
Numerial Behavior of a Stabilized SQP Methodfor Degenerate NLP ProblemsEl{Sayed M. E. Mostafa1 ?, Lu��s N. Viente2 ?, and Stephen J. Wright3 ??1 Centro de Matem�atia, Universidade de Coimbra, 3001-454 Coimbra, Portugal. Onleave from the Department of Mathematis, Faulty of Siene, AlexandriaUniversity, Alexandria, Egypt (emostafa�mat.u.pt).2 (Correspondent author) Departamento de Matem�atia, Universidade de Coimbra,3001-454 Coimbra, Portugal (lnv�mat.u.pt).3 Department of Computer Sienes, University of Wisonsin, Madison, WI 53706,USA (swright�s.wis.edu).Abstrat. In this paper we disuss the appliation of the stabilizedSQP method with onstraint identi�ation (sSQPa) reently proposedby S. J. Wright [12℄ for nonlinear programming problems at whih stritomplementarity and/or linear independene of the gradients of the a-tive onstraints may fail to hold at the solution. We have olleted anumber of degenerate problems from di�erent soures. Our numerialexperiments have shown that the sSQPa is eÆient and robust evenwithout the inorporation of a lassial globalization tehnique. One ofour goals is therefore to handle NLPs that arise as subproblems in globaloptimization where degeneray and infeasibility are important issues. Wealso disuss and present our work along this diretion.Key words. nonlinear programming, suessive quadrati programming,degeneray, identi�ation of ative onstraints, infeasibility1 IntrodutionWe onsider the general nonlinear programming (NLP) problem written in theform minz �(z) subjet to gI(z) � 0; gE(z) = 0; (1)where � : IRn ! IR, gI : IRn ! IRmI , gE : IRn ! IRmE (mE = m �mI ; m thetotal number of onstraints) are assumed to be twie ontinuously di�erentiable? Support for the �rst two authors was provided by Centro de Matem�atia da Uni-versidade de Coimbra, by FCT under grant POCTI/35059/MAT/2000, and by theEuropean Union under grant IST-2000-26063.?? Support for this author was provided by the Mathematial, Information, and Compu-tational Sienes Division subprogram of the OÆe of Advaned Sienti� Comput-ing, U.S. Department of Energy under ontrat W-31-109-Eng-38, and the NationalSiene Foundation under grants CDA-9726385 and ACI-0082065.



2funtions. Let us write the two subsets of indies for the inequality and equalityonstraints, respetively, asI = fi = 1; : : : ;mIg; E = fi = mI + 1; : : : ;mg:Throughout this artile the subsets I and E refer to the elements in the subsetsof inequality and equality onstraints. The Lagrangian funtion assoiated withthis problem is L(z; �) = �(z) + �TI gI(z) + �TEgE(z);where � = (�I ; �E) 2 IRm are the Lagrange multipliers assoiated with theinequality and equality onstraints in (1). For simpliity we write the vetor ofthe multipliers as (�I ; �E), while the aurate form would be (�TI ; �TE)T . Thedefault norm in this paper is the `2.2 Assumptions, notations, and basi resultsThe loal onvergene theory of the stabilized SQP method with onstraint iden-ti�ation is based on the following assumptions [12℄:Assumption 1 Let � and g be twie Lipshitz ontinuously di�erentiable in aneighborhood of a point z�. Let the Mangasarian-Fromovitz onstraint quali�a-tion, the �rst-order neessary optimality onditions, and a form of seond-ordersuÆient optimality onditions hold at z�.Note that there is no assumption made about the linear independene ofthe gradients of the ative onstraints. Sine the vetor of optimal Lagrangemultipliers is not unique if the gradients of the ative onstraints are linearlydependent, we need to onsider the set of optimal Lagrange multipliers, denotedby S�: S� = f� j rzL(z�; �) = 0; �TI gI(z�) = 0; �I � 0g:The optimal primal-dual set onsists of the pairs (z; �) inS = fz�g � S�:We also remark that there is no assumption about strit omplementarity be-tween z� and the elements in S�.We need now several de�nitions to desribe the stabilized SQP method withonstraint identi�ation. The set of ative inequality onstraints at z� is de�nedas B = fi = 1; : : : ;mI j gIi(z�) = 0g:For any optimal multipliers �� 2 S� we de�ne the setB+(��) = fi 2 B j ��Ii > 0g:



