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Abstract. In this paper we discuss the application of the stabilized
SQP method with constraint identification (sSQPa) recently proposed
by S. J. Wright [12] for nonlinear programming problems at which strict
complementarity and/or linear independence of the gradients of the ac-
tive constraints may fail to hold at the solution. We have collected a
number of degenerate problems from different sources. Our numerical
experiments have shown that the sSQPa is efficient and robust even
without the incorporation of a classical globalization technique. One of
our goals is therefore to handle NLPs that arise as subproblems in global
optimization where degeneracy and infeasibility are important issues. We
also discuss and present our work along this direction.
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1 Introduction

We consider the general nonlinear programming (NLP) problem written in the
form

min ¢(z)  subject to gr(2) <0, gn(z) =0, (1)

where ¢ : R" - R, g7 : R® - R™, gg : R" - R™” (mgp = m —my; m the
total number of constraints) are assumed to be twice continuously differentiable
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functions. Let us write the two subsets of indices for the inequality and equality
constraints, respectively, as

I={i=1,...,my}, E={i=m;+1,...,m}.

Throughout this article the subsets I and E refer to the elements in the subsets
of inequality and equality constraints. The Lagrangian function associated with
this problem is

L(z,)) = ¢(2) + AT g1(2) + Apgr(2),

where A = (A7, Ag) € IR™ are the Lagrange multipliers associated with the
inequality and equality constraints in (1). For simplicity we write the vector of
the multipliers as (A7, \g), while the accurate form would be (A, A\L)T. The
default norm in this paper is the /5.

2 Assumptions, notations, and basic results

The local convergence theory of the stabilized SQP method with constraint iden-
tification is based on the following assumptions [12]:

Assumption 1 Let ¢ and g be twice Lipschitz continuously differentiable in a
neighborhood of a point z*. Let the Mangasarian-Fromovitz constraint qualifica-
tion, the first-order necessary optimality conditions, and a form of second-order
sufficient optimality conditions hold at z*.

Note that there is no assumption made about the linear independence of
the gradients of the active constraints. Since the vector of optimal Lagrange
multipliers is not unique if the gradients of the active constraints are linearly
dependent, we need to consider the set of optimal Lagrange multipliers, denoted
by S)\:

Sy={\| V.L(z*,\) =0, \gs(2*) =0, \; > 0}.

The optimal primal-dual set consists of the pairs (z, A) in
S ={z"} xS

We also remark that there is no assumption about strict complementarity be-
tween z* and the elements in S).

We need now several definitions to describe the stabilized SQP method with
constraint identification. The set of active inequality constraints at z* is defined
as

B={i=1,...,mr | gr,(z") =0}.

For any optimal multipliers A* € Sy we define the set

Bi(X*) ={i€ B| A}, >0}



The set of strong active constraints and the set of weak active constraints are
defined as:
By= |J B:(\),  By=B\B,.

A*ES)

The distance of a pair (z,\) to the optimal primal-dual set S is denoted by
0(z, A):
6(z,A) = dist((2, ), S),

where
dist((z,A),S) = inf [[(z",A") = (2, M|

(z*,A*)€ES

3 Stabilized SQP with constraint identification

SQP methods have shown to be quite successful in solving NLP problems. For
degenerate NLP problems, where at the solution the linear independence of the
gradients of the active constraints and/or the strict complementarity condition
may not hold, Wright [12] has designed a stabilized SQP method, algorithm
sSQPa, to handle such type of problems. For that purpose, a constraint iden-
tification procedure, procedure ID0, has been developed to identify the active
inequality constraints and, furthermore, to classify them as strong or weak ac-
tive constraints. The method also considers the solution of an LP subproblem
to provide an interior multipliers estimate and a stabilization of the traditional
QP subproblem. Both the constraint identification procedure and the interior
multipliers estimate are called when no sufficient reduction is obtained by the
solution of the stabilized QP subproblem. Wright [12] proved a superlinear rate
of local convergence for algorithm sSQPa with procedure IDO.

In the next subsections, we give a complete description of the overall algo-
rithm, extending the presentation of Wright [12] to the general case of inequality
and equality constraints.

