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Abstract

The Levenberg-Marquardt algorithm is one of the most popular algorithms for the so-
lution of nonlinear least squares problems. Motivated by the problem structure in data
assimilation, we consider in this paper the extension of the classical Levenberg-Marquardt
algorithm to the scenarios where the linearized least squares subproblems are solved inexactly
and/or the gradient model is noisy and accurate only within a certain probability.

Under appropriate assumptions, we show that the modified algorithm converges globally
to a first order stationary point with probability one. Our proposed approach is first tested
on simple problems where the exact gradient is perturbed with a Gaussian noise or only called
with a certain probability. It is then applied to an instance in variational data assimilation
where stochastic models of the gradient are computed by the so-called ensemble methods.

Keywords: Levenberg-Marquardt method, nonlinear least squares, regularization, random models,
inexactness, variational data assimilation, Kalman filter/smoother, Ensemble Kalman filter/smoother.

1 Introduction

In this paper we are concerned with a class of nonlinear least squares problems for which the
exact gradient is not available and replaced by a probabilistic or random model. Problems of this
nature arise in several important practical contexts. One example is variational modeling for
meteorology, such as 3DVAR and 4DVAR [7, 20], the dominant data assimilation least squares
formulations used in numerical weather prediction centers worldwide. Here, ensemble methods,
like those known by the abbreviations EnKF and EnKS [10, 11], are used to approximate the
data arising in the solution of the corresponding linearized least squares subproblems [22], in a
way where the true gradient is replaced by an approximated stochastic gradient model. Other
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examples appear in the broad context of derivative-free optimization problems [6] where models
of the objective function evaluation may result from, a possibly random, sampling procedure [1].

The Levenberg-Marquardt algorithm [13, 16] can be seen as a regularization of the Gauss-
Newton method. A regularization parameter is updated at every iteration and indirectly controls
the size of the step, making Gauss Newton globally convergent (i.e., convergent to stationarity
independently of the starting point). We found that the regularization term added to Gauss-
Newton maintains the structure of the linearized least squares subproblems arising in data
assimilation, enabling us to use techniques like ensemble methods while simultaneously providing
a globally convergent approach.

However, the use of ensemble methods in data assimilation poses difficulties since it makes
random approximations to the gradient. We thus propose and analyze a variant of the Levenberg-
Marquardt method to deal with probabilistic gradient models. It is assumed that an approxi-
mation to the gradient is provided but only accurate with a certain probability. The knowledge
of the probability of the error between the exact gradient and the model one, and in particular
of its density function, can be used in our favor in the update of the regularization parameter.

Having in mind large-scale applications (as those arising from data assimilation), we then
consider that the least squares subproblems formulated in the Levenberg-Marquardt method are
only solved in some approximated way. The amount of inexactness in such approximated solu-
tions (tolerated for global convergence) is rigorously quantified as a function of the regularization
parameter, in a way that it can be used in practical implementations.

We organize this paper as follows. In Section 2, a short introduction to the Levenberg-
Marquardt method is provided. The new Levenberg-Marquardt method based on probabilis-
tic gradient models is described in Section 3. Section 4 addresses the inexact solution of the
linearized least squares subproblems arising within Levenberg-Marquardt methods. We cover
essentially two possibilities: conjugate gradients and any generic inexact solution of the cor-
responding normal equations. The whole approach is shown to be globally convergent to first
order critical points in Section 5, in the sense that a subsequence of the true objective function
gradients goes to zero with probability one. The proposed approach is numerically illustrated
in Section 6 with a simple problem, artificially modified to create (i) a scenario where the model
gradient is a Gaussian perturbation of the exact gradient, and (ii) a scenario case where to
compute the model gradient both exact/approximated gradient routines are available but the
exact one (seen as expensive) is called only with a certain probability.

An application to data assimilation is presented in Section 7 where the purpose is to solve
the 4DVAR problem using the methodology described in this paper. For the less familiar reader,
we start by describing the 4DVAR incremental approach (Gauss-Newton) and the ways to solve
the resulting linearized least squares subproblems, in particular Kalman smoother and Ensemble
Kalman smoother (EnKS), the latter one leading to stochastic model gradients. We then show
how our approach, namely the Levenberg-Marquardt method based on probabilistic gradient
models and inexact subproblem solution, provides an appropriate framework for the application
of the 4DVAR incremental approach using the EnKS method for the subproblems and finite dif-
ferences for derivative approximation. Illustrative numerical results using the Lorenz–63 model
as a forecast model are provided.

A discussion of conclusions and future improvements is given in Section 8. Throughout this
paper ‖ · ‖ will denote the vector or matrix `2-norm. The notation [X;Y ] will represent the
concatenation of X and Y as in Matlab syntax.
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2 The Levenberg-Marquardt method

Let us consider the following general nonlinear least squares problem

min
x∈Rn

f(x) =
1

2
‖F (x)‖2, (1)

where F : Rn → Rm is a (deterministic) vector-valued function, assumed continuously differ-
entiable, and m > n. Our main probabilistic approach to deal with nonlinear least squares
problems is derived having in mind a class of inverse problems arising from data assimilation,
for which the function f to be minimized in (1) is of the form

1

2

(
‖x0 − xb‖2B−1 +

T∑
i=1

‖xi −Mi(xi−1)‖2Q−1
i

+
T∑
i=0

‖yi −Hi(xi)‖2R−1
i

)
, (2)

where (x0, . . . , xT ) corresponds to x and where the operatorsMi andHi and the scaling matrices
will be defined in Section 7.

The Gauss-Newton method is an iterative procedure where at each point xj a step is com-
puted as a solution of the linearized least squares subproblem

min
s∈Rn

1

2
‖Fj + Jjs‖2,

where Fj = F (xj) and Jj = J(xj) denotes the Jacobian of F at xj . The subproblem has a
unique solution if Jj has full column rank, and in that case the step is a decent direction for f .
In the case of our target application problem (2), such a linearized least squares subproblem
becomes

min
δx0,...,δxT∈Rn

1
2

(
‖x0 + δx0 − xb‖2B−1 +

∑T
i=1 ‖xi + δxi −Mi(xi−1)−M

′
i(xi−1)δxi−1‖2Q−1

i

+
∑T

i=0 ‖yi −Hi(xi)−H
′
i(xi)δxi‖2R−1

i

)
, (3)

where (δx0, . . . , δxT ) corresponds to s (and the other details are given in Section 7).
The Levenberg-Marquardt method [13, 16] (see also [19]) was developed to deal with the rank

deficiency of Jj and to provide a globalization strategy for Gauss-Newton. At each iteration it
is considered a step of the form −(J>j Jj + γjI)−1J>j Fj , corresponding to the unique solution of

min
s∈Rn

mj(xj + s) =
1

2
‖Fj + Jjs‖2 +

1

2
γ2j ‖s‖2,

where γj is an appropriately chosen regularization parameter. See [18, Notes and References of
Chapter 10] for a brief summary of theoretical and practical aspects regarding the Levenberg-
Marquardt method.

The Levenberg-Marquardt method can be seen as precursor of the trust-region method [5]
in the sense that it seeks to determine when the Gauss-Newton step is applicable (in which case
the regularization parameter is set to zero) or when it should be replaced by a slower but safer
gradient or steepest descent step (corresponding to a sufficiently large regularization parameter).
The comparison with trust-region methods can also be drawn by looking at the square of the
regularization parameter as the Lagrange multiplier of a trust-region subproblem of the form
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mins∈Rn (1/2)‖Fj + Jjs‖2 s.t. ‖s‖ ≤ δj , and in fact it was soon suggested in [17] to update the
regularization parameter γj in the same form as the trust-region radius δj . For this purpose,
one considers the ratio between the actual reduction f(xj)−f(xj + sj) attained in the objective
function and the reduction mj(xj)−mj(xj + sj) predicted by the model, given by

ρj =
f(xj)− f(xj + sj)

mj(xj)−mj(xj + sj)
.

Then, if ρj is sufficiently greater than zero, the step is accepted and γj is possibly decreased
(corresponding to ‘δj is possibly increased’). Otherwise the step is rejected and γj is increased
(corresponding to ‘δj is decreased’).

