{ is odd or even.} \end{array} \right.$$

Proof. Consider the following algorithm to be fed with the pairs (k, l) and $(a^k + \varepsilon, a^l + \delta)$.

while
$$(k, l) \in \mathbb{Z}_{\geq 1}^2$$

if $k \ge l$ then replace (k, l) by (k - l, l), and $(a^k + \varepsilon, a^l + \delta)$ by $(a^{k-l} - \delta \varepsilon, a^l + \delta)$ endif if k < l then replace (k, l) by (l, l - k), and $(a^k + \varepsilon, a^l + \delta)$ by $(a^k + \varepsilon, a^{l-k} - \delta \varepsilon)$ endif endwhile

Each execution of the while-loop, makes of the pair (k,l) of exponents a new pair $(k',l') \in \mathbb{Z}_{\geq 0}^2$ satisfying (k',l') < (k,l) in componentwise order. It follows that the algorithm terminates having in line 1 a pair of the form (0,d) or (d,0) with $d \in \mathbb{Z}_{\geq 1}$. By virtue of the fact that $\gcd(k,l) = \gcd(k-l,l) = \gcd(l,l-k)$ it follows that the gcd of the numbers k,l at the entrance to the while loop will not change. Hence $d = \gcd(k,l)$ and, upon exiting, we find the input pair $(a^k + \varepsilon, a^l + \delta)$ transformed into a pair of the form $(a^0 + \varepsilon', a^d + \varepsilon'') = (1 + ve', a^d + \varepsilon'')$ or $(a^d + \varepsilon', a^0 + \varepsilon'') = (a^d + \varepsilon', 1 + \varepsilon'')$, Now, assuming $k \geq l$, the calculation

$$\gcd(a^k + \varepsilon, a^l + \delta) = \gcd(a^k + \varepsilon - a^{k-l}(a^l + \delta), a^l + \delta)$$
$$= \gcd(-\delta a^{k-l} + \varepsilon, a^l + \delta)$$
$$= \gcd(a^{k-l} - \varepsilon \delta, a^l + \delta)$$

and a similar calculation for the case k < l yields that the gcds of the pairs of form $(a^k, ..., ...)$ occurring in lines 2,3 do not change. We conclude, $\gcd(a^k + \varepsilon, a^l + \delta) = \gcd(a^d + \varepsilon', 1 + \varepsilon'')$, for some $\varepsilon', \varepsilon'' \in \{\pm 1\}$. Since $1 + \varepsilon'' \in \{0, 2\}$ we find *: for all admissible $a, k, l, \varepsilon, \delta$, there holds $g := \gcd(a^k + \varepsilon, a^l + \delta) \in \{1, 2, a^d - 1, a^d + 1\}$.

This is a strengthened version of theorem 1; to prove the refinement we show the following claim.

Claim. Given positive integers d, t with d|t and a sign ε' , there holds a. $a^d + 1|a^t + \varepsilon'$ iff $\varepsilon' = -(-1)^{t/d}$. b. $a^d - 1|a^t + \varepsilon'$ iff $(\varepsilon' = -1) \lor (d = 1, a = 2) \lor (d = 1, a = 3)$. $\[\]$ a. $\Leftarrow: a^t + \varepsilon' = (a^d)^{t/d} - (-1)^{t/d}$. Putting $x = a^d$ and $\ell = t/d$ in the identity $x^\ell - (-1)^\ell = (x+1)(x^{\ell-1} - x^{\ell-2} + x^{\ell-3} - x^{\ell-4} + \dots + (-1)^{\ell-1})$, valid for all $\ell \ge 1$, we find that $a^t + \varepsilon'$ is divisible by $a^d + 1$. $\Rightarrow:$ By hypothesis there exists an integer m so that $(a^d)^{t/d} + \varepsilon' = m(a^d + 1)$. Putting $u = a^d + 1$ we find $(u - 1)^{t/d} + \varepsilon' = mu$. Since u > 3, the binomial theorem implies $(-1)^{t/d} + \varepsilon' = 0$.

b. \Leftarrow : If the second or third part of the hypothesis hold, the divisibility claimed is clear. Now assume $\varepsilon' = -1$. Then $a^t + \varepsilon' = (a^d)^{t/d} - 1$. Putting $x = a^d$ and $\ell = t/d$ in the identity $x^\ell - 1 = (x-1)(x^{\ell-1} + x^{\ell-2} + \ldots + 1)$, valid for all $\ell \geq 1$, we find that $a^t + \varepsilon'$ is divisible by $a^d - 1$. \Rightarrow : By hypothesis $(a^d)^{t/d} + \varepsilon' = m(a^d - 1)$ for some integer m. Put $u = a^d - 1$. Then $(u+1)^{t/d} + \varepsilon' = mu$ The binomial theorem now implies $u|(1+\varepsilon')$. Therefore $\varepsilon' = -1$ or $u \in \{1,2\}$. But the latter holds if and only if second or third part of the conclusion hold true.