3.1 SQP algorithm

Standard SQP methods for the NLP problem (1) typically solve a sequence of
QP subproblems of the following form

1
nAlin Vo(z) T Az + §A2TVZZL(Z, N Az

subject to gr(z) + Vgr(2)TAz <0, ge(2) + Vgp(2)TAz=0, (2)

where (z,\) is the current iterate. The stabilized SQP method [12] considers
instead the following minimax subproblem

1
min = max  V¢(2)TAz + 2227V L(z, ) Az + AT [g1(2) + Vgr(2)T Az]
Az )\;rz()’)\; 2

+O5) l98(2) + Vgu(2)" A2 = N = A,



where 1 > 0 is a given parameter, and the solution AT = (A}, A\},) provides a new
update for the Lagrange multipliers associated with the inequality and equality
constraints. This minimax subproblem is in turn equivalent to the following QP
subproblem

Jmin Vo()T Az + %Ava“c(z, Az + B 3)
subject to gp(2) + Vgr(2)T Az — u(A\j, — A\g) =0,
g1(2) + Vg1(2)T Az — p(\} = A1) <0,

with A* = (A, A%); see [6], [12]. One can easily see that the QP subproblem (3)
is posed in both z and AT and has therefore m variables more than the traditional
QP subproblem (2).

The stabilizing parameter p introduced in the above subproblems is chosen
as u = n(z,\)? with ¢ € (0,1), where n(z, ) is the size of the residual of the
first-order necessary conditions given by

V.L(2,\)
n(z,A) = || | min(A7, —gr(2)) | ||,
9E(2)

with the min operator applied component-wise. In fact, n(z, A) represents a prac-
tical way of measuring the distance to the primal-dual set S; see e.g., [12, The-
orem 2].

The quantity 7(z,A) also provides an estimate for the set of active con-
straints B:

A(z,\) ={i=1,2,...,my | g1,(2) > —n(2,\)"}, 7€ (0,1), (4)

see [12]. It is clear that when (z, A) approaches a primal-dual solution, then the
distance 0(z, ) decreases and the interval of feasibility measured by the lower
bound —n(z, )" reduces too, improving the quality of the estimation provided
by A(z,A). In addition, the estimated set A(z, A) is partitioned into a subset A4
of estimated strong active constraints and a subset A4y of estimated weak active
constraints. Depending on the decrease on 7(z, \) provided by the solution of the
QP subproblem (3), an LP subproblem is solved in order to maximize the multi-
pliers corresponding to the inequality constraints in the subset A, keeping the
remaining multipliers corresponding to inequality constraints at zero. The iden-
tification procedure and the interior multipliers estimation will be introduced in
subsections 3.2 and 3.3, respectively. Now, we restate the algorithm sSQPa [12].

Algorithm sSQPa

Choose parameters 7,0 € (0,1), a tolerance tol > 0, and an initial starting
point (2%, A%) with A} > 0. Compute A(2°, \°) using (4), call procedure IDO to
compute the subsets A, and Ag, and solve the LP subproblem (6) to obtain MO,
Set k < 0 and A% « \°.

While 7(z¥, \¥) > tol do



Solve (3) for (Az, A1), and set p* = n(z*, A¥).
If (2k + Az, AF) < (n(zk, Ak)) 772
set (2FFL AMFL) o (2P 4 Az, AT set kb« k+ 1;
else
compute A(z*, \¥), and then apply ID0 to obtain A, and Ay;
solve the LP subproblem (6) to obtain A*and set AP« \F:
end (if)

end(while)

For each iterate (z*, A\F) one solves the QP subproblem (3). If the computed
step (Az, A\T) yields a sufficient decrease in n(z,\), then (Az, AT) is accepted,
otherwise (Az, A") is rejected and the sSQPa algorithm switches to its else
condition. In such a case, the set A(z,A) is updated and the procedure IDO is
called to partition the set A(z, A) into the subsets A4 and Ag. A new multipliers
estimate A is computed by the solution of an LP subproblem.

