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2fun
tions. Let us write the two subsets of indi
es for the inequality and equality
onstraints, respe
tively, asI = fi = 1; : : : ;mIg; E = fi = mI + 1; : : : ;mg:Throughout this arti
le the subsets I and E refer to the elements in the subsetsof inequality and equality 
onstraints. The Lagrangian fun
tion asso
iated withthis problem is L(z; �) = �(z) + �TI gI(z) + �TEgE(z);where � = (�I ; �E) 2 IRm are the Lagrange multipliers asso
iated with theinequality and equality 
onstraints in (1). For simpli
ity we write the ve
tor ofthe multipliers as (�I ; �E), while the a

urate form would be (�TI ; �TE)T . Thedefault norm in this paper is the `2.2 Assumptions, notations, and basi
 resultsThe lo
al 
onvergen
e theory of the stabilized SQP method with 
onstraint iden-ti�
ation is based on the following assumptions [12℄:Assumption 1 Let � and g be twi
e Lips
hitz 
ontinuously di�erentiable in aneighborhood of a point z�. Let the Mangasarian-Fromovitz 
onstraint quali�
a-tion, the �rst-order ne
essary optimality 
onditions, and a form of se
ond-ordersuÆ
ient optimality 
onditions hold at z�.Note that there is no assumption made about the linear independen
e ofthe gradients of the a
tive 
onstraints. Sin
e the ve
tor of optimal Lagrangemultipliers is not unique if the gradients of the a
tive 
onstraints are linearlydependent, we need to 
onsider the set of optimal Lagrange multipliers, denotedby S�: S� = f� j rzL(z�; �) = 0; �TI gI(z�) = 0; �I � 0g:The optimal primal-dual set 
onsists of the pairs (z; �) inS = fz�g � S�:We also remark that there is no assumption about stri
t 
omplementarity be-tween z� and the elements in S�.We need now several de�nitions to des
ribe the stabilized SQP method with
onstraint identi�
ation. The set of a
tive inequality 
onstraints at z� is de�nedas B = fi = 1; : : : ;mI j gIi(z�) = 0g:For any optimal multipliers �� 2 S� we de�ne the setB+(��) = fi 2 B j ��Ii > 0g:



3The set of strong a
tive 
onstraints and the set of weak a
tive 
onstraints arede�ned as: B+ = [��2S� B+(��); B0 = BnB+:The distan
e of a pair (z; �) to the optimal primal-dual set S is denoted byÆ(z; �): Æ(z; �) = dist((z; �);S);where dist((z; �);S) = inf(z�;��)2S k(z�; ��)� (z; �)k:3 Stabilized SQP with 
onstraint identi�
ationSQP methods have shown to be quite su

essful in solving NLP problems. Fordegenerate NLP problems, where at the solution the linear independen
e of thegradients of the a
tive 
onstraints and/or the stri
t 
omplementarity 
onditionmay not hold, Wright [12℄ has designed a stabilized SQP method, algorithmsSQPa, to handle su
h type of problems. For that purpose, a 
onstraint iden-ti�
ation pro
edure, pro
edure ID0, has been developed to identify the a
tiveinequality 
onstraints and, furthermore, to 
lassify them as strong or weak a
-tive 
onstraints. The method also 
onsiders the solution of an LP subproblemto provide an interior multipliers estimate and a stabilization of the traditionalQP subproblem. Both the 
onstraint identi�
ation pro
edure and the interiormultipliers estimate are 
alled when no suÆ
ient redu
tion is obtained by thesolution of the stabilized QP subproblem. Wright [12℄ proved a superlinear rateof lo
al 
onvergen
e for algorithm sSQPa with pro
edure ID0.In the next subse
tions, we give a 
omplete des
ription of the overall algo-rithm, extending the presentation of Wright [12℄ to the general 
ase of inequalityand equality 
onstraints.3.1 SQP algorithmStandard SQP methods for the NLP problem (1) typi
ally solve a sequen
e ofQP subproblems of the following formmin�z r�(z)T�z + 12�zTrzzL(z; �)�zsubje
t to gI(z) +rgI(z)T�z � 0; gE(z) +rgE(z)T�z = 0; (2)where (z; �) is the 
urrent iterate. The stabilized SQP method [12℄ 
onsidersinstead the following minimax subproblemmin�z max�+I �0;�+E r�(z)T�z + 12�zTrzzL(z; �)�z + (�+I )T [gI(z) +rgI(z)T�z℄+(�+E)T [gE(z) +rgE(z)T�z℄� �2 k�+ � �k2;