3The set of strong ative onstraints and the set of weak ative onstraints arede�ned as: B+ = [��2S� B+(��); B0 = BnB+:The distane of a pair (z; �) to the optimal primal-dual set S is denoted byÆ(z; �): Æ(z; �) = dist((z; �);S);where dist((z; �);S) = inf(z�;��)2S k(z�; ��)� (z; �)k:3 Stabilized SQP with onstraint identi�ationSQP methods have shown to be quite suessful in solving NLP problems. Fordegenerate NLP problems, where at the solution the linear independene of thegradients of the ative onstraints and/or the strit omplementarity onditionmay not hold, Wright [12℄ has designed a stabilized SQP method, algorithmsSQPa, to handle suh type of problems. For that purpose, a onstraint iden-ti�ation proedure, proedure ID0, has been developed to identify the ativeinequality onstraints and, furthermore, to lassify them as strong or weak a-tive onstraints. The method also onsiders the solution of an LP subproblemto provide an interior multipliers estimate and a stabilization of the traditionalQP subproblem. Both the onstraint identi�ation proedure and the interiormultipliers estimate are alled when no suÆient redution is obtained by thesolution of the stabilized QP subproblem. Wright [12℄ proved a superlinear rateof loal onvergene for algorithm sSQPa with proedure ID0.In the next subsetions, we give a omplete desription of the overall algo-rithm, extending the presentation of Wright [12℄ to the general ase of inequalityand equality onstraints.3.1 SQP algorithmStandard SQP methods for the NLP problem (1) typially solve a sequene ofQP subproblems of the following formmin�z r�(z)T�z + 12�zTrzzL(z; �)�zsubjet to gI(z) +rgI(z)T�z � 0; gE(z) +rgE(z)T�z = 0; (2)where (z; �) is the urrent iterate. The stabilized SQP method [12℄ onsidersinstead the following minimax subproblemmin�z max�+I �0;�+E r�(z)T�z + 12�zTrzzL(z; �)�z + (�+I )T [gI(z) +rgI(z)T�z℄+(�+E)T [gE(z) +rgE(z)T�z℄� �2 k�+ � �k2;



4where � � 0 is a given parameter, and the solution �+ = (�+I ; �+E) provides a newupdate for the Lagrange multipliers assoiated with the inequality and equalityonstraints. This minimax subproblem is in turn equivalent to the following QPsubproblem min(�z;�+) r�(z)T�z + 12�zTrzzL(z; �)�z + �2 k�+k2 (3)subjet to gE(z) +rgE(z)T�z � �(�+E � �E) = 0;gI(z) +rgI(z)T�z � �(�+I � �I ) � 0;with �+ = (�+I ; �+E); see [6℄, [12℄. One an easily see that the QP subproblem (3)is posed in both z and �+ and has thereforem variables more than the traditionalQP subproblem (2).The stabilizing parameter � introdued in the above subproblems is hosenas � = �(z; �)� with � 2 (0; 1), where �(z; �) is the size of the residual of the�rst-order neessary onditions given by�(z; �) = ������������24 rzL(z; �)min(�I ;�gI(z))gE(z) 35������������ ;with the min operator applied omponent-wise. In fat, �(z; �) represents a pra-tial way of measuring the distane to the primal-dual set S; see e.g., [12, The-orem 2℄.The quantity �(z; �) also provides an estimate for the set of ative on-straints B:A(z; �) = fi = 1; 2; : : : ;mI j gIi(z) � ��(z; �)�g; � 2 (0; 1); (4)see [12℄. It is lear that when (z; �) approahes a primal-dual solution, then thedistane Æ(z; �) dereases and the interval of feasibility measured by the lowerbound ��(z; �)� redues too, improving the quality of the estimation providedby A(z; �). In addition, the estimated set A(z; �) is partitioned into a subset A+of estimated strong ative onstraints and a subset A0 of estimated weak ativeonstraints. Depending on the derease on �(z; �) provided by the solution of theQP subproblem (3), an LP subproblem is solved in order to maximize the multi-pliers orresponding to the inequality onstraints in the subset A+, keeping theremaining multipliers orresponding to inequality onstraints at zero. The iden-ti�ation proedure and the interior multipliers estimation will be introdued insubsetions 3.2 and 3.3, respetively. Now, we restate the algorithm sSQPa [12℄.Algorithm sSQPaChoose parameters �; � 2 (0; 1), a tolerane tol > 0, and an initial startingpoint (z0; �0) with �0I � 0. Compute A(z0; �0) using (4), all proedure ID0 toompute the subsets A+ and A0, and solve the LP subproblem (6) to obtain �̂0.Set k  0 and �0  �̂0.While �(zk; �k) > tol do