3 The Levenberg Marquardt method based on probabilistic gra-
dient models

We are interested in the case where we do not have exact values for the Jacobian Jj and the
gradient J>j Fj (of the model mj(xj + s) at s = 0), but rather approximations which we will
denoted by Jmj and gmj . We are further interested in the case where these model approximations
are built in some random fashion. We will then consider random models of the form Mj where
gMj and JMj are random variables, and use the notation mj = Mj(ωj), gmj = gMj (ωj), and
Jmj = JMj (ωj) for their realizations. Note that the randomness of the models implies the
randomness of the current point xj = Xj(ωj) and the current regularization parameter γj =
Γj(ωj), generated by the corresponding optimization algorithm.

Thus, the model (where Fmj represents an approximation to Fj)

mj(xj + s)−mj(xj) =
1

2
‖Fmj + Jmjs‖2 +

1

2
γ2j ‖s‖2 −

1

2
‖Fmj‖2

= g>mjs+
1

2
s>
(
J>mjJmj + γ2j I

)
s

is a realization of

Mj(Xj + s)−Mj(Xj) = g>Mj
s+

1

2
s>
(
J>Mj

JMj + Γ2
jI
)
s.

Note that we subtracted the order zero term to the model to avoid unnecessary terminology.
Our subproblem becomes then

min
s∈Rn

mj(xj + s)−mj(xj) = g>mjs+
1

2
s>
(
J>mjJmj + γ2j I

)
s. (4)

In our data assimilation applied problem (2), the randomness arises from the use of EnKS
to approximately solve the linearized least squares subproblem (3). In fact, as we will see in
Section 7, quadratic models of the form 1/2(‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1) will be realizations of

random quadratic models 1/2(‖u‖2B−1 + ‖Hu − D̃‖2R−1), where u corresponds to s, and where
it would be easy to see what are the realizations gm and Jm and the corresponding random
variables gM and JM .

We will now impose that the gradient models gMj are accurate with a certain probability
regardless of the history M1, . . . ,Mj−1. The accuracy is defined in terms of a multiple of the
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inverse of the square of the regularization parameter (as it happens in [1] for trust-region methods
based on probabilistic models where it is defined in terms of a multiple of the trust-region radius).
As we will see later in the convergence analysis (since the regularization parameter is bounded
from below), one can demand less here and consider just the inverse of a positive power of the
regularization parameter.

Assumption 3.1 Given constants α ∈ (0, 2], κeg > 0, and p ∈ (0, 1], the sequence of ran-
dom gradient models {gMj} is (p)-probabilistically κeg-first order accurate, for corresponding
sequences {Xj}, {Γj}, if the events

Sj =

{
‖gMj − J(Xj)

>F (Xj)‖ ≤
κeg
Γαj

}

satisfy the following submartingale-like condition

p∗j = P (Sj |FMj−1) ≥ p, (5)

where FMj = σ(M0, . . . ,Mj−1) is the σ-algebra generated by M0, . . . ,Mj−1.

Correspondingly, a gradient model realization gmj is said to be κeg-first order accurate if

‖gmj − J(xj)
>F (xj)‖ ≤

κeg
γαj

.

The version of Levenberg-Marquart that we will analyze and implement takes a successful
step if the ratio ρj between actual and predicted reductions is sufficiently positive (condition
ρj ≥ η1 below). In such cases, and now deviating from classical Levenberg-Marquart and
following [1], the regularization parameter γj is increased if the size of the gradient model is of
the order of the inverse of γj squared (i.e., if ‖gmj‖ < η2/γ

2
j for some positive constant η2 > 0).

Another relevant distinction is that we necessarily decrease γj in successful iterations when
‖gmj‖ ≥ η2/γ

2
j . The algorithm is described below and generates a sequence of realizations for

the above mentioned random variables.

Algorithm 3.1 (Levenberg-Marquardt method based on probabilistic gradient mod-
els)

Initialization
Choose the constants η1 ∈ (0, 1), η2, γmin > 0, λ > 1, and 0 < pmin ≤ pmax < 1. Select x0
and γ0 ≥ γmin.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (4), and let sj denote such a solution.

2. Compute ρj =
f(xj)−f(xj+sj)

mj(xj)−mj(xj+sj) .

5



3. Make a guess pj of the probability p∗j given in (5) such that pmin ≤ pj ≤ pmax.

If ρj ≥ η1, then set xj+1 = xj + sj and

γj+1 =


λγj if ‖gmj‖ < η2/γ

2
j ,

max

{
γj

λ

1−pj
pj

, γmin

}
if ‖gmj‖ ≥ η2/γ2j .

Otherwise, set xj+1 = xj and γj+1 = λγj .

If exact gradients are used (in other words, if gMj = J(Xj)
>F (Xj)), then one always has

p∗j = P

(
0 ≤ κeg

Γαj

∣∣∣∣∣FMj−1
)

= 1,

and the update of γ in successful iterations reduces to γj+1 = max{γj , γmin} (when ‖gmj‖ ≥
η2/γ

2
j ), as in the more classical deterministic-type Levenberg-Marquart methods. In general one

should guess pj based on the knowledge of the random error occurred in the application context.
It is however pertinent to stress that the algorithm runs for any guess of pj ∈ (0, 1] such that
pj ∈ [pmin, pmax].

4 Inexact solution of the linearized least squares subproblems

Step 1 of Algorithm 3.1 requires the approximate solution of subproblem (4). As in trust-region
methods, there are different techniques to approximate the solution of this subproblem yielding
a globally convergent step, and we will discuss three of them in this section. For the purposes of
global convergence it is sufficient to compute a step sj that provides a reduction in the model as
good as the one produced by the so-called Cauchy step (defined as the minimizer of the model
along the negative gradient or steepest descent direction −gmj ).

4.1 A Cauchy step

The Cauchy step is defined by minimizing mj(xj − tgmj ) when t > 0 and is given by

scj = −
‖gmj‖2

g>mj (J
>
mjJmj + γ2j I)gmj

gmj . (6)

The corresponding Cauchy decrease (on the model) is

mj(xj)−mj(xj + scj) =
1

2

‖gmj‖4

g>mj (J
>
mjJmj + γ2j I)gmj

.

Since g>mj (J
>
mjJmj + γ2j I)gmj ≤ ‖gmj‖2(‖Jmj‖2 + γ2j ), we conclude that

mj(xj)−mj(xj + scj) ≥
1

2

‖gmj‖2

‖Jmj‖2 + γ2j
.

The Cauchy step (6) is cheap to calculate as it does not require solving any system of linear
equations. Moreover, the Levenberg-Marquart method will be globally convergent if it uses a
step that attains a reduction in the model as good as a multiple of the Cauchy decrease. Thus
we will impose the following assumption on the step calculation:
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Assumption 4.1 For every step j and for all realizations mj of Mj,

mj(xj)−mj(xj + sj) ≥
θfcd

2

‖gmj‖2

‖Jmj‖2 + γ2j

for some constant θfcd > 0.

Such an assumption asks from the step a very mild reduction on the model (a fraction of
what a step along the negative gradient would achieve) and it can thus be seen as a sort of
minimum first order requirement.

4.2 A truncated-CG step

Despite providing a sufficient reduction in the model and being cheap to compute, the Cauchy
step is a particular form of steepest descent, which can perform poorly regardless of the step
length. One can see that the Cauchy step depends on J>mjJmj only in the step length. Faster

convergence can be expected if the matrix J>mjJmj influences also the step direction.
Since the Cauchy step is the first step of the conjugate gradient method when applied to

the minimization of the quadratic mj(xj + s) − mj(xj), it is natural to propose to run CG
further and stop only when the residual becomes relatively small. Since CG generates iterates
by minimizing the quadratic over nested Krylov subspaces, and the first subspace is the one
generated by gmj (see, e.g., [18, Theorem 5.2]), the decrease attained at the first CG iteration
(i.e., by the Cauchy step) is kept by the remaining.

4.3 A step from inexact solution of normal equations

Another possibility to approximately solve subproblem (4) is to apply some iterative solver (not
necessarily CG) to the solution of the normal equations(

J>mjJmj + γ2j I
)
sj = −gmj .