The next result shows that the rate of local convergence of algorithm sSQPa
is superlinear for degenerate problems [12, Theorem 7]. Tt is also shown that
when (29, \%) is close to the optimal set S, the initial call of procedure IDO is
the only one that is needed. The numerical experiments presented in this paper
confirm these statements.

Theorem 1. Suppose that assumption 1 holds. Then there exists a constant
8 > 0 such that for any (2°, \°) with §(2°,\°) < 8, the if condition in algorithm
sSQPa is always satisfied and the sequence {5(z*, \¥)} converges superlinearly
to zero with g-order 1+ o.

3.2 Constraint identification

The set A(z,A) defined in (4) has been used to estimate the active inequality
constraints in a neighborhood of a solution, see [2], [12]. In this estimation all
inequality constraints with function values greater than or equal to —n(z, A)”
are considered in A(z,\). Under the standing assumptions it can be shown [12,
Theorem 3] that in a sufficiently small neighborhood of the solution the set
A(z, \) successfully estimates the active set B.

Lemma 1. Let assumption 1 holds. Then, there exists 8, > 0 such that for all
(z,A) with §(z,\) < &1, it holds A(z,\) = B.

As we have said before, it is also desirable to partition the set A(z, A) in two
sets: one corresponding to constraints that are candidate to be strong and the
other containing the constraints that are candidates to be weak. To achieve this
purpose it is convenient to solve the following LP subproblem [12] for a given
subset A ¢ A(z, \) containing the candidates for weak active constraints.

max E Ai
X1, A ‘
D e



subject to ||Ve(z) + Z AV (2) + Z;\Ei Vg, (2)|| <x(z,A71),

i€A(z,\) i€E o

A>0 forall i€ A(z,)\), A, =0 forall ieI\A(z\),
where x(z, A\, 7) is given by
X(z, A7) =

max (2 A)7, |[Vé(2) + Y ALVer(2)+ Y AnVer ()| |. ()

i€A(2,N) i€E -
The multipliers e corresponding to the equality constraints have no sign re-
striction in this LP subproblem.

In the following lines we restate the constraint identification procedure ID0
proposed in [12] based on the solution of LP subproblems of this type. The
output of procedure ID0 is a partition of A(z, \) into two sets A4 and Ag: A4
contains the candidates for strong active constraints and Ay the candidates for
weak active constraints.

Procedure IDO
Given 7, 7 with 0 < 7 < 7 < 1 and a point (2, ), compute x(z, A, 7) from (5),
&(z,\,7,7) = max (n(2,\)7,x(2,\,7)), and A(z,)) from (4). Define Ajpi; =
Az, OV\{i | A1, > €(2, A, 7,7)} and set A «— Apy,.
Repeat

If A =0, stop with Ao =0 and Ay = Az, \).

Solve the LP (5) for A and set C = {i € A | A, > &(z, A, 7,7)}.

IfC=90

stop with Ag = A and A, = A(z, \)\4;
else

end(repeat)

One can see that procedure ID0O will not be exited unless the set C is empty.
The idea is to start with a superset of 4y given by A= ./Zlinit and to remove
iteratively from A the constraints, stored in C, that have been estimated to be
strong by the LP subproblem (5).

It is shown in [12, Theorem 4] that the two subsets, A4 and Ag, produced
by procedure IDO0 successfully estimate B4 and By in the vicinity of z*.

Lemma 2. Let assumption 1 holds. Then, there exists 6o > 0 such that when-
ever 6(z,\) < 62, procedure ID0 terminates with Ay = By and Ag = By.



3.3 Interior multipliers estimate

After the application of the constraint identification procedure ID0, the partition
of A(z,A) into the two subsets Ay and Ag is available. It is therefore possible
to try to make the multipliers corresponding to the estimated strong active
constraints in A4 as far from zero as possible. This is particularly desirable
when solving NLP problems arising as subproblems in global optimization. Such
interior multipliers estimate can be obtained by solving an LP subproblem of
the following form (see [12]), adapted here to include the equality constraints:

max t
tAr e

subject to £ < \;, forall ie Ay,

—pe< V(b(z) + Z ;\Ii VQIi (Z) + Z S‘Ez VQEi (Z) <pe,
i€AL i€E

A, >0 forall ie A, A, =0 forall ieI\Ay, (6)

where e is a vector whose entries are all ones and the variables A\g are unrestricted
in sign.