We can now continue the proof. Because of $d = \gcd(k, l)$ we have only these two possibilities **: $\frac{k}{d} \not\equiv \frac{l}{d}$ or $\frac{k}{d} \equiv 1 \equiv \frac{l}{d}$. Here and below \equiv stands for congruence mod 2.

The statement concerning g splits into four lines or cases whose justification we give as follows:

Case 1. $\varepsilon = -(-1)^{k/d}$, $\delta = -(-1)^{l/d}$. That this is a necessary and sufficient condition for that $g = a^d + 1$ is a direct consequence of * and claim a.

Case 2. $\varepsilon = \delta = -1$. Then $\varepsilon = -(-1)^{k/d}$, $\delta = -(-1)^{l/d}$, cannot hold, for then $k/d \equiv l/d \equiv 0$ which is excluded by **. Hence by line 1 and *, $g \in \{1, 2, a^d - 1\}$. Claim b guarantees that $a^d - 1$ is a common divisor of $a^k + \varepsilon$, $a^l + \delta$. Subcase $(d \ge 2 \lor a \ge 3)$: then $a^d - 1 \ge 2$ and from * it follows that $g = a^d - 1$. Subcase $\neg (d \ge 2 \lor a \ge 3)$: then d = 1, a = 2. Since $2^k + \varepsilon$ is odd, and $g \ne 2$. Hence $g = 1 = 2^d - 1$.

Case 3. $\varepsilon \neq \delta$, $\frac{k}{d} \equiv \frac{l}{d}$. Then evidently line 1 is excluded. So $g \in \{1, 2, a^d - 1\}$. We can assume $\varepsilon = -1, \delta = +1$, i.o.w. $g = \gcd(a^k - 1, a^l + 1)$. Now $a^d - 1|a^l + 1$ by claim a since $1 = -(-1)^{l/d}$ using **. Also $a^d - 1|a^k - 1$ by claim b. Subcase $(d \geq 2 \lor a \geq 3)$: then $a^d - 1 \geq 2$, so $g = a^d - 1$. Subcase $\neg (d \geq 2 \lor a \geq 3)$: then d = 1, a = 2, and since $2^k + \varepsilon$ is odd, we have $g = 1 = 2^d - 1$.

Case 4.1. $\varepsilon = \delta = 1$, $\frac{k}{d} \not\equiv \frac{l}{d}$. Then we are not in line 1, so $g \in \{1, 2, a^d - 1\}$. If $g = a^d - 1$, then claim b tells us $d = 1, a \in \{2, 3\}$. But this says that $a^d - 1 \in \{1, 2\}$. So in any case $g \in \{1, 2\}$. With only these two possibilities left, we have indeed g = 2 or 1 corresponding to $a \equiv 1$ or 0.

Case 4.2. $\varepsilon = (-1)^{k/d}$, $\delta = (-1)^{l/d}$, $\frac{k}{d} \not\equiv \frac{l}{d}$. Comparing the hypothesis with line 1 yields $g \in \{1, 2, a^d - 1\}$; we also see $\varepsilon \not\equiv \delta$; so we can assume by symmetry $\varepsilon = 1, \delta = -1$. As before, if $g = a^d - 1$, then since $a^d - 1|a^k + 1$, claim b tells us $d = 1, a \in \{2, 3\}$ and so again $g \in \{1, 2\}$, and g will have the values indicated.

Case 4.3. $\varepsilon \neq \delta, k = l$: In this case we want to find $g = \gcd(a^k + 1, a^k - 1)$. Since $a^k + 1 - (a^k - 1) = 2$ we have $g \in \{1, 2\}$, and the claimed values follow.

Till here we have shown that case i.* indeed gives the gcd indicated in line i, $i \in \{1, 2, 3, 4\}$. To conclude we have to show that any quintuple $(k, l, a, \varepsilon, \delta)$ admitted by the hypothesis, satisfies one of the cases contemplated in the proof above.