An inexact solution sinj is then computed such that(
J>mjJmj + γ2j I

)
sinj = −gmj + rj (7)

for a relatively small residual rj satisfying ‖rj‖ ≤ εj‖gmj‖. For such sufficiently small residuals
we can guarantee Cauchy decrease.

Assumption 4.2 For some constants βin ∈ (0, 1) and θin > 0, suppose that ‖rj‖ ≤ εj‖gmj‖
and

εj ≤ min

{
θin
γαj
,

√
βin

γ2j
‖Jmj‖2 + γ2j

}
.

Note that we only need the second bound on εj (see the above inequality) to prove the
desired Cauchy decrease. The first bound on εj will be used later in the convergence analysis.
The following result is proved in an appendix.

Lemma 4.1 Under Assumption 4.2, an inexact step sinj of the form (7) achieves Cauchy de-
crease if it satisfies Assumption 4.1 with θfcd = 2(1− βin).
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5 Global convergence to first order critical points

We start by stating that two terms, that later will appear in the difference between the actual
and predicted decreases, have the right order accuracy in terms of γj . The proof is given in the
appendix.

Lemma 5.1 For the three steps proposed (Cauchy, truncated CG, and inexact normal equa-
tions), one has that

‖sj‖ ≤
2‖gmj‖
γ2j

and

|s>j (γ2j sj + gmj )| ≤
4‖Jmj‖2‖gmj‖2 + 2θin‖gmj‖2

min{1, γ2−αmin }γ
2+α
j

.

(Assumption 4.2 is assumed for the inexact normal equations step sj = sinj .)

We proceed by describing the conditions required for global convergence.

Assumption 5.1 The function f is continuously differentiable in an open set containing L(x0) =
{x ∈ Rn : f(x) ≤ f(x0)} with Lipschitz continuous gradient on L(x0) and corresponding constant
ν > 0.

The Jacobian model is uniformly bounded, i.e., there exists κJm > 0 such that ‖Jmj‖ ≤ κJm
for all j.

The next result is a classical one and essentially says that the actual and predicted reductions
match each other well for a value of the regularization parameter γj sufficiently large relatively to
the size of the gradient model (which would correspond to say for a sufficiently small trust-region
radius in trust-region methods).

Lemma 5.2 Let Assumption 5.1 hold. Let also Assumption 4.2 hold for the inexact normal
equations step sj = sinj . If xj is not a critical point of f and the gradient model gmj is κeg-first
order accurate, and if

γj ≥
(

κj
1− η1

) 1
α

with κj =

(
1 +

κ2Jm
γ2min

) 2ν +
2κeg
‖gmj ‖

+ 2θin + 8κ2Jm

min{1, γ2−αmin }θfcd
,

then ρj ≥ η1.

Proof. Again we omit the indices j in the proof. Applying a Taylor expansion,

1− ρ

2
=

m(x)− f(x) + f(x+ s)−m(x+ s) +m(x)−m(x+ s)

2[m(x)−m(x+ s)]

=
s>J(x)>F (x) +R− s>gm − s>(J>mJm + γ2I)s− s>gm

2[m(x)−m(x+ s)]

=
R+ (J(x)>F (x)− gm)>s− s>(J>mJm)s− s>(γ2s+ gm)

2[m(x)−m(x+ s)]
,

where R ≤ ν‖s‖2/2.
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Now, using Lemma 5.1, Assumptions 4.1 and 5.1, and γ ≥ γmin,

1− ρ

2
≤

ν
2‖s‖

2 +
κeg
γα ‖s‖+ ‖Jm‖2‖s‖2 − s>(γ2s+ g)

θfcd‖gm‖2
‖Jm‖2+γ2

≤
2ν‖gm‖2

γ4
+

2κeg‖gm‖
γ2+α

+
4κ2Jm‖gm‖

2

γ4
+

4κ2Jm‖gm‖
2+2‖gm‖2θin

min{1,γ2−αmin }γ2+α

θfcd‖gm‖2
γ2(‖Jm‖2/γ2min+1)

≤

(
1 +

κJm
γ2min

)(
2ν +

2κeg
‖gm‖ + 2θin + 8κ2Jm

)
min{1, γ2−αmin }θfcdγα

≤ κ

γα
≤ 1− η1.

We have thus proved that ρ ≥ 2η1 > η1.

One now establishes that the regularization parameter goes to infinity, which corresponds to
the trust-region radius going to zero in [1].

Lemma 5.3 Let the second part of Assumption 5.1 hold (the uniform bound on Jmj ). For every
realization of the Algorithm 3.1, limj→∞ γj =∞.

Proof. If the result is not true, then there exists a bound B > 0 such that the number
of times that γj < B happens is infinite. Because of the way γj is updated one must have an
infinity of iterations such γj+1 ≤ γj , and for these iterations one has ρj ≥ η1 and ‖gmj‖ ≥ η2/B2.
Thus,

f(xj)− f(xj + sj) ≥ η1[mj(xj)−mj(xj + sj)]

≥ η1

(
θfcd

2

1

‖Jm‖2 + γ2

)
‖gmj‖2

≥
η1θfcd

2(κ2Jm +B2)

( η2
B2

)2
.

Since f is bounded from below by zero, the number of such iterations can not be infinite, and
hence we arrived at a contradiction.

Now, if we assume that the gradient models are (pj)-probabilistically κeg-first order accurate,
we can show our main global convergence result. First we will state an auxiliary result from the
literature that will be useful for the analysis (see [8, Theorem 5.3.1] and [8, Exercise 5.3.1]).

Lemma 5.4 Let Gj be a submartingale, in other words, a set of random variables which are inte-
grable (E(|Gj |) <∞) and satisfy E(Gj |Fj−1) ≥ Gj−1, for every j, where Fj−1 = σ(G0, . . . , Gj−1)
is the σ-algebra generated by G0, . . . , Gj−1 and E(Gj |Fj−1) denotes the conditional expectation
of Gj given the past history of events Fj−1.

Assume further that there exists M > 0 such that |Gj − Gj−1| ≤ M < ∞, for every j.
Consider the random events C = {limj→∞Gj exists and is finite} and D = {lim supj→∞Gj =
∞}. Then P (C ∪D) = 1.

Theorem 5.1 Let Assumption 5.1 hold. Let also Assumption 4.2 hold for the inexact normal
equations step sj = sinj .
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Suppose that the gradient model sequence {gMj} is (pj)-probabilistically κeg-first order accu-
rate for some positive constant κeg (Assumption 3.1). Let {Xj} be a sequence of random iterates
generated by Algorithm 3.1. Then almost surely,

lim inf
j→∞

‖∇f(Xj)‖ = 0.

Proof. The proof follows the same lines as [1, Theorem 4.2]. Let

Wj =

j∑
i=0

(
1

pi
1Si − 1

)
,

where Si is as in Assumption 3.1. Recalling p∗j = P (Sj |FMj−1) ≥ pj , we start by showing that
{Wj} is a submartingale:

E(Wj |FMj−1) = Wj−1 +
1

pj
P (Sj |FMj−1)− 1 ≥ Wj−1.

Moreover, min{1, 1/pj − 1} ≤ |Wj − Wj−1| ≤ max{(1 − pj)/pj , 1} ≤ max{1/pj , 1} = 1/pj .
Since 0 < pmin ≤ pj ≤ pmax < 1, one has 0 < min{1, 1/pmax − 1} ≤ |Wj −Wj−1| ≤ 1/pmin.
Thus, from 0 < min{1, 1/pmax − 1} ≤ |Wj −Wj−1|, the event {limj→∞Wj exists and is finite}
has probability zero, and using Lemma 5.4 and |Wj − Wj−1| ≤ 1/pmin, one concludes that
P (lim supj→∞Wj =∞) = 1.