Under the standing assumptions, it is shown in [12, Theorem 5] that the LP
subproblem (6) is feasible and bounded in a sufficiently small neighborhood of

the solution. Furthermore, the distance §(z, ;\) is bounded above by a multiple
of §(z,A)".

Lemma 3. Let assumption 1 holds. Then, there exists 63 > 0 such that for
all (z,\) with 6(z,\) < 63 the LP subproblem (6) is feasible, bounded, and its
optimal objective is greater than or equal to

€x = max min A}.
AES, i€By

Furthermore, there exists § > 0 such that 6(2’,5\) < B6(z, N7

If there exists linear dependency of the gradients of the active constraints,
then the vector of optimal Lagrange multipliers is not unique, and one can think
of computing the multipliers with the largest possible size. This goal would be
particularly relevant when we consider NLP problems arising as subproblems
of an enumeration scheme applied to a global optimization problem. With this
purpose in mind we have studied a few strategies. The one that seems most
relevant consists of solving a second LP subproblem once (6) has been solved.
The idea is to maximize the size of the multipliers in A, while keeping the lower
bound # > 0 in the infinity norm that has been achieved by solving (6). So, after
solving (6), one could solve the following LP subproblem:

max Z /A\]l.

;\I’)‘E i€EAL



subject to £ < \;, forall i€ Ay,

—pe< V(b(z) + Z ;\Ii VQIi (Z) + Z S‘Ez VQEi (Z) <pe,
€A, i€E

A, >0 forall ie Ay, Ap=0 forall ieI\A,.

The numerical experiments have shown, however, that there is not too much
gain in solving this second LP subproblem. In fact, the LP subproblem (6) has
produced in most instances multipliers whose size was quite close to the largest
one.

4 Numerical experiments

We have developed a Matlab implementation of the stabilized SQP method with
constraint identification (algorithm sSQPa) and tested it for a variety of degen-
erate problems. We used Matlab to solve the LPs and QPs that are needed by
the sSQPa method.

We divide the numerical results into three major subsections. In subsec-
tion 4.1 we are concerned with the speed of local convergence of the method
as well as with its global behavior without any globalization strategy. In sub-
section 3.2 we describe the numerical performance of procedure ID0O within al-
gorithm sSQPa. Subsection 4.3 describes the use of the sSQPa method to find
feasible points for feasible degenerate problems and least infeasible points for
infeasible degenerate problems.

4.1 Problems with objective function

In this subsection, we consider 12 degenerate NLP test problems. For every
problem we tested three different starting points with increasing distance to z,
and for each case we plot logq ||z — z«|| vs iteration number. The performance
of sSQPa for each problem is also shown by plotting log,q n(z, A) vs iteration
number for the farthest away starting point. When possible we compare the
performance of sSQPa with other solvers for NLP.

The numerical results are obtained without any globalization strategy. The
stopping criterion is n(z,A) < 1078. We have computed the initial Lagrange
multipliers \° by solving the least-squares problem

min [|[Vo(=") + Vg b A, + VoGP st Aa, >0, (7)
A1 AE

where Ajs is given by {i € I | g7,(2°) > —e1s} with e > 0. In the implementation
we used e, = 2.0. The algorithm sSQPa has been designed to set A0 < A\°. Our
numerical experiments have however shown that the solution of (7) is a better
choice for \°.

Other parameters have been set as follows: ¢ = 0.95, 7 = 0.95, and 7 =
0.85. However we have used a different value for o in the decrease condition



n(z* + Az, AT) < (77(2’“,)\’“))1+a/2 that appears in the sSQPa algorithm. We
have tried several possibilities and conclude that a robust choice for ¢ in this
condition is 0.05.

Test problem 1: The first test problem is HS113 [5], where degeneracy
is due to lack of strict complementarity. This problem has 10 variables and 8
inequality constraints. The performance of sSQPa for three different starting
points is given in figure 1. The numerical results show convergence from remote
points and fast rate of local convergence. In figure 7 one can see the decrease
in n(z, A). Table 1 shows that sSQPa is quite competitive with other solvers on
this problem in number of iterations (starting from the standard point for this
problem).