4where � � 0 is a given parameter, and the solution �+ = (�+I ; �+E) provides a newupdate for the Lagrange multipliers asso
iated with the inequality and equality
onstraints. This minimax subproblem is in turn equivalent to the following QPsubproblem min(�z;�+) r�(z)T�z + 12�zTrzzL(z; �)�z + �2 k�+k2 (3)subje
t to gE(z) +rgE(z)T�z � �(�+E � �E) = 0;gI(z) +rgI(z)T�z � �(�+I � �I ) � 0;with �+ = (�+I ; �+E); see [6℄, [12℄. One 
an easily see that the QP subproblem (3)is posed in both z and �+ and has thereforem variables more than the traditionalQP subproblem (2).The stabilizing parameter � introdu
ed in the above subproblems is 
hosenas � = �(z; �)� with � 2 (0; 1), where �(z; �) is the size of the residual of the�rst-order ne
essary 
onditions given by�(z; �) = ������������24 rzL(z; �)min(�I ;�gI(z))gE(z) 35������������ ;with the min operator applied 
omponent-wise. In fa
t, �(z; �) represents a pra
-ti
al way of measuring the distan
e to the primal-dual set S; see e.g., [12, The-orem 2℄.The quantity �(z; �) also provides an estimate for the set of a
tive 
on-straints B:A(z; �) = fi = 1; 2; : : : ;mI j gIi(z) � ��(z; �)�g; � 2 (0; 1); (4)see [12℄. It is 
lear that when (z; �) approa
hes a primal-dual solution, then thedistan
e Æ(z; �) de
reases and the interval of feasibility measured by the lowerbound ��(z; �)� redu
es too, improving the quality of the estimation providedby A(z; �). In addition, the estimated set A(z; �) is partitioned into a subset A+of estimated strong a
tive 
onstraints and a subset A0 of estimated weak a
tive
onstraints. Depending on the de
rease on �(z; �) provided by the solution of theQP subproblem (3), an LP subproblem is solved in order to maximize the multi-pliers 
orresponding to the inequality 
onstraints in the subset A+, keeping theremaining multipliers 
orresponding to inequality 
onstraints at zero. The iden-ti�
ation pro
edure and the interior multipliers estimation will be introdu
ed insubse
tions 3.2 and 3.3, respe
tively. Now, we restate the algorithm sSQPa [12℄.Algorithm sSQPaChoose parameters �; � 2 (0; 1), a toleran
e tol > 0, and an initial startingpoint (z0; �0) with �0I � 0. Compute A(z0; �0) using (4), 
all pro
edure ID0 to
ompute the subsets A+ and A0, and solve the LP subproblem (6) to obtain �̂0.Set k  0 and �0  �̂0.While �(zk; �k) > tol do



5Solve (3) for (�z; �+), and set �k = �(zk; �k)� .If �(zk +�z; �+) � ��(zk; �k)�1+�=2set (zk+1; �k+1) (zk +�z; �+); set k  k + 1;else 
ompute A(zk; �k), and then apply ID0 to obtain A+ and A0;solve the LP subproblem (6) to obtain �̂k , and set �k  �̂k;end(if)end(while)For ea
h iterate (zk; �k) one solves the QP subproblem (3). If the 
omputedstep (�z; �+) yields a suÆ
ient de
rease in �(z; �), then (�z; �+) is a