Suppose there exist ε > 0 and j1 such that, with positive probability, ‖∇f(Xj)‖ ≥ ε for
all j ≥ j1. Let now {xj} and {γj} be any realization of {Xj} and {Γj}, respectively, built by
Algorithm 3.1. By Lemma 5.3, there exists j2 such that ∀j ≥ j2

γj > bε = max

{(
2κeg
ε

) 1
α

,

(
2η2
ε

) 1
2

, λ
p−1
p γmin,

(
κε

1− η1

) 1
α

}
(8)

where

κε =

(
1 +

κ2Jm
γ2min

)
2ν +

4κeg
ε + 2θin + 8κ2Jm

min{1, γ2−αmin }θfcd
.

For any j ≥ j0 = max{j1, j2} two cases are possible.
If 1Sj = 1, then, from (8),

‖gmj − J(xj)
>F (xj)‖ ≤

κeg
γαj

<
ε

2
,

yielding ‖gmj‖ ≥ ε/2. From (8) we also have that ‖gmj‖ ≥ ε/2 ≥ η2/γ
2
j . On the other hand,

Lemma 5.2, (8), and ‖gmj‖ ≥ ε/2 together imply that ρj ≥ η1. Hence, from this and Step 3 of
Algorithm 3.1, the iteration is successful. Also, from ‖gmj‖ ≥ η2/γ2j and (8) (note that (1−x)/x
is decreasing in (0, 1]), γ is updated in Step 3 as

γj+1 =
γj

λ
1−pj
pj

.

Let now Bj be a random variable with realization bj = logλ(bε/γj). In the case 1Sj = 1,

bj+1 = bj +
1− pj
pj

.
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If 1Sj = 0, then bj+1 ≥ bj − 1, because either γj+1 ≤ γj therefore bj+1 ≥ bj or γj+1 = λγj
therefore bj+1 ≥ bj − 1. Hence Bj −Bj0 ≥Wj −Wj0 , and from P (lim supj→∞Wj =∞) = 1 one
obtains P (lim supj→∞Bj = ∞) = 1 which leads to a contradiction with the fact that Bj < 0
happens for all j ≥ j0 with positive probability.

6 A numerical illustration

The main concern in the application of Algorithm 3.1 is to ensure that the gradient model is
(pj)-probabilistically accurate (i.e., p∗j ≥ pj , see Assumption 3.1) or at least to find a lower
bound pmin > 0 such that p∗j ≥ pmin. However, one can, in some situations, overcome these
difficulties such as in the cases where the model gradient (i) is a Gaussian perturbation of the
exact one, or (ii) results from using either the exact one (seen as expensive) or an approximation.
In the former case we will consider a run of the algorithm under a stopping criterion of the form
γj > γmax.

6.1 Gaussian noise

At each iteration of the algorithm, we consider an artificial random gradient model, by adding to
the exact gradient an independent Gaussian noise, more precisely we have gMj = J(Xj)

>∇F (Xj)
+εj where (εj)i ∼ N(0, σ2j,i), for i = 1, . . . , n. Let Σj be a diagonal matrix with diagonal elements
σj,i, i = 1, . . . , n. It is known that

‖Σjεj‖2 =
n∑
i=1

(
(εj)i
σj,i

)2

∼ χ2(n),

where χ2(n) is the chi-squared distribution with n degrees of freedom. To be able to give an
explicit form of the probability of the model being κeg-first order accurate, for a chosen κeg > 0,
we assume also that the components of the noise are identically distributed, that is σj,i = σj ,
∀i ∈ {1, . . . , n}. Because of the way in which γj is updated in Algorithm 3.1, it is bounded by
λjγ0, and thus Γj ≤ min{λjγ0, γmax}, where γmax is the constant used in the stopping criterion.
One therefore has

p∗j = P

(
‖gMj − J(Xj)

>F (Xj)‖ ≤
κeg
Γαj

∣∣∣∣∣FMj−1
)

≥ P

(
‖Σjεj‖2 ≤

(
κeg

σj min{λjγ0, γmax}α

)2
∣∣∣∣∣FMj−1

)
.

Using the Gaussian nature of the noise εj and the fact that it is independent from the filtration
FMj−1, we obtain

p∗j ≥ CDF−1χ2(n)

((
κeg

σj min{λjγ0, γmax}α

)2
)

def
= p̃j . (9)

where CDFχ2(n) is the cumulative density function of a chi-squared distribution with n degrees
of freedom.
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run number 1 2 3

‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = 1) 1.0168 0.3833 0.7521

f(x, y) (pj = 1) 0.5295 0.0368 1.47

‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = p̃j) 0.0033 0.0028 0.0147

f(x, y) (pj = p̃j) 2.6474e-006 1.9778e-006 4.3548e-005

‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = pmin) 0.1290 0.1567 0.0068

f(x, y) (pj = pmin) 0.0036 0.0059 9.1426e-006

Table 1: For three different runs of Algorithm 3.1, the table shows the values of the objective
function and relative error of the solution found for the three choices pj = 1, pj = p̃j , and
pj = pmin = 5 · 10−3.

The numerical illustration was done with the following nonlinear least squares problem de-
fined using the well-known Rosenbrock function

f(x, y) =
1

2

(
‖x− 1‖2 + 100‖y − x2‖2

)
=

1

2
‖F (x, y)‖2.

The minimizer of this problem is (x∗, y∗)> = (1, 1)>.
Algorithm 3.1 was initialized with x0 = (1.2, 0)> and γ0 = 1. The algorithmic parameters

were set to η1 = η2 = 10−3, γmin = 10−6, and λ = 2. The stopping criterion used is γj > γmax

where γmax = 106. We used α = 1/2, σj = σ = 10 ∀j, and κeg = 100 for the random gradient
model.

Figure 1 depicts the average, over 60 runs of Algorithm 3.1, of the objective function values,
the absolute errors of the iterates, and the percentages of successful iterations, using, across
all iterations, the three choices pj = 1, pj = p̃j , and pj = pmin. In the last case, pmin is an
underestimation of p∗j given by

pmin = CDF−1χ2(n)

((
κeg
σγαmax

)2
)

= 5 · 10−3.

The final objective function values and the relative final errors are shown in Table 1 for the first
three runs of the algorithm. One can see that the use of pj = p̃j leads to a better performance
than pj = pmin (because p̃j ≥ pmin is a better bound for p∗j than pmin is).

In the case where pj = 1, Algorithm 3.1 exhibits a performance worse than for the two other
choices of pj . The algorithm stagnated after some iterations, and could not approximate the
minimizer with a descent accuracy. In this case, γj is increasing along the iterations, and thus
it becomes very large after some iterations while the step sj ∼ 1/γ2j becomes very small.

Other numerical experiments (not reported here) have shown that, when the error on the
gradient is small (σ � 1), the two versions pj = p̃j and pj = 1 give almost the same results, and
this is consistent with the theory because when σ → 0, from (9),

p̃j → CDF−1χ2(n)
(∞) = 1.

Note that, on the other extreme, when the error on the gradient is big (σ � 1), version pj = p̃j
approaches version pj = pmin since p̃j ' pmin.
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(a) Average of function values. (b) Average of absolute error of iterates.

(c) Average percentage of successful iterations.

Figure 1: Average results of Algorithm 3.1 for 60 runs when using probabilities pj = 1 (dotted
line), pj = p̃j (solid line), and pj = pmin (dashed line). The x-axis represents number of
iterations.

6.2 Expensive gradient case

Let us assume that, in practice, for a given problem, one has two routines for gradient calculation.
The first routine computes the exact gradient and is expensive. The second routine is less
expensive but computes only an approximation of the gradient. The model gradient results
from a call to either routine. In this section, we propose a technique to choose the probability
of calling the exact gradient which makes our approach applicable.

Algorithm 6.1 (Algorithm to determine when to call the exact gradient gMj)

Initialization
Choose the constant pmin ∈ (0, 1) (pmin is the lower bound of all the probabilities p∗j ).

For a chosen probability p̄j such that p̄j ≥ pmin

13



1. Sample a random variable U ∼ U([0, 1/p̄j ]), independently from FMj−1, and U([0, 1/p̄j ]) is
the uniform distribution on the interval [0, 1/p̄j ].

1.1 If U ≤ 1, compute gMj using the routine which gives the exact gradient.

1.2 Otherwise, compute gMj using the routine which gives an approximation of the
exact gradient.

Lemma 6.1 If we use Algorithm 6.1 to compute the model gradient at the j-th iteration of
Algorithm 3.1, then we have p∗j ≥ p̄j ≥ pmin.