Fig. 1. Convergence from three different starting points for problems 1 and 2.

Example 1: three different starting points Example 2: three different starting points

log (llz - z,II)
log (IIz - z,]I)

a5 6 7 0 & s
Number of iterations Number of iterations

Table 1. Performance of different solvers on example 1.

Solver NPSOL | SNOPT | NITRO | LOQO |sSQPa
Iterations 14 32 15 16 9
Objective|| 24.306 24.306 24.306 24.306 | 24.306

Test problem 2: The second test problem is from [2] and it is a modified
version of HS46 [5]. Degeneracy in this problem is due to lack of strict comple-
mentarity. The problem has 5 variables and 3 inequality constraints. Figures 1
and 7 show convergence from remote points and fast rate of local convergence.

In this problem the effect of updating the multiplier using the interior multi-
plier A can be nicely observed. In fact, we can see from table 2 that at the first,
tenth, and twelfth iterations the decrease in 7(z,\) has been poor. In this case
sSQPa selects the else condition and updates Ak by A* < A*, speeding up the
rate of local convergence.

Test problem 3: The third test problem is also from [2] and it is rank
deficient. This problem is a modified version of HS43 [5] and has 4 variables
and 4 inequality constraints. We see that sSQPa has converged from the three
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starting points and has exhibited a fast rate of local convergence (see figures 2
and 7).

Fig. 2. Convergence from three different starting points for problems 3 and 4.

Example 3: three different starting points Example 4: three different starting points

12 14 16 (] 5 20 35 a0

G 5 10 15 E) 25
Number of iterations Number of iterations

Table 2. Performance of sSQPa on example 2. cond(H*) is the condition number of
the Hessian of the QP, ;4 is the number of iterations needed by procedure IDO.

k(2" (2" ) i [l — 2| cond(H")
0 3.33763e+00 7.87595e+00 0 2.14476e-01 1.70244e+00 —
1 3.33763e+00 7.87595e+00 2 5.01797e+00 1.70244e+00 6.82398e+15
2 4.68754e-01 2.43281e+00 0 8.36948e-02 1.34192e+00  +oo

9 2.74649e-07

1.03603e-03

9.99099e-04 3.81399e-02 3.11708e+4-03

0
10 2.74649e-07 1.03603e-03 1 0 3.81399e-02 1.20856e+05
11 2.81219e-10 2.02709e-05 0 1.04462e-05 2.18212e-04 +oo
12 2.81219e-10 2.02709e-05 1 0 2.18212e-04 4.09199e+10
13 2.05082e-23 5.54501e-12 0 6.09971e-18 2.93470e-08 400

Test problem 4: The fourth test problem is HS13 [5]. It is rank deficient
and, furthermore, it does not satisfy the Karush-Kuhn-Tucker and Mangasarian-
Fromovitz constraint qualifications. It has 2 variables, 1 inequality constraint,
and 2 bound constraints.

In figure 2 one can see the convergence behavior from the three starting points
and observe that sSQPa approaches a point different from z* in all of them.
Convergence from the first starting point is achieved in two iterations, while
convergence for the other two starting points is very slow and the lowest value
of (2, ) is 1072 in 40 iterations. Other solvers, among them NPSOL, SNOPT,
and NITRO, exhibit a similar behavior for this problem by not converging to
the solution.

Test problem 5: The fifth problem is a modified version of HS100 [5] and it
is rank deficient. The problem has 7 variables and 5 inequality constraints and
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Fig. 3. Convergence from three different starting points for examples 5 and 6.

Example 5: three different starting points Example 6: three different starting points

log (|l - z,I)
log (|z - z,I)

30 35 o 05

15 20 25 15 2 25
Number of iterations Number of iterations

Fig. 4. Convergence from three different starting points for examples 7 and 8.