If $k=l, \varepsilon \neq \delta$ we are in case 4.3; if $k=l, \varepsilon=\delta=-1$ in case 2. The combination $k=l, \varepsilon=\delta=+1$ is contained in case 1 because then k/d=l/d=1. If $k\neq l, \varepsilon=\delta=-1$ we are in case 2. If $k\neq l, \varepsilon=\delta=+1$ then if $\frac{k}{d}\equiv \frac{l}{d}$, we are in case 1, else we have $\frac{k}{d}\not\equiv \frac{l}{d}$, and are in case 4.1. If $k\neq l, \varepsilon\neq \delta$ then if $\frac{k}{d}\equiv \frac{l}{d}$, we are in case 3, else we have $\frac{k}{d}\not\equiv \frac{l}{d}$ and so will be in cases 1 or 4.2.

We can deduce easily two well known exercises in number theory concerning Fermat- and Mersenne primes, and generalize another one.

COROLLARY 3 a. Every prime of the form $a^k + 1 \ge 3$ is of the form $(2n)^{2^m} + 1$. b. Every prime of the form $a^k - 1$ is of the form $2^p - 1$ with p prime.

Proof. a. Assume $l|k, 1 \le l < k$. Then $\gcd(a^k + 1, a^l + 1) = 1$. In the notation of theorem 1, d = l, $1 = \delta = -(-1)^{l/d}$. Since $a^l + 1 \ne 1$, we must have $\varepsilon = 1 \ne -(-1)^{k/l}$, that is $k/l \equiv 0$. This holding for

all proper divisors of k, we find that k must be a power of 2 as claimed. Since (ε, δ) does not satisfy the conditions of lines 1,2,3 of theorem 1, a must be even.

b. If $a^k - 1$ is prime, then $gcd(a^k - 1, a^l - 1) = 1$ for all l satisfying $l|k, 1 \le l < k$. Since line 2 of theorem 1 applies and d = l, we have $a^l - 1 = 1$. This can only hold if a = 2, l = 1; i.o.w. a = 2 and k is prime.

Recall that one defines for $n \in \mathbb{Z}$ and p prime the order of n at p by $\operatorname{ord}_p(n) := \max\{k : p^k | n\}$.

COROLLARY 3 Let a be even. Then a^k+1 and a^l+1 are relatively prime if and only if $\operatorname{ord}_2(k) \neq \operatorname{ord}_2(l)$; in particular a sequence $\{a^{k_i}+1\}_{i=1}^{\infty}$ consists of pairwisely relatively prime integers if and only if the sequence $\{\operatorname{ord}_2(k_i)\}_{i=1}^{\infty}$ consists of pairwisely distinct integers.

Proof. Write $k=2^{k'}k'', l=2^{l'}l''$ with k'', l'' odd. Let $d=\gcd(k,l)$. We have $\operatorname{ord}_2(d)=\min\{k',l'\}$. Note that $-(-1)^{k/d}=1/-1$ according to if $\operatorname{ord}_2(k/d)=0/>0$. By theorem $1, a^k+1, a^l+1$ are relatively prime iff $\neg(1=-(-1)^{k/d}=-(-1)^{l/d})$ iff $\neg(\operatorname{ord}_2(k/d)=\operatorname{ord}_2(l/d)=0)$ iff $(k'-\min\{k',l'\}\neq 0)$ or $l'-\min\{k',l'\}\neq 0$ iff $l'\neq k'$.

Since each integer is divisible by a prime, it follows that the infinitely many possible choices for a and sequences k_i with pairwise distinct $\operatorname{ord}_2(k_i)$ give different proofs for the infinity of primes. (The fundamental theorem of artithmetic we used to in above decomposition $k = 2^{k'}k''$ etc. does not depend on this infinity.) According to [2, p26c-4] the following result was observed by G. Polya for the case that b = 2; it is evidently a consequence of corollary 3.

COROLLARY 4 Let $a, b \in \mathbb{Z}_{\geq 2}$ be even. Then no two numbers in the sequence $u_k = a^{b^k} + 1, \ k = 1, 2, \dots$ have a common prime divisor.

COROLLARY 5 Let $a, b \in \mathbb{Z}$, $a \geq 2$, b odd. Then any two numbers in the sequence $u_k = a^{b^k} + 1$, $k = 1, 2, \ldots$ divide each other.

Proof. Given k, l we have with $d = \gcd(b^k, b^l) = b^{\min\{k, l\}}$ that $\{b^k/d, b^l/d\} = \{1, b^{|k-l|}\}$. Both these numbers are odd, hence from theorem 1, $\gcd(u_k, u_l) = \gcd(a^{b^k} + 1, a^{b^l} + 1) = a^{b^{\min\{k, l\}}} + 1 = u_{\min\{k, l\}}$, which proves the claim.

References

- [1] I. Niven, I and Zuckerman, H. An Introduction to the Theory of Numbers, J. Wiley 1972.
- [2] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, GTM 84, Springer 1982.