Proof. By using inclusion of events, we have that

p∗j = P

(
‖gMj − J(Xj)

>F (Xj)‖ ≤
κeg
Γαj

∣∣∣∣∣FMj−1
)

≥ P
(
‖gMj − J(Xj)

>F (Xj)‖ = 0
∣∣FMj−1)

and from Algorithm 6.1 we conclude that

P
(
‖gMj − J(Xj)

>F (Xj)‖ = 0
∣∣FMj−1) ≥ P (U ≤ 1) =

1

1/p̄j
,

and thus p∗j ≥ p̄j . The other inequality, p̄j ≥ pmin, is imposed in the algorithm.

For the experiments we use the same test function and the same parameters as in Section 6.1.
In Step 1.2 of Algorithm 6.1, we set the model gradient gMj to the exact gradient of the function
plus a Gaussian noise sampled from N(0, 10I). Across all iterations, we use Algorithm 6.1 to
compute gMj with the three following choices of p̄j :

• p̄j = 1/10, i.e., at iteration j the model gradient coincides with the exact gradient with
probability at least p̄j = 1/10. Moreover, we have p∗j ≥ p̃j , where p̃j is the same as in (9),
and thus one can choose pj = max{1/10, p̃j}.

• p̄j = 1/50, with the same analysis as before and one can choose pj = max{1/50, p̃j}.

• p̄j ' 0 (p̄j = 10−10 in the experiment below), i.e., at iteration j the probability that
the model gradient coincides with the exact gradient is very small. Thus one can choose
pj = p̃j .

Figure 2 depicts the average of the function values and the absolute error of the iterates
over 60 runs of Algorithm 3.1 when using the three choices of the probability pj . As expected,
the better the quality of the model is the more efficient the Algorithm 3.1 is (less iterations are
needed to ‘converge’ in the sense of sufficiently reducing the objective function value and absolute
error). We can clearly see that Algorithm 3.1 using the models for which pj = max{1/10, p̃j}
provides a better approximation to the minimizer of the objective function than using the models
for which pj = max{1/50, p̃j}, and this latter one is better than the case when pj = p̃j .
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(a) Average of function values. (b) Average of absolute error of iterates.

Figure 2: Average results of Algorithm 3.1 for 60 runs when using probabilities pj = p̃j (solid
line), pj = max{1/10, p̃j} (dotted line), and pj = max{1/50, p̃j} (dashed line). The x-axis
represents number of iterations.

7 Application to data assimilation

Data assimilation is the process by which observations of a real system are incorporated into
a computer model (the forecast) to produce an estimate (the analysis) of the state of system.
4DVAR is the data assimilation method mostly used in numerical weather prediction centers
worldwide. 4DVAR attempts to reconcile a numerical model and the observations, by solving a
very large weighted nonlinear least squares problem. The unknown is a vector of system states
over discrete points in time. The objective function to be minimized is the sum of the squares
of the differences between the initial state and a known background state at the initial time and
the differences between the actual observations and ones predicted by the model.

7.1 4DVAR problem

We want to determine x0, . . . , xT , where xi is an estimator of the state Xi at time i, from
the background state X0 = xb + Wb, Wb ∼ N(0, B). The observations are denoted by yi =
Hi(Xi) + Vi, Vi ∼ N(0, Ri), i = 0, . . . , T , and the numerical model by Xi = Mi(Xi−1) + Wi,
Wi ∼ N(0, Qi), i = 1, . . . , T , whereMi is the model operator at time i and Hi is the observation
operator at time i (both not necessary linear). The random vectors Wb, Vi, Wi are the noises
on the background, on the observation at time i, and on the model at time i, respectively, and
are supposed to be Gaussian distributed with mean zero and covariance matrices B, Ri, and
Qi, respectively. Assuming that the errors (the background, the observation, and the model
errors) are independent among each other and uncorrelated in time [9], the posterior probability
function of this system (in other words, the pdf of X0, . . . , XT knowing y0, . . . , yT ) is proportional
to

exp
− 1

2

(
‖x0−xb‖2B−1+

∑T
i=1 ‖xi−Mi(xi−1)‖2

Q−1
i

+
∑T
i=0 ‖yi−Hi(xi)‖2R−1

i

)
(10)

and therefore the maximizer of the posterior probability function estimator is defined to be the
minimizer of the weak constraint 4DVAR problem [20] defined as the minimizer of the function
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defined in (2), which is the negative logarithm of (10).

7.2 Incremental 4DVAR

To find the solution of the nonlinear least squares problem (2), one proceeds iteratively by
linearization. At each iteration, one solves the auxiliary linear least squares subproblem defined
in (3) for the increments δx0, . . . , δxT . Such an iterative process is nothing else than the Gauss-
Newton method [2] for nonlinear least squares, known in the data assimilation community as
the incremental approach [7].

Denote zi = δxi, zb = xb − x0, z = [z0; · · · ; zT ], mi = Mi(xi−1) − xi, di = yi − Hi(xi),
Mi =M′

i(xi−1), and Hi = H′i(xi). Then (3) becomes

min
z∈Rn(T+1)

1

2

(
‖z0 − zb‖2B−1 +

T∑
i=1

‖zi −Mizi−1 −mi‖2Q−1
i

+

T∑
i=0

‖di −Hizi‖2R−1
i

)
. (11)

It is known that the solution of the linear least squares problem (11) is exactly the same as the
Kalman smoother estimator for the following linear system (see [21])

Z0 = zb +Wb, Wb ∼ N(0, B), (12)

Zi = MiZi−1 +mi +Wi, Wi ∼ N(0, Qi), i = 1, . . . , T, (13)

di = HiZi + Vi, Vi ∼ N(0, Ri), i = 0, . . . , T. (14)

For simplicity, we now rewrite the linear system (12)–(14) as:

Z = Zb +W, W ∼ N(0, BW ), (15)

D = HZ + V, V ∼ N(0, R), (16)

where

Z = [Z0; · · · ;ZT ] is the joint state of the states Z0, . . . , ZT ,

D = [d0; d1; · · · ; dT ],

Zb = [zb;M1zb +m1;M2(M1zb +m1) +m2; · · · ;MT (· · ·M1zb +m1 · · · ) +mT ],

H = diag(H0, . . . ,HT ) is the joint observation operator,

W = [Wb;M1Wb +W1;M2(M1Wb +W1) +W2; · · · ;MT (· · ·M1Wb +W1 · · · ) +WT ],

BW = cov(W ), V = [V0;V1; · · · ;VT ], and R = cov(V ).

To simplify it even more, we make the change of variables U = Z − Zb, and then (15)–(16)
becomes

U ∼ N(0, BW )

D −HZb = HU + V, V ∼ N(0, R),

and the linear least squares problem (11) becomes (with z replaced by u+ Zb)

min
u∈Rn(T+1)

1

2

(
‖u‖2

B−1
W

+ ‖D −HZb −Hu‖2R−1

)
. (17)
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To solve problem (17), we propose to use the ensemble Kalman smoother as a linear least
squares solver instead of the Kalman smoother. The ensemble approach is naturally paral-
lelizable over the ensemble members. Moreover, the proposed approach uses finite differences
from the ensemble, and no tangent or adjoint operators are needed (i.e., the method is free of
derivatives).

7.3 Kalman and ensemble Kalman smoothers

The Kalman smoother gives the expectation and the covariance of the state U (equivalently Z)
knowing the data D, in other words it calculates Ua = E(U |D) and P a = cov(U |D), and is
described by

Ua = K(D −HZb),
P a = (I −KH)BW ,

K = BWH
>(HBWH

> +R)−1.

For Z one has Za = E(Z|D) = Zb + K(D − HZb). In the data assimilation community, the
vector Ua (equivalently Za) is called the analysis and the matrix K is called the Kalman gain.