epted,otherwise (�z; �+) is reje
ted and the sSQPa algorithm swit
hes to its else
ondition. In su
h a 
ase, the set A(z; �) is updated and the pro
edure ID0 is
alled to partition the set A(z; �) into the subsets A+ and A0. A new multipliersestimate �̂k is 
omputed by the solution of an LP subproblem.The next result shows that the rate of lo
al 
onvergen
e of algorithm sSQPais superlinear for degenerate problems [12, Theorem 7℄. It is also shown thatwhen (z0; �0) is 
lose to the optimal set S, the initial 
all of pro
edure ID0 isthe only one that is needed. The numeri
al experiments presented in this paper
on�rm these statements.Theorem 1. Suppose that assumption 1 holds. Then there exists a 
onstant�Æ > 0 su
h that for any (z0; �0) with Æ(z0; �0) � �Æ, the if 
ondition in algorithmsSQPa is always satis�ed and the sequen
e fÆ(zk; �k)g 
onverges superlinearlyto zero with q-order 1 + �.3.2 Constraint identi�
ationThe set A(z; �) de�ned in (4) has been used to estimate the a
tive inequality
onstraints in a neighborhood of a solution, see [2℄, [12℄. In this estimation allinequality 
onstraints with fun
tion values greater than or equal to ��(z; �)�are 
onsidered in A(z; �). Under the standing assumptions it 
an be shown [12,Theorem 3℄ that in a suÆ
iently small neighborhood of the solution the setA(z; �) su

essfully estimates the a
tive set B.Lemma 1. Let assumption 1 holds. Then, there exists Æ1 > 0 su
h that for all(z; �) with Æ(z; �) � Æ1, it holds A(z; �) = B.As we have said before, it is also desirable to partition the set A(z; �) in twosets: one 
orresponding to 
onstraints that are 
andidate to be strong and theother 
ontaining the 
onstraints that are 
andidates to be weak. To a
hieve thispurpose it is 
onvenient to solve the following LP subproblem [12℄ for a givensubset Â � A(z; �) 
ontaining the 
andidates for weak a
tive 
onstraints.max~�I ;~�E Xi2Â ~�i



6 subje
t to 





r�(z) + Xi2A(z;�) ~�IirgIi(z) +Xi2E ~�EirgEi(z)





1 � �(z; �; �);~�Ii�0 for all i 2 A(z; �); ~�Ii = 0 for all i 2 InA(z; �);where �(z; �; �) is given by�(z; �; �) =max0��(z; �)� ; 





r�(z) + Xi2A(z;�)�IirgIi(z) +Xi2E �EirgEi(z)





11A : (5)The multipliers �̂E 
orresponding to the equality 
onstraints have no sign re-stri
tion in this LP subproblem.In the following lines we restate the 
onstraint identi�
ation pro
edure ID0proposed in [12℄ based on the solution of LP subproblems of this type. Theoutput of pro
edure ID0 is a partition of A(z; �) into two sets A+ and A0: A+
ontains the 
andidates for strong a
tive 
onstraints and A0 the 
andidates forweak a
tive 
onstraints.Pro
edure ID0Given � , �̂ with 0 < �̂ < � < 1 and a point (z; �), 
ompute �(z; �; �) from (5),�(z; �; �; �̂ ) = max ��(z; �)�̂ ; �(z; �; �)�, and A(z; �) from (4). De�ne Âinit =A(z; �)nfi j �Ii � �(z; �; �; �̂)g and set Â  Âinit.RepeatIf Â = ;, stop with A0 = ; and A+ = A(z; �).Solve the LP (5) for ~� and set C = fi 2 Â j ~�Ii � �(z; �; �; �̂)g.If C = ;stop with A0 = Â and A+ = A(z; �)nÂ;else set Â  Â n C;end(if)end(repeat)One 
an see that pro
edure ID0 will not be exited unless the set C is empty.The idea is to start with a superset of A0 given by Â = Âinit and to removeiteratively from Â the 
onstraints, stored in C, that have been estimated to bestrong by the LP subproblem (5).It is shown in [12, Theorem 4℄ that the two subsets, A+ and A0, produ
edby pro
edure ID0 su

essfully estimate B+ and B0 in the vi
inity of z�.Lemma 2. Let assumption 1 holds. Then, there exists Æ2 > 0 su
h that when-ever Æ(z; �) � Æ2, pro
edure ID0 terminates with A+ = B+ and A0 = B0.