Example 7: three different starting points Example 8: three different starting points

 log (I~ z,I)
log (lz - z,I)

2 3 4 5
Number of iterations

has the following form:

min ¢(z) = (21 — 10)2 + 5(z9 — 12)% + 24 + 3(24 — 11)2
+1028 + 722 + 234 — 42627 — 1026 — 827

st. g1(2) =227 + 325 + 23 + 423 + 525 — 127 <0
g2(2) = Tz1 + 320 + 1022 + 24 — 25 — 282 <0,
g3(2) = 2321 + 23 + 625 — 827 — 196 <0,
ga(2) = 423 + 23 — 32120 + 222 + 5z — 1127 <0,
g5(2) = 23 + 1525 + 0.523 + 222 +2.525, — 635 <0

Figures 3 and 7 show that the global and local performance of sSQPa is good
for this problem.

Test problem 6: This test problem is considered in [11] and it is rank
deficient. It has 2 variables and 2 inequality constraints. There is nothing special
to report; the global and local behavior of sSQPa for this problem are fine (see
figures 3 and 7).

Test problem 7: The seventh problem is a quadratic problem with quadratic
constraints introduced in [7]. The problem has 3 variables and 6 inequality con-
straints. The degeneracy is due to lack of strict complementarity. The perfor-
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mance of sSSQPa for this problem is shown in figures 4 and 7 and was good both
globally and locally.

Table 3. Performance of different solvers on example 8.

Solver NPSOL | SNOPT NITRO LOQO |sSQPa
Iterations 2 4 17 23 16
Objective 1.0 1.0 1.000002 1.0 1.0

Fig. 5. Convergence from three different starting points for example 9.

Example 9 “two cuts": three different starting points Example 9 "one cut": three different starting points

log (llz - z,Il)
log (llz - ,Il)

10 12 o 1

@ & s 2 3 0 5
Number of iterations Number of iterations

Test problem 8: This test problem is HS32 [5] in which strict complemen-
tarity does not hold. It has 3 variables, 1 inequality constraint, 1 equality con-
straint, and 3 bound constraints. Global convergence and fast local convergence
for this example can be confirmed from figures 4 and 7. In addition, table 3 gives
a comparison between sSQPa and other solvers on this problem for the standard
starting point associated with this problem.

Test problem 9: In this example we have modified problem HS40 by adding
(one and two) cuts to the set of constraints. The cuts have made the problem
rank deficient. In the case of two cuts, the problem has 4 variables, 2 inequality
constraints, and 3 equality constraints:

min (;5(2’) = —Z1Z2Z3%4

s.t. g1(z) = —21292324 + 0.25 <0,
g2(2) = —0.521292324 + 0.124999 < 0,
93(2) = 20 + 23 — 1 =0,
9a(2) = 2724 — 23 =0,
g5(2) = =20 + 23 =0.

The one-cut case is generated by omitting the second constraint. The numerical
behavior for this example is shown in figures 5 and 8.

Test problem 10: This problem is taken from [1] and it is rank deficient. It
has 3 variables and 4 inequality constraints. We observe that sSQPa exhibits a
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Fig. 6. Convergence from three different starting points for examples 10 and 11.

log (I -zl

Example 10: three different starting points

Example 11: three different starting points

log (llz - z.J)

10 15
Number of iterations

o 5 10 12 14
Number of iterations

Table 4. Performance of different solvers on example 10.

Solver

DONLP2

FilterSQP|LANCELOT| LINF [LOQO|MINOS|SNOPT|sSQPa
llzf — 2"|||| 1.5e-16 | 5.3e-09 8.7e-07  |1.1e-08|1.6e-07|4.8e-06 | 3.4e-07 |1.1e-08
Iters. 4 28 336 28 200 27 3 27

linear rate of local convergence for this example (see figure 8). In table 4 we have
restated the comparison made in [1], listing the distance ||z — 2*|| of the final
point z; to the optimal solution z* and the number of iterations. It is shown
in [1] that methods that are based on augmented Lagrangian functions do not
perform well on this problem. To some extent the stabilized SQP method has
the flavor of augmented Lagrangian methods since the quadratic model of the
Lagrangian is augmented by another term involving the stabilization parameter,
see the QP problem (3), and this might explain the not so good performance of
the sSQPa algorithm on this problem.