The Ensemble Kalman Smoother (EnKS) [9, 10] consists of applying Monte Carlo to generate
an ensemble following N(0, BW ) and then use its corresponding empirical covariance matrix
instead of BW to approximate Ua. Let us denote by k the ensemble members index, running over
k = 1, . . . , N , where N is the ensemble size. We sample an ensemble Ũk from N(0, BW ) by first
sampling wkb according to N(0, B), wk1 according to N(0, Q1), . . ., w

k
T according to N(0, QT ), and

then by setting Ũk as follows: Ũk0 = wkb , Ũk1 = M1w
k
b+wk1 , . . ., ŨkT = MT (· · ·M1w

k
b+wk1 · · · )+wkT .

Let Ũk = [Ũk0 ; Ũk1 ; · · · ; ŨkT ] and

¯̃U =
1

N

N∑
k=1

Ũk and BN =
1

N − 1

N∑
k=1

(Ũk − ¯̃U)(Ũk − ¯̃U)>

be the empirical mean and covariance of the ensemble Ũk, respectively. One has

BN = CC>, where C =
1√
N − 1

[Ũ1 − ¯̃U, Ũ2 − ¯̃U, . . . , ŨN − ¯̃U ].

We then build the centered ensemble Uk = Ũk − ¯̃U . Note that the empirical mean of the
ensemble Uk is equal to zero and that its empirical covariance matrix is BN .

Now one generates the ensemble Uk,a as follows

Uk,a = Uk +KN (D −HZb − V k), (18)

where V k is sampled from N(0, R), and

KN = BNH>(HBNH> +R)−1.

In practice, the empirical covariance matrix BN is never computed or stored since to compute
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the matrix products BNH> and HBNH> only matrix-vector products are needed:

BNH> =
1

N − 1

N∑
k=1

UkUk
>
H> =

1

N − 1

N∑
k=1

Ukh>k ,

HBNH> = H
1

N − 1

N∑
k=1

UkUk
>
H> =

1

N − 1

N∑
k=1

hkh
>
k ,

KN =
1

N − 1

N∑
k=1

Ukh>k

(
1

N − 1

N∑
k=1

hkh
>
k +R

)−1
,

where hk = HUk = [H0U
k
0 ; · · · ;HTU

k
T ].

We denote by Ūa and V̄ the empirical mean of the ensembles Uk,a and V k, respectively. One
has from (18)

Ūa = KN (D −HZb − V̄ ). (19)

It is known that when N → ∞, Ūa → Ua in Lp (see [12, 15]), and thus, asymptotically, Ūa

is the solution of the linearized subproblem (17) (and Ūa + Zb is the solution of the linearized
subproblem (11)).

7.4 The linearized least squares subproblems arising in EnKS

From (19) we conclude that Ūa is the Kalman smoother estimator for the following system

Ũ ∼ N(0, BN ),

D̃ = HŨ + Ṽ , Ṽ ∼ N(0, R), where D̃ = D −HZb − V̄ . (20)

Hence, for a large N (such that BN is invertible), Ūa is the solution of the following linear least
squares problem

min
u∈Rn(T+1)

1

2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1

)
. (21)

From the above derivation, we conclude that when we use the EnKS (until now with exact
derivatives) to approximate the solution of the linearized subproblem (11), what is obtained is
the solution of the linear least squares problem (21). The least squares model in (21) can be
seen, in turn, as a realization of the following stochastic model,

1

2

(
‖u‖2B−1 + ‖Hu− D̃‖2R−1

)
, (22)

where B−1 and D̃ are random variables, with realizations
(
BN
)−1

and D̃, respectively.
Both the incremental method and the method which approximates the solution of the lin-

earized subproblem (11) using EnKS may diverge. Convergence to a stationary point of (2) can
be recovered by controlling the size of the step, and one possibility to do so is to consider the
application of the Levenberg-Marquardt method as in Algorithm 3.1. As in [14], at each step, a
regularization term is then added to the model in (21)

m(x+ u) =
1

2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1 + γ2‖u‖2
)
, (23)
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which corresponds to adding a regularization term to the model (22)

M(x+ u) =
1

2

(
‖u‖2B−1 + ‖Hu− D̃‖2R−1 + Γ2‖u‖2

)
. (24)

We now provide the details about the solution of (23). For this purpose let

PN = (I −KNH)BN . (25)

Note that by using the Sherman–Morrison–Woodbury formula one has

PN =
(
(BN )−1 +HTR−1H

)−1
, (26)

in other words, PN is the inverse of the Hessian of model in (21).

Proposition 7.1 The minimizer of the model (23) is u∗ = Ūa − PN (PN + (1/γ2)In)−1Ūa.

Proof. Since Ūa is the solution of problem (21), a Taylor expansion around Ūa of the model
in (21) gives

1

2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1

)
=

1

2

(
‖Ūa‖2

(BN )−1 + ‖HŪa − D̃‖2R−1 + ‖u− Ūa‖2(PN )−1

)
.

Hence, the minimizer of the model (23) is the same as the minimizer of

1

2

(
‖Ūa‖2

(BN )−1 + ‖HŪa − D̃‖2R−1 + ‖u− Ūa‖2(PN )−1 + γ2‖u‖2
)
.

and thus given by

u∗ =
(
(PN )−1 + γ2I

)−1
(PN )−1Ūa. (27)

By using the Sherman–Morrison–Woodbury formula, one has(
(PN )−1 + γ2I

)−1
= PN − PN

(
PN + (1/γ2)In

)−1
PN ,

which together with (27) concludes the proof.

7.5 Derivative-free LM-EnKS

The linearized model and observation operators appear only when acting on a given vector, and
therefore they could be efficiently approximated by finite differences. The linearized observation
operator Hi = H′i(xi) appears in the action on the ensemble members and can be approximated
by

Hiδxi = H′i(xi)δxi '
Hi (xi + τδxi)−Hi (xi)

τ
,

where τ > 0 is a finite differences parameter. Originally, in EnKS, to avoid the derivatives
of Hi, the quantity Hiδxi = Hi(xi + δxi − xi) is approximated by Hi(xi + δxi)−Hi(xi), which
is equivalent to use finite differences with the parameter τ = 1. The linearized model M1 =
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M′
1(x0) appears in the action on a given vector (in this case zb), and so do the remaining ones

M3, . . . ,MT . Such actions can be approximated by finite differences in the following way:

M1zb = M′
1(x0)zb '

M1(x0 + τzb)−M1(x0)

τ

M2(M1zb +m1) = M′
2(x1)(M1zb +m1) '

M2 (x1 + τ(M1zb +m1))−M2(x1)

τ

' M2 (x1 +M1(x0 + τzb)−M1(x0) + τm1)−M2(x1)

τ
.

Since our approach is derivative free, we replace all the derivatives of the model and of the
observation operators by approximation by finite differences. The quantities using derivatives
become then

ĥk =

[
H0

(
x0 + τUk0

)
−H0 (x0)

τ
; · · · ;

HT
(
xT + τUkT

)
−HT (xT )

τ

]
' hk,

K̂N =
1

N − 1

N∑
k=1

Ukĥ>k

(
1

N − 1

N∑
k=1

ĥkĥ
>
k +R

)−1
' KN , (28)

Ẑb =

[
zb;
M1 (x0 + τzb)−M1 (x0)

τ
+m1; · · ·

]
' Zb, (29)

ĤZb =

[
H0 (x0 + τzb)−H0 (x0)

τ
; · · ·

]
' HZb,

Ûa = K̂N (D − ĤZb − V̄ ) ' Ūa,

P̂N = BN − K̂N 1

N − 1

N∑
k=1

ĥkU
k> ' PN , (30)

û∗ = Ûa − P̂N
(
P̂N + (1/γ2)In

)−1
Ûa ' u∗. (31)

Since û∗ is an approximation to u∗ using finite differences for derivatives, there exists a con-
stant M > 0, which depends on the second derivatives of the model and observation operators,
such that ‖e‖ ≤ Mτ , where e = u∗ − û∗. Moreover, the minimizer u∗ of the weighted least
squares model (23) is the solution of the normal equations((

BN
)−1

+HTR−1H + γ2I
)
u∗ = HTR−1D̃,

where HTR−1D̃ = ∇m(x) = gm, and thus((
BN
)−1

+HTR−1H + γ2I
)
û∗ = gm −

((
BN
)−1

+HTR−1H + γ2I
)
e,

and so û∗ can be seen as an inexact solution of the normal equations, with a residual equal to

r = −
(
(BN )−1 +HTR−1H + γ2I

)
e.