73.3 Interior multipliers estimateAfter the appli
ation of the 
onstraint identi�
ation pro
edure ID0, the partitionof A(z; �) into the two subsets A+ and A0 is available. It is therefore possibleto try to make the multipliers 
orresponding to the estimated strong a
tive
onstraints in A+ as far from zero as possible. This is parti
ularly desirablewhen solving NLP problems arising as subproblems in global optimization. Su
hinterior multipliers estimate 
an be obtained by solving an LP subproblem ofthe following form (see [12℄), adapted here to in
lude the equality 
onstraints:maxt̂;�̂I ;�̂E t̂subje
t to t̂ � �̂Ii for all i 2 A+;�� e � r�(z) + Xi2A+ �̂IirgIi(z) +Xi2E �̂EirgEi(z) � � e;�̂Ii � 0 for all i 2 A+; �̂Ii = 0 for all i 2 InA+; (6)where e is a ve
tor whose entries are all ones and the variables �̂E are unrestri
tedin sign.Under the standing assumptions, it is shown in [12, Theorem 5℄ that the LPsubproblem (6) is feasible and bounded in a suÆ
iently small neighborhood ofthe solution. Furthermore, the distan
e Æ(z; �̂) is bounded above by a multipleof Æ(z; �)� .Lemma 3. Let assumption 1 holds. Then, there exists Æ3 > 0 su
h that forall (z; �) with Æ(z; �) � Æ3 the LP subproblem (6) is feasible, bounded, and itsoptimal obje
tive is greater than or equal to��� = max��2S� mini2B+ ��i :Furthermore, there exists � > 0 su
h that Æ(z; �̂) � �Æ(z; �)� .If there exists linear dependen
y of the gradients of the a
tive 
onstraints,then the ve
tor of optimal Lagrange multipliers is not unique, and one 
an thinkof 
omputing the multipliers with the largest possible size. This goal would beparti
ularly relevant when we 
onsider NLP problems arising as subproblemsof an enumeration s
heme applied to a global optimization problem. With thispurpose in mind we have studied a few strategies. The one that seems mostrelevant 
onsists of solving a se
ond LP subproblem on
e (6) has been solved.The idea is to maximize the size of the multipliers in A+ while keeping the lowerbound t̂ > 0 in the in�nity norm that has been a
hieved by solving (6). So, aftersolving (6), one 
ould solve the following LP subproblem:max�̂I ;�̂E Xi2A+ �̂Ii



8 subje
t to t̂ � �̂Ii for all i 2 A+;�� e � r�(z) + Xi2A+ �̂IirgIi(z) +Xi2E �̂EirgEi(z) � � e;�̂Ii � 0 for all i 2 A+; �̂Ii = 0 for all i 2 InA+:The numeri
al experiments have shown, however, that there is not too mu
hgain in solving this se
ond LP subproblem. In fa
t, the LP subproblem (6) hasprodu
ed in most instan
es multipliers whose size was quite 
lose to the largestone.4 Numeri
al experimentsWe have developed a Matlab implementation of the stabilized SQP method with
onstraint identi�
ation (algorithm sSQPa) and tested it for a variety of degen-erate problems. We used Matlab to solve the LPs and QPs that are needed bythe sSQPa method.We divide the numeri
al results into three major subse
tions. In subse
-tion 4.1 we are 
on
erned with the speed of lo
al 
onvergen
e of the methodas well as with its global behavior without any globalization strategy. In sub-se
tion 3.2 we des
ribe the numeri
al performan
e of pro
edure ID0 within al-gorithm sSQPa. Subse
tion 4.3 des
ribes the use of the sSQPa method to �ndfeasible points for feasible degenerate problems and least infeasible points forinfeasible degenerate problems.4.1 Problems with obje
tive fun
tionIn this subse
tion, we 
onsider 12 degenerate NLP test problems. For everyproblem we tested three di�erent starting points with in
reasing distan
e to z�,and for ea
h 
ase we plot log10 kz � z�k vs iteration number. The performan
eof sSQPa for ea
h problem is also shown by plotting log10 �(z; �) vs iterationnumber for the farthest away starting point. When possible we 
ompare theperforman
e of sSQPa with other solvers for NLP.The numeri
al results are obtained without any globalization strategy. Thestopping 
riterion is �(z; �) � 10�8. We have 
omputed the initial Lagrangemultipliers �0 by solving the least-squares problemmin�Als ;�E 

r�(z0) +rg(z0)TAls�Als +rg(z0)TE�E

2 s.t. �Als � 0; (7)where Als is given by fi 2 I j gIi(z0) � ��lsg with �ls > 0. In the implementationwe used �ls = 2:0. The algorithm sSQPa has been designed to set �0  �̂0. Ournumeri
al experiments have however shown that the solution of (7) is a better
hoi
e for �0.Other parameters have been set as follows: � = 0:95, � = 0:95, and �̂ =0:85. However we have used a di�erent value for � in the de
rease 
ondition