Test problem 11: This problem is a modified version of problem HS43 and
example 3, where an equality is included to the set of constraints. It is rank
deficient and has the following form:

min ¢(z) =22 + 23 +222 + 27 — 5(21 + 22) — 2123 + T24

st. gu(z) =28+ 23 +224+2i+21—mtzm—zu—8 <O,
ga(2) =22 + 223 + 22 +227 — 21 — 24— 10 <0,
g3(2) =222+ 22+ 22 +221 — 20— 24— 5 <0,
g1(2) = —25 — 222 — 22 — 21 + 320+ 23 — 424 — 7 = 0.

The numerical behavior of sSQPa for this problem can be seen from figures 6

and 8 and it is characterized by fast local convergence for the three different
starting points.

Test problem 12: This test problem is a modified version of problem 6.
It has an unique minimizer at the origin. It is also rank deficient and has the
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Fig. 7. Performance of sSQPa on examples 1 to 8.

log (n(z.A)
log (n(z.A)

o 5 10 15 20 25 30 35 £ o 5 10 15 20 25 30 E3
Number of iterations Number of iterations

Fig. 8. Performance of sSQPa on examples 9 to 12; convergence from three different
starting points for example 12.

Example 12: three different starting points

log (n(z.A))

log (lz - z,I)

B
[ B

10 15 2 3 Q
Number of iterations Number of iterations

following form:
min ¢(z) =z
st. g1(z) = (21 —2)%+22-4 <0,
g2(2) = —(21 —4)? — 22 +16 < 0.

The optimal set of the Lagrange multipliers is
Sy ={(a,a/2) | a >0},

which is clearly unbounded, implying that the MFCQ does not hold at the
solution. The algorithm sSQPa exhibits a fast local rate of convergence on this
example. Figure 8 shows the performance of sSQPa on this example.

4.2 Performance of procedure ID0

The aim of this subsection is to give some insight on the numerical behavior
of procedure ID0 within algorithm sSQPa on the test problems introduced in
subsection 4.1. The goal is to see how close to z* the procedure IDO is able to
correctly identify the active constraints and its partition into strong and weak
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active constraints. We report in table 5 the value of ||z — z*|| from which these
identifications is always correct.

With the exception of example 2, we used the results of the farthest away
starting point. In fact, procedure ID0O does not detect the active set correctly in
example 2 for the second and third starting points. In addition, procedure ID0
does not detect the active set correctly for any of the three starting points of
example 7. In general, we can say that procedure ID0 does a good job identifying
the active constraints and its partition into strong and weak.

Table 5. Detection of the correct active constraints and its partition into strong and
weak.

|Test Problem”A(z, A) |||z - z*||||A+ Ao |||z — 2| |
1 {1,2,3,4,5,7}]5.3e-01 [[ Ay = A(z,\) Ao =10 6.2e-05
2 {1,2,3} 1.4e-05 ||Ay =0 Ao = A(z,\)  |2.4e-10
3 {1,3,4} 1.4e-01 || Ay = {1,3} # By Ao = {4} # By *|1.4e-01
4 {1,3} 8.7e-01 |[A+ = A(z, ) Ao =10 6.3e-01

5 {1,4,5} 1.1e+00 ||A+ = A(z, A) Ao =10 9.7e-04
6 {1,2} 3.6e-01 |[A+ = A(z,)) Ao =10 4.3e-05
7

8 {2,3} 6.3e-01 || A+ = A(z, ) Ao =10 6.3e-01
9 "two cuts”?||{1} 1.2e-08 |[A+ = A(z,A) Ao =10 1.2e-08
9 "one cut” |[{1} 7.6e-01 ||A4 = A(z, \) Ao =10 7.6e-01
10 {1,2,3,4}  [4.3e-02 ||A+ = A(z,\) Ao =10 2.1e-02
11 {1,3} 2.1e-01 || As = A(z, N Ao =10 2.1e-01
12 {1,2} 6.4e-10 || A4 = A(z,N) Ao =10 6.4e-10 ©

4.3 Problems without objective function

We have tested the ability of the sSQPa method to find feasible points for feasible
degenerate problems and to find least infeasible points for infeasible degenerate
problems. For this purpose the objective function and its derivatives were set
to zero in the algorithm. No globalization scheme was used. We have tried four

* For the first and second starting points it is obtained a correct partitioning of A(z, \)
into A+ and Ag, while for the third starting point g4 is incorrectly in Ao from the
tenth iteration until the end.