We have seen that the solution of the normal equations can be inexact as long as Assump-
tion 4.2 is met. The residual r is then required to satisfy ‖r‖ ≤ ε‖gm‖, for some ε > 0, to
fulfill the global convergence requirements of our Levenberg-Marquardt approach, and for this
purpose we need the following assumption.
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Assumption 7.1 The approximation û∗ of u∗ satisfies ‖e‖ ≤Mτ , where e = u∗− û∗, for some
constant M > 0.

The Jacobian of the observation operator H is uniformly bounded, i.e., there exists κH > 0
such that ‖H′i(xi)‖ ≤ κH for all i ∈ {0, .., T} and for all iterations j.

We note that the iteration index j has been omitted from the notation of this section until
now. In fact, the point x has been denoting the iterate xj .

Proposition 7.2 Under Assumption 7.1, if the finite differences parameter τ is such that

τ ≤ ε‖gm‖
M
(
‖(BN )−1‖+ κ2H‖R−1‖+ γ2

) , (32)

then ‖r‖ ≤ ε‖gm‖.

Proof. One has

‖r‖ ≤
∥∥(BN )−1 +HTR−1H + γ2I

∥∥ ‖e‖
≤

(
‖(BN )−1‖+ κ2H‖R−1‖+ γ2

)
Mτ ≤ ε‖gm‖.

Now, from (24) the gradient of the stochastic model is gMj = −H>R−1D̃ and from (17) the

exact gradient of the function to minimized in problem (2) is −H>R−1(D −HZb). Thus,

p∗j = P

(
‖H>R−1(D −HZb − D̃)‖ ≤ κeg

Γαj

∣∣∣∣∣FM̃j−1
)
.

But we know that D −HZb − D̃ = V̄ = (1/N)
∑N

i=1 Vi, where Vi are i.i.d. and follow N(0, R),

and thus D −HZb − D̃ ∼ N(0, R/N) and R−1(D −HZb − D̃) ∼ R−1/2
√
N
N(0, I). Thus

p∗j ≥ P

(
κH‖R−1/2‖√

N
‖N(0, I)‖ ≤ κeg

Γαj

∣∣∣∣∣FM̃j−1
)

= P

(
‖N(0, I)‖ ≤ κ

√
N

Γαj

∣∣∣∣∣FM̃j−1
)
,

where κ =
κeg

κH‖R−1/2‖ . Since Γj ≤ min{λjγ0, γmax},

p∗j ≥ CDF−1χ2(m)

( κ
√
N

min{λjγ0, γmax}α

)2
 def

= p̃j , (33)

where m =
∑T

i=0mi, mi is the size of yi, and γmax is the tolerance used in the stopping
criterion. Note that limN→∞ p̃j = 1, thus limN→∞ p

∗
j = 1, and hence when N →∞ the gradient

approximation using ensemble converges almost surely to the exact gradient.
We are now ready to propose a version of Algorithm 3.1 for the solution of the 4DVAR

problem (2) when using EnKS as the linear solver.
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Algorithm 7.1 (Levenberg-Marquardt method based on probabilistic gradient mod-
els for data assimilation)

Initialization
Choose the constants η1 ∈ (0, 1), η2, γmin, γmax > 0, and λ > 1. Select x0 and γ0 ∈
[γmin, γmax]. Choose all the parameters related to solving the 4DVAR problem (2) using
EnKS as the linear solver.

For j = 0, 1, 2, . . . and while γj ≤ γmax

1. Let x = xj . Choose τ satisfying (32). Compute the increment û∗ using (31) and set
z∗ = û∗ + Ẑb, where Ẑb is computed as in (29). Let sj = z∗.

2. Compute ρj =
f(xj)−f(xj+sj)

mj(xj)−mj(xj+sj) , where f is the nonlinear least squares model in (2)

and mj is the model (23).

3. If ρj ≥ η1, then set xj+1 = xj + sj and

γj+1 =


λγj if ‖gmj‖ < η2/γ

2
j ,

max

{
γj

λ

1−pj
pj

, γmin

}
if ‖gmj‖ ≥ η2/γ2j ,

where pj = p̃j is computed as in (33).

Otherwise, set xj+1 = xj and γj+1 = λγj .

7.6 Derivative-free LM-EnKS in practice

In Sections 7.4–7.5, we have assumed that the ensemble size N was large enough for the empirical
covariance matrix BN to be invertible (holding Proposition 7.1). However, for the EnKS to
be relevant the ensemble size has to be smaller than the dimension of the state space. In this
subsection, we explain how do we circumvent this problem in practice. The theoretical extension
of our method to small ensemble sizes as well as its performance for large and realistic problems
is subject of future research.

For small values of the ensemble size (N < n), the matrix BN is no longer invertible. In
particular, the Sherman–Morrisson–Woodbury formula is no longer applicable, as it was before
to establish (25)–(26) in terms of (BN )−1. However, following the spirit of (26), we could think
of using pseudo-inverses instead, and approximating the matrix PN defined in (25) by

PN =
(

(BN )† +HTR−1H
)†
.

In practice what we do is simply to replace inverses by pseudo-inverses in all calculations, namely
in (28) and in (31).

Another concern when using a small ensemble size is how to ensure Assumption 3.1 (gradient
model being (pj)-probabilistically accurate). When N is sufficiently large, we have shown that
the formula (33) provides a value of pj that satisfies the assumption. This formula can, however,
still be used in practice for small values of N .
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7.7 Computational experiments with Lorenz–63 model

To evaluate the performance of Algorithm 7.1 for data assimilation, we will test it using the
classical twin experiment technique used in the data assimilation community. This technique
consists on fixing an initial true state (denoted by truth0) and then to integrate it over time
using the model to obtain the true state at each time i (denoted by truthi). We then build
the data yi by applying the observation operator Hi to the truth at time i and by adding a
Gaussian perturbation N(0, Ri). Similarly, the background xb is sampled from the Gaussian
distribution with mean truth0 and covariance matrix B. Then we try to recover the truth using
the observations and the background.

For the 4DVAR problem (2), we consider the Lorenz–63 model, a simple dynamical system
with chaotic behavior. The Lorenz equations are given by the nonlinear system

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz, and

dz

dt
= xy − βz,

where x = x(t), y = y(t), z = z(t), and σ, ρ, β are parameters. The state at time t is
Xt = (x(t), y(t), z(t))> ∈ R3. This nonlinear system is discretized using a fourth-order Runge-
Kutta method. The parameters σ, ρ, β are chosen as 10, 28, and 8/3 respectively. The initial
truth is set to (1, 1, 1)> and the truth at time i to truthi = M(truthi−1) + Wi, where Wi is
sampled from N(0, Qi) and M is the model obtained by discretization of the Lorenz–63 model.
The model error covariance is given by Qi = σ2qI where σq = 10−4. The background mean xb
is sampled from N(truth0, B). The background covariance is B = σ2b I, where σb = 1. The time
step is chosen as dt = 0.11 > 0.01. (Note here that the model at time t + 1, as a function of
the model at time t, becomes more non-linear as dt increases, and this justifies having chosen dt
larger than in [3].) The time windows length is T = 40. The observation operator is Hi = 10I.
At each time i, the observations are constructed as follows: yi = Hi(truthi) + Vi, where Vi is
sampled from N(0, R), R = σ2rI, and σr = 1.

Following the spirit of Proposition 4.2, the finite difference parameter is set as

τj = min

10−3,
εj‖gmj‖

M
(
‖(BN )†‖+ κ2H‖R−1‖+ γ2j ‖(BN )†‖

)
 ,

where the value of 1 is chosen for the unknown constants M and κH (see Assumption 7.1). In
this experimental framework, the model gradient is given by gmj = −H>R−1D̃ = 10D̃, where D̃
is computed according to (20). Then, following the spirit of Assumption 4.2, εj is chosen as

εj = min

{
θin
γαj
,

√
βin

γ2j
κ2Jm + γ2j

}
,

where βin = 1/2, θin = 1, and α = 0.5. The unknown constant κJm (see Assumption 5.1) is set
to 1.