9�(zk + �z; �+) � ��(zk; �k)�1+�=2 that appears in the sSQPa algorithm. Wehave tried several possibilities and 
on
lude that a robust 
hoi
e for � in this
ondition is 0:05.Test problem 1: The �rst test problem is HS113 [5℄, where degenera
yis due to la
k of stri
t 
omplementarity. This problem has 10 variables and 8inequality 
onstraints. The performan
e of sSQPa for three di�erent startingpoints is given in �gure 1. The numeri
al results show 
onvergen
e from remotepoints and fast rate of lo
al 
onvergen
e. In �gure 7 one 
an see the de
reasein �(z; �). Table 1 shows that sSQPa is quite 
ompetitive with other solvers onthis problem in number of iterations (starting from the standard point for thisproblem).Fig. 1. Convergen
e from three di�erent starting points for problems 1 and 2.
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Example 2: three different starting points

Table 1. Performan
e of di�erent solvers on example 1.Solver NPSOL SNOPT NITRO LOQO sSQPaIterations 14 32 15 16 9Obje
tive 24.306 24.306 24.306 24.306 24.306Test problem 2: The se
ond test problem is from [2℄ and it is a modi�edversion of HS46 [5℄. Degenera
y in this problem is due to la
k of stri
t 
omple-mentarity. The problem has 5 variables and 3 inequality 
onstraints. Figures 1and 7 show 
onvergen
e from remote points and fast rate of lo
al 
onvergen
e.In this problem the e�e
t of updating the multiplier using the interior multi-plier �̂ 
an be ni
ely observed. In fa
t, we 
an see from table 2 that at the �rst,tenth, and twelfth iterations the de
rease in �(z; �) has been poor. In this 
asesSQPa sele
ts the else 
ondition and updates �k by �k  �̂k, speeding up therate of lo
al 
onvergen
e.Test problem 3: The third test problem is also from [2℄ and it is rankde�
ient. This problem is a modi�ed version of HS43 [5℄ and has 4 variablesand 4 inequality 
onstraints. We see that sSQPa has 
onverged from the three



10starting points and has exhibited a fast rate of lo
al 
onvergen
e (see �gures 2and 7).Fig. 2. Convergen
e from three di�erent starting points for problems 3 and 4.
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Table 2. Performan
e of sSQPa on example 2. 
ond(Hk) is the 
ondition number ofthe Hessian of the QP, iid is the number of iterations needed by pro
edure ID0.k �(zk) �(zk; �k) iid k�kk kzk � z�k 
ond(Hk)0 3.33763e+00 7.87595e+00 0 2.14476e-01 1.70244e+00 �1 3.33763e+00 7.87595e+00 2 5.01797e+00 1.70244e+00 6.82398e+152 4.68754e-01 2.43281e+00 0 8.36948e-02 1.34192e+00 +1... ... ... ... ... ... ...9 2.74649e-07 1.03603e-03 0 9.99099e-04 3.81399e-02 3.11708e+0310 2.74649e-07 1.03603e-03 1 0 3.81399e-02 1.20856e+0511 2.81219e-10 2.02709e-05 0 1.04462e-05 2.18212e-04 +112 2.81219e-10 2.02709e-05 1 0 2.18212e-04 4.09199e+1013 2.05082e-23 5.54501e-12 0 6.09971e-18 2.93470e-08 +1Test problem 4: The fourth test problem is HS13 [5℄. It is rank de�
ientand, furthermore, it does not satisfy the Karush-Kuhn-Tu
ker and Mangasarian-Fromovitz 
onstraint quali�
ations. It has 2 variables, 1 inequality 
onstraint,and 2 bound 
onstraints.In �gure 2 one 
an see the 
onvergen
e behavior from the three starting pointsand observe that sSQPa approa
hes a point di�erent from z� in all of them.Convergen
e from the �rst starting point is a
hieved in two iterations, while
onvergen
e for the other two starting points is very slow and the lowest valueof �(z; �) is 10�3 in 40 iterations. Other solvers, among them NPSOL, SNOPT,and NITRO, exhibit a similar behavior for this problem by not 
onverging tothe solution.Test problem 5: The �fth problem is a modi�ed version of HS100 [5℄ and itis rank de�
ient. The problem has 7 variables and 5 inequality 
onstraints and