5Solve (3) for (�z; �+), and set �k = �(zk; �k)� .If �(zk +�z; �+) � ��(zk; �k)�1+�=2set (zk+1; �k+1) (zk +�z; �+); set k  k + 1;else ompute A(zk; �k), and then apply ID0 to obtain A+ and A0;solve the LP subproblem (6) to obtain �̂k , and set �k  �̂k;end(if)end(while)For eah iterate (zk; �k) one solves the QP subproblem (3). If the omputedstep (�z; �+) yields a suÆient derease in �(z; �), then (�z; �+) is aepted,otherwise (�z; �+) is rejeted and the sSQPa algorithm swithes to its elseondition. In suh a ase, the set A(z; �) is updated and the proedure ID0 isalled to partition the set A(z; �) into the subsets A+ and A0. A new multipliersestimate �̂k is omputed by the solution of an LP subproblem.The next result shows that the rate of loal onvergene of algorithm sSQPais superlinear for degenerate problems [12, Theorem 7℄. It is also shown thatwhen (z0; �0) is lose to the optimal set S, the initial all of proedure ID0 isthe only one that is needed. The numerial experiments presented in this paperon�rm these statements.Theorem 1. Suppose that assumption 1 holds. Then there exists a onstant�Æ > 0 suh that for any (z0; �0) with Æ(z0; �0) � �Æ, the if ondition in algorithmsSQPa is always satis�ed and the sequene fÆ(zk; �k)g onverges superlinearlyto zero with q-order 1 + �.3.2 Constraint identi�ationThe set A(z; �) de�ned in (4) has been used to estimate the ative inequalityonstraints in a neighborhood of a solution, see [2℄, [12℄. In this estimation allinequality onstraints with funtion values greater than or equal to ��(z; �)�are onsidered in A(z; �). Under the standing assumptions it an be shown [12,Theorem 3℄ that in a suÆiently small neighborhood of the solution the setA(z; �) suessfully estimates the ative set B.Lemma 1. Let assumption 1 holds. Then, there exists Æ1 > 0 suh that for all(z; �) with Æ(z; �) � Æ1, it holds A(z; �) = B.As we have said before, it is also desirable to partition the set A(z; �) in twosets: one orresponding to onstraints that are andidate to be strong and theother ontaining the onstraints that are andidates to be weak. To ahieve thispurpose it is onvenient to solve the following LP subproblem [12℄ for a givensubset Â � A(z; �) ontaining the andidates for weak ative onstraints.max~�I ;~�E Xi2Â ~�i



6 subjet to r�(z) + Xi2A(z;�) ~�IirgIi(z) +Xi2E ~�EirgEi(z)1 � �(z; �; �);~�Ii�0 for all i 2 A(z; �); ~�Ii = 0 for all i 2 InA(z; �);where �(z; �; �) is given by�(z; �; �) =max0��(z; �)� ; r�(z) + Xi2A(z;�)�IirgIi(z) +Xi2E �EirgEi(z)11A : (5)The multipliers �̂E orresponding to the equality onstraints have no sign re-strition in this LP subproblem.In the following lines we restate the onstraint identi�ation proedure ID0proposed in [12℄ based on the solution of LP subproblems of this type. Theoutput of proedure ID0 is a partition of A(z; �) into two sets A+ and A0: A+ontains the andidates for strong ative onstraints and A0 the andidates forweak ative onstraints.Proedure ID0Given � , �̂ with 0 < �̂ < � < 1 and a point (z; �), ompute �(z; �; �) from (5),�(z; �; �; �̂ ) = max ��(z; �)�̂ ; �(z; �; �)�, and A(z; �) from (4). De�ne Âinit =A(z; �)nfi j �Ii � �(z; �; �; �̂)g and set Â  Âinit.RepeatIf Â = ;, stop with A0 = ; and A+ = A(z; �).Solve the LP (5) for ~� and set C = fi 2 Â j ~�Ii � �(z; �; �; �̂)g.If C = ;stop with A0 = Â and A+ = A(z; �)nÂ;else set Â  Â n C;end(if)end(repeat)One an see that proedure ID0 will not be exited unless the set C is empty.The idea is to start with a superset of A0 given by Â = Âinit and to removeiteratively from Â the onstraints, stored in C, that have been estimated to bestrong by the LP subproblem (5).It is shown in [12, Theorem 4℄ that the two subsets, A+ and A0, produedby proedure ID0 suessfully estimate B+ and B0 in the viinity of z�.Lemma 2. Let assumption 1 holds. Then, there exists Æ2 > 0 suh that when-ever Æ(z; �) � Æ2, proedure ID0 terminates with A+ = B+ and A0 = B0.