The basic algorithmic parameters are set to η1 = η2 = 10−6, γmin = 10−5, γmax = 106, and
λ = 8. The initial regularization parameter is γ0 = 1. Finally, we set κ = 1 in the calculation
of p̃j given in (33).

Figure 3 depicts the plots of the objective function values for one run of Algorithm 7.1,
using the choices pj = p̃j and pj = 1 and four ensemble sizes N = 4, 40, 80, 400. A single run
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(a) Objective function values (size N = 4). (b) Objective function values (size N = 40).

(c) Objective function values (size N = 80). (d) Objective function values (size N = 400).

Figure 3: Results of one run of Algorithm 7.1, using probabilities pj = 1 (dotted line) and
pj = p̃j (solid line), for different ensemble sizes. The x-axis represents number of iterations.
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shows well the behavior of the algorithm on this problem, thus there is no need to take averages
over several runs. For all ensemble sizes used, the version using pj = 1 stagnated after some
iterations, and could not approximate the minimizer with a decent accuracy. One can see that
the version with pj = p̃j performs much better than the one with pj = 1, regardless of the size
of the ensemble. As expected, the larger this size, the better is the accuracy of the final solution
found (which can be further confirmed in Table 2). These results illustrate the importance of
using probability pj = p̃j to update the regularization parameter γ.

ensemble size 4 40 80 400

final f (pj = 1) 1.5e5 1.2e5 1.2e5 1.1e5

final f (pj = p̃j) 304.7 65.7 62.1 63.1

Table 2: The table shows the final values of the objective function found for the two versions
pj = 1 and pj = p̃j and the four ensemble sizes.

8 Conclusions

In this paper we have adapted the Levenberg-Marquardt method for nonlinear least-squares
problems to handle the cases where the gradient of the objective function is subject to noise or
only computed accurately within a certain probability. The gradient model was then considered
random in the sense of being a realization of a random variable, and assumed first order accurate
under some probability p∗j (see (5)). Given the knowledge of a lower bound pj for this probability
(see Assumption 3.1), we have shown how to update the regularization parameter of the method
in such a way that the whole approach is almost surely globally convergent. The analysis followed
similar steps as in the theory in [1]. The main difficulty in the application of Algorithm 3.1 is
to ensure that the models are indeed (pj)-probabilistically accurate, but we presented a number
of practical situations where this is achievable.

The last section of the paper was devoted to the well known 4DVAR problem in data as-
similation. We have shown that it can also be provided here a lower bound for the probability
of first order accuracy (to be used in our Levenberg-Marquardt framework) when using the En-
semble Kalman smoother (EnKS) method for the formulation and solution of the corresponding
linearized least squares subproblems.

We have covered also the situation where the linearized least squares problems arising in the
Levenberg-Marquardt method are solved inexactly, which then encompasses a range of practical
situations, from inexactness in linear algebra to inexactness in derivatives. This is particularly
useful in the 4DVAR application to accommodate finite differences of the nonlinear operators
involved.

A number of issues need further and deeper investigation, in particular the study of the
performance of our approach when applied to large and realistic data assimilation problems.

After we had submitted our paper, Bocquet and Sakov [4] extended their previous ap-
proach [3] to 4DVAR and used finite difference approximations for the tangent operators, sim-
ilarly as in our paper. Bocquet and Sakov [3, 4] nest the minimization loop for the 4DVAR
objective function inside the EnKS and minimize over the span of the ensemble, rather than
nesting EnKS as a linear solver inside the 4DVAR minimization loop over the full state space,
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as we do. Moreover, they use a classical version of Levenberg-Marquardt method to perform
their minimization without any control or assumption on the derivative approximations arising
from the use of ensembles. Their method was designed for strong-constraint 4DVAR, i.e., for
the case Qi = 0∀i.

Appendix

Proof of Lemma 4.1: In the proof we will omit the indices j. One has

m(x)−m(x+ sin) = −g>msin −
1

2
(−gm + r)>sin = −1

2
(gm + r)>sin

=
1

2
(gm − r)>(J>mJm + γ2I)−1(gm + r).

Since J>mJm is positive semidefinite,

r>(J>mJm + γ2I)−1r ≤ ‖r‖
2

γ2
≤ ε2‖gm‖2

γ2

and

(gm)>(J>mJm + γ2I)−1gm ≥
‖gm‖2

‖Jm‖2 + γ2
.

Thus, using Assumption 4.2, we conclude that

m(x)−m(x+ sin) ≥
(

1

‖Jm‖2 + γ2
− ε2

γ2

)
‖gm‖2

≥ 2(1− βin)

2

‖gm‖2

‖Jm‖2 + γ2
.

�

Proof of Lemma 5.1: We will omit the indices j again in the proof.
If s = sc is the Cauchy point, since J>mJm is positive semidefinite, ‖g>m(J>mJm + γ2I)gm‖ ≥

γ2‖gm‖2 and we have that ‖sc‖ ≤ ‖gm‖/γ2. To prove the second inequality,

(sc)>(γ2(sc) + gm) =
γ2‖gm‖6

((gm)>(J>mJm + γ2I)gm)2
− ‖gm‖4

(gm)>(J>mJm + γ2I)gm

= − ‖gm‖4(gm)>J>mJmgm
((gm)>(J>mJm + γ2I)gm)2

,

and then using a similar argument and γ ≥ γmin,

|(sc)>(γ2(sc) + gm)| ≤ ‖Jm‖
2‖gm‖2

γ4
≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2

min{1, γ2−αmin }γ2+α
.

If s = scg is obtained by truncated CG, then there exists an orthogonal matrix V with first
column given by −gm/‖gm‖ and such that

scg = V
(
V >(J>mJm + γ2I)V

)−1
V T gm = V

(
V >J>mJmV + γ2I

)−1
‖gm‖e1,
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where e1 is the first vector of the canonical basis of Rn. From the positive semidefiniteness of
V >J>mJmV , we immediately obtain ‖scg‖ ≤ ‖gm‖/γ2. To prove the second inequality we apply
the Sherman–Morrisson–Woodbury formula, to obtain

scg = V

(
1

γ2
I − 1

γ4
(JmV )>

(
I +

(JmV )(JmV )>

γ2

)−1
(JmV )

)
‖gm‖e1.

Since V e1 = −gm/‖gm‖,

γ2scg + gm = − 1

γ2
V (JmV )>

(
I +

(JmV )(JmV )>

γ2

)−1
(JmV )‖gm‖e1.

Now, from the fact that (JmV )(JmV )>/γ2 is positive semidefinite, the norm of the inverse of
I + (JmV )(JmV )>/γ2 is no greater than one, and thus (since V is orthogonal)

‖γ2scg + gm‖ ≤
‖Jm‖2‖gm‖

γ2
.

Finally (recalling γ ≥ γmin),

|(scg)>(γ2(scg) + gm)| ≤ ‖scg‖‖γ2scg + gm‖ ≤
‖Jm‖2‖gm‖2

γ4

≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2

min{1, γ2−αmin }γ2+α
.

If s = sin is an inexact solution of the normal equations, and the residual satisfies Assump-
tion 4.2, ‖sin‖ ≤ (‖gm‖ + ‖r‖)/γ2 ≤ 2‖gm‖/γ2. Applying the Sherman–Morrisson–Woodbury
formula

sin =

(
1

γ2
I − 1

γ4
J>m

(
I +

JmJ
>
m

γ2

)−1
Jm

)
(−gm + r).

Thus,

γ2sin + gm = − 1

γ2
J>m

(
I +

JmJ
>
m

γ2

)−1
Jm(−gm + r) + r,

Using the fact that the norm of the inverse above is no greater than one, Assumption 4.2, and
γ ≥ γmin,

|(sin)>(γ2(sin) + gm)| ≤ ‖sin‖‖γ2sin + gm‖

≤ 4‖Jm‖2‖gm‖2

γ4
+

2θin‖gm‖2

γ2+α

≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2

min{1, γ2−αmin }γ2+α
.

�
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