11Fig. 3. Convergen
e from three di�erent starting points for examples 5 and 6.
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Fig. 4. Convergen
e from three di�erent starting points for examples 7 and 8.
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Example 7: three different starting points
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Example 8: three different starting points

has the following form:min �(z) = (z1 � 10)2 + 5(z2 � 12)2 + z43 + 3(z4 � 11)2+10z65 + 7z26 + z47 � 4z6z7 � 10z6 � 8z7s.t. g1(z) = 2z21 + 3z42 + z3 + 4z24 + 5z5 � 127 � 0;g2(z) = 7z1 + 3z2 + 10z23 + z4 � z5 � 282 � 0;g3(z) = 23z1 + z22 + 6z26 � 8z7 � 196 � 0;g4(z) = 4z21 + z22 � 3z1z2 + 2z23 + 5z6 � 11z7 � 0;g5(z) = z21 + 1:5z42 + 0:5z3 + 2z24 + 2:5z5 � 63:5 � 0:Figures 3 and 7 show that the global and lo
al performan
e of sSQPa is goodfor this problem.Test problem 6: This test problem is 
onsidered in [11℄ and it is rankde�
ient. It has 2 variables and 2 inequality 
onstraints. There is nothing spe
ialto report; the global and lo
al behavior of sSQPa for this problem are �ne (see�gures 3 and 7).Test problem 7:The seventh problem is a quadrati
 problem with quadrati

onstraints introdu
ed in [7℄. The problem has 3 variables and 6 inequality 
on-straints. The degenera
y is due to la
k of stri
t 
omplementarity. The perfor-



12man
e of sSQPa for this problem is shown in �gures 4 and 7 and was good bothglobally and lo
ally.Table 3. Performan
e of di�erent solvers on example 8.Solver NPSOL SNOPT NITRO LOQO sSQPaIterations 2 4 17 23 16Obje
tive 1.0 1.0 1.000002 1.0 1.0Fig. 5. Convergen
e from three di�erent starting points for example 9.
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Example 9 "two cuts": three different starting points
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Example 9 "one cut": three different starting points

Test problem 8: This test problem is HS32 [5℄ in whi
h stri
t 
omplemen-tarity does not hold. It has 3 variables, 1 inequality 
onstraint, 1 equality 
on-straint, and 3 bound 
onstraints. Global 
onvergen
e and fast lo
al 
onvergen
efor this example 
an be 
on�rmed from �gures 4 and 7. In addition, table 3 givesa 
omparison between sSQPa and other solvers on this problem for the standardstarting point asso
iated with this problem.Test problem 9: In this example we have modi�ed problem HS40 by adding(one and two) 
uts to the set of 
onstraints. The 
uts have made the problemrank de�
ient. In the 
ase of two 
uts, the problem has 4 variables, 2 inequality
onstraints, and 3 equality 
onstraints:min �(z) = �z1z2z3z4s.t. g1(z) = �z1z2z3z4 + 0:25 � 0;g2(z) = �0:5z1z2z3z4 + 0:124999 � 0;g3(z) = z31 + z22 � 1 = 0;g4(z) = z21z4 � z3 = 0;g5(z) = �z2 + z24 = 0:The one-
ut 
ase is generated by omitting the se
ond 
onstraint. The numeri
albehavior for this example is shown in �gures 5 and 8.Test problem 10: This problem is taken from [1℄ and it is rank de�
ient. Ithas 3 variables and 4 inequality 
onstraints. We observe that sSQPa exhibits a



13Fig. 6. Convergen
e from three di�erent starting points for examples 10 and 11.
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Example 10: three different starting points
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Example 11: three different starting points