73.3 Interior multipliers estimateAfter the appliation of the onstraint identi�ation proedure ID0, the partitionof A(z; �) into the two subsets A+ and A0 is available. It is therefore possibleto try to make the multipliers orresponding to the estimated strong ativeonstraints in A+ as far from zero as possible. This is partiularly desirablewhen solving NLP problems arising as subproblems in global optimization. Suhinterior multipliers estimate an be obtained by solving an LP subproblem ofthe following form (see [12℄), adapted here to inlude the equality onstraints:maxt̂;�̂I ;�̂E t̂subjet to t̂ � �̂Ii for all i 2 A+;�� e � r�(z) + Xi2A+ �̂IirgIi(z) +Xi2E �̂EirgEi(z) � � e;�̂Ii � 0 for all i 2 A+; �̂Ii = 0 for all i 2 InA+; (6)where e is a vetor whose entries are all ones and the variables �̂E are unrestritedin sign.Under the standing assumptions, it is shown in [12, Theorem 5℄ that the LPsubproblem (6) is feasible and bounded in a suÆiently small neighborhood ofthe solution. Furthermore, the distane Æ(z; �̂) is bounded above by a multipleof Æ(z; �)� .Lemma 3. Let assumption 1 holds. Then, there exists Æ3 > 0 suh that forall (z; �) with Æ(z; �) � Æ3 the LP subproblem (6) is feasible, bounded, and itsoptimal objetive is greater than or equal to��� = max��2S� mini2B+ ��i :Furthermore, there exists � > 0 suh that Æ(z; �̂) � �Æ(z; �)� .If there exists linear dependeny of the gradients of the ative onstraints,then the vetor of optimal Lagrange multipliers is not unique, and one an thinkof omputing the multipliers with the largest possible size. This goal would bepartiularly relevant when we onsider NLP problems arising as subproblemsof an enumeration sheme applied to a global optimization problem. With thispurpose in mind we have studied a few strategies. The one that seems mostrelevant onsists of solving a seond LP subproblem one (6) has been solved.The idea is to maximize the size of the multipliers in A+ while keeping the lowerbound t̂ > 0 in the in�nity norm that has been ahieved by solving (6). So, aftersolving (6), one ould solve the following LP subproblem:max�̂I ;�̂E Xi2A+ �̂Ii



8 subjet to t̂ � �̂Ii for all i 2 A+;�� e � r�(z) + Xi2A+ �̂IirgIi(z) +Xi2E �̂EirgEi(z) � � e;�̂Ii � 0 for all i 2 A+; �̂Ii = 0 for all i 2 InA+:The numerial experiments have shown, however, that there is not too muhgain in solving this seond LP subproblem. In fat, the LP subproblem (6) hasprodued in most instanes multipliers whose size was quite lose to the largestone.4 Numerial experimentsWe have developed a Matlab implementation of the stabilized SQP method withonstraint identi�ation (algorithm sSQPa) and tested it for a variety of degen-erate problems. We used Matlab to solve the LPs and QPs that are needed bythe sSQPa method.We divide the numerial results into three major subsetions. In subse-tion 4.1 we are onerned with the speed of loal onvergene of the methodas well as with its global behavior without any globalization strategy. In sub-setion 3.2 we desribe the numerial performane of proedure ID0 within al-gorithm sSQPa. Subsetion 4.3 desribes the use of the sSQPa method to �ndfeasible points for feasible degenerate problems and least infeasible points forinfeasible degenerate problems.4.1 Problems with objetive funtionIn this subsetion, we onsider 12 degenerate NLP test problems. For everyproblem we tested three di�erent starting points with inreasing distane to z�,and for eah ase we plot log10 kz � z�k vs iteration number. The performaneof sSQPa for eah problem is also shown by plotting log10 �(z; �) vs iterationnumber for the farthest away starting point. When possible we ompare theperformane of sSQPa with other solvers for NLP.The numerial results are obtained without any globalization strategy. Thestopping riterion is �(z; �) � 10�8. We have omputed the initial Lagrangemultipliers �0 by solving the least-squares problemmin�Als ;�E r�(z0) +rg(z0)TAls�Als +rg(z0)TE�E2 s.t. �Als � 0; (7)where Als is given by fi 2 I j gIi(z0) � ��lsg with �ls > 0. In the implementationwe used �ls = 2:0. The algorithm sSQPa has been designed to set �0  �̂0. Ournumerial experiments have however shown that the solution of (7) is a betterhoie for �0.Other parameters have been set as follows: � = 0:95, � = 0:95, and �̂ =0:85. However we have used a di�erent value for � in the derease ondition