® The second cut is perturbed a little so that its value at the solution is 1077 (see
problem 9). Procedure ID0 identifies the two constraints in A(z,A) from the initial
starting point until ||z — z*|| = 1.2e — 08, and then excludes g» incorrectly from
A(z, N).

6 At the first iteration Ay = A(z,\) = {1,2}, then in the following 4 iterations g» is
excluded from A(z, A) until the last iteration (the fifth iteration) at which gs returns
to A(z,A) with a value of —3.04e — 09.
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possibilities for the function 7(z, A) used in the stopping criterion:

miewn) = || PROL O e - m?ii—{i» ,
e =[] me= g |

Note that n(z,\) is the one that is used in computing stationary points and
that 14(2) represents a measure of the true feasibility.

We ran the 12 feasible problems introduced in section 4.1. In addition, we
have designed 2 more infeasible problems that will be described later on in this
section. For each of these problems we considered three different starting points.
The stopping criterion was also n(z, \) < 1078. The initial multipliers have been
obtained by

30— [max((),gl(zo))}
95(2°) '

The overall results are given in table 6, where we report the average number of
iterations and the number of wins out of 57 trials for each of the four types of
n(z, ) given above. We observe that 1 (2, A) and 74(z) seem to be most efficient
choices. With the exception of the second and third starting points of example 8,
and of the three starting points of example 11, sSQPa with n4 has successfully
converged to feasible points.

Table 6. Performance of sSQPa for finding feasible or infeasible points.

m(zAn) | (2, A) | m(zA) | m(z2)
Iteration average| 10.18 10.63 12.95 9.23
Number of wins 50 48 25 52

In general, the feasible point computed changes with the starting point 2°
and the choice of (2, A). The sSQPa method also worked well for the two cases
of problem 9 and problem 12, with the particularity that the feasible point
computed was found to be also stationary.

Next, we introduce two infeasible test problems, where at the least infeasible
points the gradients of the nearby active constraints are linearly dependent.

Test problem 13: This test problem is a modification of both of problems 6
and 12, and has the following form:

g1(z2) =(z1—2+€)?+22-4 <0,

ga(z)=—(21—4)? =23+ (44+¢)?2 <0.

If € is set to zero, the problem becomes feasible and rank deficient at the solution.
The problem is infeasible for small positive values of e.
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Fig. 9. Convergence for example 13: e = 107*.
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Fig. 10. Convergence for example 13: ¢ = 1077,
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In the computations, we have tested this example for e = 10~% and € = 1077,
Again, the sSQPa method has been applied to these two instances with the
objective function and its derivatives set to zero and without any globalization
scheme.

The results are given in figures 9 and 10 for the two instances (¢ = 10~* and
€ = 10~7) and for the four choices of 1(z, A), in terms of the distance to the least-
squares minimizer z* of the constraints obtained by Matlab and also in terms of
n(z, A). Here we tested another function n(z, \) for the stopping criterion:

n5(2,A) = > 9(2)Va(2)

i€ A(z,\)UE

Test problem 14: Test problem 14 is also infeasible, defined by an hyper-
plane and a circle:

g1(z) =21 +e¢ <0,
g2(2) =(21 —(1+e€)2+22-1<0.

The results are given in figures 11 and 12. The main conclusion that we can
draw from these two test problems is that the stabilized SQP with constraint
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Fig. 11. Convergence for
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Fig. 12. Convergence for example 14: ¢ = 1077,

Example 14: convergence from the third starting point, € = 107" Performance of sSQPa on example 14,& = 107"
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identification (algorithm sSQPa) was quite effective to determine least infeasible
points with nearby rank deficiency. Among the five measures of least infeasibility,
n5(z,\) seems to be the most efficient.
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