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BILEVEL PROGRAMMING:
TRODUCTION, HISTORY,
OVERVIEW, BP

IN-
AND

The bilevel programming (BP) problem is
a hierarchical optimization problem where
a subset of the variables is constrained to be
a solution of a given optimization problem pa-
rameterized by the remaining variables. The BP
problem is a multilevel programming prob-
lem with two levels. The hierarchical optimiza-
tion sctructure appears naturally in many appli-
cations when lower level actions depend on up-
per level decisions. The applications of bilevel
and multilevel programming include ¢ransporta-
tion (taxation, network design, trip demand es-
timation), management (coordination of multi-
divisional firms, network facility location, credit
allocation), planning (agricultural policies, elec-
tric utility), and optimal design.

In mathematical terms, the BP problem con-
sists of finding a solution to the upper level prob-
lem

F(z,y)
g(z,y) <0,

minimize, ,

subject to

where y, for each value of z, is the solution of
the lower level problem:

f(z,y)
h(z,y) <0,

minimize,
subject to

with z € R"*, y € R, F, f : Rz 5 R,
g : RMEINY 5 R oand b RO 5 R The
lower level problem is also referred as the fol-
lower’s problem or the inner problem. In a sim-
ilar way, the upper level problem is also called
the leader’s problem or the outer problem. One
could generalize the BP problem in different
ways. For instance, if either x or y or both are
restricted to take integer values we would obtain
an integer BP problem [20]. Or, if we replace the
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lower level problem by a variational inequality
we would get a generalized BP problem [14].
For each value of the upper level variables x,
the lower level constraints h(z,y) < 0 define the
constraint set Q(z) of the lower level problem:

{y th(z,y) < 0}-

Then, the set M(z) of solutions for the lower
level problem is given by minimizing the lower

Qz) =

level function f(z,y) for all values in Q(z) of the
lower level variables y:

M(z) = {y cy € argmin{f(z,y): y € Q(:z:)}}

Given these definitions the BP problem can
be reformulated as:

minimize,,  F(z,y)
subject to  g(z,y) <0,
y € M(z).

The feasible set

{@y): 9@y <0, yeM@)}.

of the BP problem is called the induced or in-
ducible region. The induced region is usually
nonconvex and, in the presence of upper level
constraints, can be disconnected or even empty.

In fact, consider the following BP problem
minimizey , T — 2y
subject to —z+ 3y —4 <0,

where y, for each value of z, is the solution of:

minimize, Tty
subject to
—z—y < 0

For this problem we have:

Qz) = {y: y>lzl},
and
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Thus, the induced region is given by:
{(z,y): —z+3y—-4<0,ye M(z)} =
{(z,y): y=—-2, 1<z <0}
U
{(z,y) :

which is nonconvex but connected. If the upper

y=u1z,0<x <2},

level constraints were changed to
—zrz+3y—4 < 0,
—y+3 <0

then the induced region would become

{(z,9) :
U

{(z,9) :

which would be a disconnected set. In either case
the BP problem has two local minimizers (—1,1)
and (2,2) and one global minimizer (2, 2).

This simple example illustrates many features

1
y:—x,—1§x§—§

y=uz,1<z<2}

of bilevel programming like the nonconvexity
and the disconnectedness of the induced region
and the existence of different local minimizers.
In this example the induced region is compact.
In fact, compactness of the induced region is im-
portant for the existence of a global minimizer
and can be guaranteed under appropriate con-
ditions [8].

The original formulation for bilevel program-
ming appeared in 1973, in a paper authored by
J. Bracken and J. McGill [4], although is was
W. Candler and R. Norton [6] that first used the
designation bilevel and multilevel programming.
However, it was not until the early eighties that
these problems started receiving the attention
they deserve. Motivated by the game theory
of H. Stackelberg [19], several authors stud-
ied bilevel programming intensively and con-
tributed to its proliferation in the mathematical
programming community.

The theory of bilevel programming focuses on
forms of optimality conditions and complexity
results. A number of authors ([7], [15], just to
cite a few) have established original forms of

game theory
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optimality conditions for bilevel programming
by either considering reformulations of the BP
problem or by making use of nondifferentiable
optimization concepts or even by appealing to
the geometry of the induced region. The com-
plexity of the problem has been addressed by
a number of authors. It has been proved that
even the linear BP problem, where all the in-
volved functions are affine, is a strongly NP-
Hard problem [9]. It is not hard to construct
a linear BP problem where the number of lo-
cal minima grows exponentially with the num-
ber of variables [5]. Other theoretical results of
interest have been established connecting bilevel
programming to other fields in mathematical
programming. For instance, one can show that
minimax problems and linear, integer, bilinear
and quadratic programming problems are spe-
cial cases of BP. Other classes of problems differ-
ent from but related to BP are multiobjective
optimization problems and static Stackelberg
problems. See [21] for references in these topics.

Many researchers have designed algorithms
for the solution of the BP problem. One class
of techniques consists of extreme point algo-
rithms and has been mostly applied to the linear
BP problem because for this problem, if there
is a solution, then there is at least one global
minimizer that is an extreme point of Q [16].
Two other classes of algorithms are branch and
bound algorithms and complementarity pivot al-
gorithms that have in common the fact that ex-
ploit the complementarity part of the necessary
optimality conditions of the lower level prob-
lem (assumed convex in y so that the neces-
sary optimality conditions, under an appropri-
ate constraint qualification, are also sufficient).
These two classes of algorithms have been ap-
plied mostly to the case where the upper level
is linear and the lower level is linear or convex
quadratic (see for instance [9] and [11]) and, as
the extreme point algorithms, find a global min-
imizer of the BP problem. On the other hand,
the algorithms designed to solve nonlinear forms
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of BP appeal to descent directions (see, among
others [13] and [17]) and penalty functions (for
instance [1]) and are expected to find a local
minimizer.

The reader can find more about bilevel pro-
gramming in the book by Shimizu, Ishizuka, and
Bard [18], in the survey papers [2], [3], [10], [12],
[22], and in the bibliography review by Vicente
and Calamai [21].
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