9�(zk + �z; �+) � ��(zk; �k)�1+�=2 that appears in the sSQPa algorithm. Wehave tried several possibilities and onlude that a robust hoie for � in thisondition is 0:05.Test problem 1: The �rst test problem is HS113 [5℄, where degenerayis due to lak of strit omplementarity. This problem has 10 variables and 8inequality onstraints. The performane of sSQPa for three di�erent startingpoints is given in �gure 1. The numerial results show onvergene from remotepoints and fast rate of loal onvergene. In �gure 7 one an see the dereasein �(z; �). Table 1 shows that sSQPa is quite ompetitive with other solvers onthis problem in number of iterations (starting from the standard point for thisproblem).Fig. 1. Convergene from three di�erent starting points for problems 1 and 2.
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Example 2: three different starting points

Table 1. Performane of di�erent solvers on example 1.Solver NPSOL SNOPT NITRO LOQO sSQPaIterations 14 32 15 16 9Objetive 24.306 24.306 24.306 24.306 24.306Test problem 2: The seond test problem is from [2℄ and it is a modi�edversion of HS46 [5℄. Degeneray in this problem is due to lak of strit omple-mentarity. The problem has 5 variables and 3 inequality onstraints. Figures 1and 7 show onvergene from remote points and fast rate of loal onvergene.In this problem the e�et of updating the multiplier using the interior multi-plier �̂ an be niely observed. In fat, we an see from table 2 that at the �rst,tenth, and twelfth iterations the derease in �(z; �) has been poor. In this asesSQPa selets the else ondition and updates �k by �k  �̂k, speeding up therate of loal onvergene.Test problem 3: The third test problem is also from [2℄ and it is rankde�ient. This problem is a modi�ed version of HS43 [5℄ and has 4 variablesand 4 inequality onstraints. We see that sSQPa has onverged from the three



10starting points and has exhibited a fast rate of loal onvergene (see �gures 2and 7).Fig. 2. Convergene from three di�erent starting points for problems 3 and 4.
0 2 4 6 8 10 12 14 16

−10

−8

−6

−4

−2

0

2

Number of iterations

lo
g 

(||
z 

− 
z *||)
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Example 4: three different starting points

Table 2. Performane of sSQPa on example 2. ond(Hk) is the ondition number ofthe Hessian of the QP, iid is the number of iterations needed by proedure ID0.k �(zk) �(zk; �k) iid k�kk kzk � z�k ond(Hk)0 3.33763e+00 7.87595e+00 0 2.14476e-01 1.70244e+00 �1 3.33763e+00 7.87595e+00 2 5.01797e+00 1.70244e+00 6.82398e+152 4.68754e-01 2.43281e+00 0 8.36948e-02 1.34192e+00 +1... ... ... ... ... ... ...9 2.74649e-07 1.03603e-03 0 9.99099e-04 3.81399e-02 3.11708e+0310 2.74649e-07 1.03603e-03 1 0 3.81399e-02 1.20856e+0511 2.81219e-10 2.02709e-05 0 1.04462e-05 2.18212e-04 +112 2.81219e-10 2.02709e-05 1 0 2.18212e-04 4.09199e+1013 2.05082e-23 5.54501e-12 0 6.09971e-18 2.93470e-08 +1Test problem 4: The fourth test problem is HS13 [5℄. It is rank de�ientand, furthermore, it does not satisfy the Karush-Kuhn-Tuker and Mangasarian-Fromovitz onstraint quali�ations. It has 2 variables, 1 inequality onstraint,and 2 bound onstraints.In �gure 2 one an see the onvergene behavior from the three starting pointsand observe that sSQPa approahes a point di�erent from z� in all of them.Convergene from the �rst starting point is ahieved in two iterations, whileonvergene for the other two starting points is very slow and the lowest valueof �(z; �) is 10�3 in 40 iterations. Other solvers, among them NPSOL, SNOPT,and NITRO, exhibit a similar behavior for this problem by not onverging tothe solution.Test problem 5: The �fth problem is a modi�ed version of HS100 [5℄ and itis rank de�ient. The problem has 7 variables and 5 inequality onstraints and



11Fig. 3. Convergene from three di�erent starting points for examples 5 and 6.
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Example 5: three different starting points
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Example 6: three different starting points

Fig. 4. Convergene from three di�erent starting points for examples 7 and 8.
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Example 7: three different starting points
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Example 8: three different starting points

has the following form:min �(z) = (z1 � 10)2 + 5(z2 � 12)2 + z43 + 3(z4 � 11)2+10z65 + 7z26 + z47 � 4z6z7 � 10z6 � 8z7s.t. g1(z) = 2z21 + 3z42 + z3 + 4z24 + 5z5 � 127 � 0;g2(z) = 7z1 + 3z2 + 10z23 + z4 � z5 � 282 � 0;g3(z) = 23z1 + z22 + 6z26 � 8z7 � 196 � 0;g4(z) = 4z21 + z22 � 3z1z2 + 2z23 + 5z6 � 11z7 � 0;g5(z) = z21 + 1:5z42 + 0:5z3 + 2z24 + 2:5z5 � 63:5 � 0:Figures 3 and 7 show that the global and loal performane of sSQPa is goodfor this problem.Test problem 6: This test problem is onsidered in [11℄ and it is rankde�ient. It has 2 variables and 2 inequality onstraints. There is nothing speialto report; the global and loal behavior of sSQPa for this problem are �ne (see�gures 3 and 7).Test problem 7:The seventh problem is a quadrati problem with quadrationstraints introdued in [7℄. The problem has 3 variables and 6 inequality on-straints. The degeneray is due to lak of strit omplementarity. The perfor-



12mane of sSQPa for this problem is shown in �gures 4 and 7 and was good bothglobally and loally.Table 3. Performane of di�erent solvers on example 8.Solver NPSOL SNOPT NITRO LOQO sSQPaIterations 2 4 17 23 16Objetive 1.0 1.0 1.000002 1.0 1.0Fig. 5. Convergene from three di�erent starting points for example 9.
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Example 9 "two cuts": three different starting points
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Example 9 "one cut": three different starting points

Test problem 8: This test problem is HS32 [5℄ in whih strit omplemen-tarity does not hold. It has 3 variables, 1 inequality onstraint, 1 equality on-straint, and 3 bound onstraints. Global onvergene and fast loal onvergenefor this example an be on�rmed from �gures 4 and 7. In addition, table 3 givesa omparison between sSQPa and other solvers on this problem for the standardstarting point assoiated with this problem.Test problem 9: In this example we have modi�ed problem HS40 by adding(one and two) uts to the set of onstraints. The uts have made the problemrank de�ient. In the ase of two uts, the problem has 4 variables, 2 inequalityonstraints, and 3 equality onstraints:min �(z) = �z1z2z3z4s.t. g1(z) = �z1z2z3z4 + 0:25 � 0;g2(z) = �0:5z1z2z3z4 + 0:124999 � 0;g3(z) = z31 + z22 � 1 = 0;g4(z) = z21z4 � z3 = 0;g5(z) = �z2 + z24 = 0:The one-ut ase is generated by omitting the seond onstraint. The numerialbehavior for this example is shown in �gures 5 and 8.Test problem 10: This problem is taken from [1℄ and it is rank de�ient. Ithas 3 variables and 4 inequality onstraints. We observe that sSQPa exhibits a



13Fig. 6. Convergene from three di�erent starting points for examples 10 and 11.
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Example 10: three different starting points
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Example 11: three different starting points

Table 4. Performane of di�erent solvers on example 10.Solver DONLP2 FilterSQP LANCELOT LINF LOQO MINOS SNOPT sSQPakzf � z�k 1.5e-16 5.3e-09 8.7e-07 1.1e-08 1.6e-07 4.8e-06 3.4e-07 1.1e-08Iters. 4 28 336 28 200 27 3 27linear rate of loal onvergene for this example (see �gure 8). In table 4 we haverestated the omparison made in [1℄, listing the distane kzf � z�k of the �nalpoint zf to the optimal solution z� and the number of iterations. It is shownin [1℄ that methods that are based on augmented Lagrangian funtions do notperform well on this problem. To some extent the stabilized SQP method hasthe avor of augmented Lagrangian methods sine the quadrati model of theLagrangian is augmented by another term involving the stabilization parameter,see the QP problem (3), and this might explain the not so good performane ofthe sSQPa algorithm on this problem.Test problem 11: This problem is a modi�ed version of problem HS43 andexample 3, where an equality is inluded to the set of onstraints. It is rankde�ient and has the following form:min �(z) = z21 + z22 + 2z23 + z24 � 5(z1 + z2)� 21z3 + 7z4s.t. g1(z) = z21 + z22 + z23 + z24 + z1 � z2 + z3 � z4 � 8 � 0;g2(z) = z21 + 2z22 + z23 + 2z24 � z1 � z4 � 10 � 0;g3(z) = 2z21 + z22 + z23 + 2z1 � z2 � z4 � 5 � 0;g4(z) = �z32 � 2z21 � z24 � z1 + 3z2 + z3 � 4z4 � 7 = 0:The numerial behavior of sSQPa for this problem an be seen from �gures 6and 8 and it is haraterized by fast loal onvergene for the three di�erentstarting points.Test problem 12: This test problem is a modi�ed version of problem 6.It has an unique minimizer at the origin. It is also rank de�ient and has the



14 Fig. 7. Performane of sSQPa on examples 1 to 8.
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Fig. 8. Performane of sSQPa on examples 9 to 12; onvergene from three di�erentstarting points for example 12.
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Example 12: three different starting points

following form: min �(z) = z1s.t. g1(z) = (z1 � 2)2 + z22 � 4 � 0;g2(z) = �(z1 � 4)2 � z22 + 16 � 0:The optimal set of the Lagrange multipliers isS� = f(�; �=2) j � � 0g;whih is learly unbounded, implying that the MFCQ does not hold at thesolution. The algorithm sSQPa exhibits a fast loal rate of onvergene on thisexample. Figure 8 shows the performane of sSQPa on this example.4.2 Performane of proedure ID0The aim of this subsetion is to give some insight on the numerial behaviorof proedure ID0 within algorithm sSQPa on the test problems introdued insubsetion 4.1. The goal is to see how lose to z� the proedure ID0 is able toorretly identify the ative onstraints and its partition into strong and weak



15ative onstraints. We report in table 5 the value of kz � z�k from whih theseidenti�ations is always orret.With the exeption of example 2, we used the results of the farthest awaystarting point. In fat, proedure ID0 does not detet the ative set orretly inexample 2 for the seond and third starting points. In addition, proedure ID0does not detet the ative set orretly for any of the three starting points ofexample 7. In general, we an say that proedure ID0 does a good job identifyingthe ative onstraints and its partition into strong and weak.Table 5. Detetion of the orret ative onstraints and its partition into strong andweak.Test Problem A(z; �) kz � z�k A+ A0 kz � z�k1 f1,2,3,4,5,7g 5.3e-01 A+ = A(z; �) A0 = ; 6.2e-052 f1,2,3g 1.4e-05 A+ = ; A0 = A(z; �) 2.4e-103 f1,3,4g 1.4e-01 A+ = f1; 3g 6= B+ A0 = f4g 6= B0 4 1.4e-014 f1,3g 8.7e-01 A+ = A(z; �) A0 = ; 6.3e-015 f1,4,5g 1.1e+00 A+ = A(z; �) A0 = ; 9.7e-046 f1,2g 3.6e-01 A+ = A(z; �) A0 = ; 4.3e-0578 f2,3g 6.3e-01 A+ = A(z; �) A0 = ; 6.3e-019 "two uts"5 f1g 1.2e-08 A+ = A(z; �) A0 = ; 1.2e-089 "one ut" f1g 7.6e-01 A+ = A(z; �) A0 = ; 7.6e-0110 f1,2,3,4g 4.3e-02 A+ = A(z; �) A0 = ; 2.1e-0211 f1,3g 2.1e-01 A+ = A(z; �) A0 = ; 2.1e-0112 f1,2g 6.4e-10 A+ = A(z; �) A0 = ; 6.4e-10 64.3 Problems without objetive funtionWe have tested the ability of the sSQPa method to �nd feasible points for feasibledegenerate problems and to �nd least infeasible points for infeasible degenerateproblems. For this purpose the objetive funtion and its derivatives were setto zero in the algorithm. No globalization sheme was used. We have tried four4 For the �rst and seond starting points it is obtained a orret partitioning of A(z; �)into A+ and A0, while for the third starting point g4 is inorretly in A0 from thetenth iteration until the end.5 The seond ut is perturbed a little so that its value at the solution is 10�7 (seeproblem 9). Proedure ID0 identi�es the two onstraints in A(z; �) from the initialstarting point until kz � z�k = 1:2e � 08, and then exludes g2 inorretly fromA(z; �).6 At the �rst iteration A+ = A(z; �) = f1; 2g, then in the following 4 iterations g2 isexluded from A(z; �) until the last iteration (the �fth iteration) at whih g2 returnsto A(z; �) with a value of �3:04e� 09.



16possibilities for the funtion �(z; �) used in the stopping riterion:�1(z; �I) = ���������min(�I ;�gI(z))gE(z) ��������� ; �2(z; �) = ������������24 rzL(z; �)min(�I ;�gI(z))gE(z) 35������������ ;�3(z; �) = ��������� gA(z;�)(z)gE(z) ��������� ; �4(z) = ���������max(gI(z); 0)gE(z) ��������� :Note that �2(z; �) is the one that is used in omputing stationary points andthat �4(z) represents a measure of the true feasibility.We ran the 12 feasible problems introdued in setion 4.1. In addition, wehave designed 2 more infeasible problems that will be desribed later on in thissetion. For eah of these problems we onsidered three di�erent starting points.The stopping riterion was also �(z; �) � 10�8. The initial multipliers have beenobtained by �0 = �max(0; gI(z0))gE(z0) � :The overall results are given in table 6, where we report the average number ofiterations and the number of wins out of 57 trials for eah of the four types of�(z; �) given above. We observe that �1(z; �) and �4(z) seem to be most eÆienthoies. With the exeption of the seond and third starting points of example 8,and of the three starting points of example 11, sSQPa with �4 has suessfullyonverged to feasible points.Table 6. Performane of sSQPa for �nding feasible or infeasible points.�1(z; �I) �2(z; �) �3(z; �) �4(z)Iteration average 10.18 10.63 12.95 9.23Number of wins 50 48 25 52In general, the feasible point omputed hanges with the starting point z0and the hoie of �(z; �). The sSQPa method also worked well for the two asesof problem 9 and problem 12, with the partiularity that the feasible pointomputed was found to be also stationary.Next, we introdue two infeasible test problems, where at the least infeasiblepoints the gradients of the nearby ative onstraints are linearly dependent.Test problem 13: This test problem is a modi�ation of both of problems 6and 12, and has the following form:g1(z) = (z1 � (2 + �))2 + z22 � 4 � 0;g2(z) = �(z1 � 4)2 � z22 + (4 + �)2 � 0:If � is set to zero, the problem beomes feasible and rank de�ient at the solution.The problem is infeasible for small positive values of �.



17Fig. 9. Convergene for example 13: � = 10�4.
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Example 13: convergence from the third starting point, ε = 10−4
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Performance of sSQPa on example 13, ε = 10−4
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Fig. 10. Convergene for example 13: � = 10�7.
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Example 13: convergence from the third starting point, ε = 10−7
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Performance of sSQPa on example 13, ε = 10−7
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In the omputations, we have tested this example for � = 10�4 and � = 10�7.Again, the sSQPa method has been applied to these two instanes with theobjetive funtion and its derivatives set to zero and without any globalizationsheme.The results are given in �gures 9 and 10 for the two instanes (� = 10�4 and� = 10�7) and for the four hoies of �(z; �), in terms of the distane to the least-squares minimizer z� of the onstraints obtained by Matlab and also in terms of�(z; �). Here we tested another funtion �(z; �) for the stopping riterion:�5(z; �) =  Xi2A(z;�)[E gi(z)rgi(z) :Test problem 14: Test problem 14 is also infeasible, de�ned by an hyper-plane and a irle: g1(z) = z1 + � � 0;g2(z) = (z1 � (1 + �))2 + z22 � 1 � 0:The results are given in �gures 11 and 12. The main onlusion that we andraw from these two test problems is that the stabilized SQP with onstraint



18 Fig. 11. Convergene for example 14: � = 10�4.
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Example 14: convergence from the third starting point, ε = 10−4
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Performance of sSQPa on example 14, ε = 10−4
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Fig. 12. Convergene for example 14: � = 10�7.
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Example 14: convergence from the third starting point, ε = 10−7
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Performance of sSQPa on example 14, ε = 10−7
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identi�ation (algorithm sSQPa) was quite e�etive to determine least infeasiblepoints with nearby rank de�ieny. Among the �ve measures of least infeasibility,�5(z; �) seems to be the most eÆient.Referenes1. M. Anitesu, Degenerate nonlinear programming with a quadrati growth ondi-tion, SIAM J. Optim., 10 (2000) 1116{1135.2. F. Fahinei, A. Fisher, and C. Kanzow, On the aurate identi�ation ofative onstraints, SIAM J. Optim., 9 (1998) 14{32.3. W. W. Hager, Stabilized sequential quadrati programming, Comput. Optim. andAppl., 12 (1999) 253{273.4. M. Heinkenshloss, M. Ulbrih, and S. Ulbrih, Superlinear and quadrationvergene of aÆne-saling interior-point Newton methods for problems with sim-ple bounds without strit omplementarity assumption, Math. Programming, 86(1999) 615{635.5. W. Hok and K. Shittkowski, Test examples for nonlinear programming odes,Leture Notes in Eonomis and Math. Systems, 187, Springer Verlag, Berlin, 1981.6. D.-H. Li and L. Qi, A stabilized SQP method via linear equations, Tehnialreport, Mathematis Department, University of New South Wales, 2000.
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