Table 4. Performan
e of di�erent solvers on example 10.Solver DONLP2 FilterSQP LANCELOT LINF LOQO MINOS SNOPT sSQPakzf � z�k 1.5e-16 5.3e-09 8.7e-07 1.1e-08 1.6e-07 4.8e-06 3.4e-07 1.1e-08Iters. 4 28 336 28 200 27 3 27linear rate of lo
al 
onvergen
e for this example (see �gure 8). In table 4 we haverestated the 
omparison made in [1℄, listing the distan
e kzf � z�k of the �nalpoint zf to the optimal solution z� and the number of iterations. It is shownin [1℄ that methods that are based on augmented Lagrangian fun
tions do notperform well on this problem. To some extent the stabilized SQP method hasthe 
avor of augmented Lagrangian methods sin
e the quadrati
 model of theLagrangian is augmented by another term involving the stabilization parameter,see the QP problem (3), and this might explain the not so good performan
e ofthe sSQPa algorithm on this problem.Test problem 11: This problem is a modi�ed version of problem HS43 andexample 3, where an equality is in
luded to the set of 
onstraints. It is rankde�
ient and has the following form:min �(z) = z21 + z22 + 2z23 + z24 � 5(z1 + z2)� 21z3 + 7z4s.t. g1(z) = z21 + z22 + z23 + z24 + z1 � z2 + z3 � z4 � 8 � 0;g2(z) = z21 + 2z22 + z23 + 2z24 � z1 � z4 � 10 � 0;g3(z) = 2z21 + z22 + z23 + 2z1 � z2 � z4 � 5 � 0;g4(z) = �z32 � 2z21 � z24 � z1 + 3z2 + z3 � 4z4 � 7 = 0:The numeri
al behavior of sSQPa for this problem 
an be seen from �gures 6and 8 and it is 
hara
terized by fast lo
al 
onvergen
e for the three di�erentstarting points.Test problem 12: This test problem is a modi�ed version of problem 6.It has an unique minimizer at the origin. It is also rank de�
ient and has the



14 Fig. 7. Performan
e of sSQPa on examples 1 to 8.
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Fig. 8. Performan
e of sSQPa on examples 9 to 12; 
onvergen
e from three di�erentstarting points for example 12.
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Example 12: three different starting points

following form: min �(z) = z1s.t. g1(z) = (z1 � 2)2 + z22 � 4 � 0;g2(z) = �(z1 � 4)2 � z22 + 16 � 0:The optimal set of the Lagrange multipliers isS� = f(�; �=2) j � � 0g;whi
h is 
learly unbounded, implying that the MFCQ does not hold at thesolution. The algorithm sSQPa exhibits a fast lo
al rate of 
onvergen
e on thisexample. Figure 8 shows the performan
e of sSQPa on this example.4.2 Performan
e of pro
edure ID0The aim of this subse
tion is to give some insight on the numeri
al behaviorof pro
edure ID0 within algorithm sSQPa on the test problems introdu
ed insubse
tion 4.1. The goal is to see how 
lose to z� the pro
edure ID0 is able to
orre
tly identify the a
tive 
onstraints and its partition into strong and weak



15a
tive 
onstraints. We report in table 5 the value of kz � z�k from whi
h theseidenti�
ations is always 
orre
t.With the ex
eption of example 2, we used the results of the farthest awaystarting point. In fa
t, pro
edure ID0 does not dete
t the a
tive set 
orre
tly inexample 2 for the se
ond and third starting points. In addition, pro
edure ID0does not dete
t the a
tive set 
orre
tly for any of the three starting points ofexample 7. In general, we 
an say that pro
edure ID0 does a good job identifyingthe a
tive 
onstraints and its partition into strong and weak.Table 5. Dete
tion of the 
orre
t a
tive 
onstraints and its partition into strong andweak.Test Problem A(z; �) kz � z�k A+ A0 kz � z�k1 f1,2,3,4,5,7g 5.3e-01 A+ = A(z; �) A0 = ; 6.2e-052 f1,2,3g 1.4e-05 A+ = ; A0 = A(z; �) 2.4e-103 f1,3,4g 1.4e-01 A+ = f1; 3g 6= B+ A0 = f4g 6= B0 4 1.4e-014 f1,3g 8.7e-01 A+ = A(z; �) A0 = ; 6.3e-015 f1,4,5g 1.1e+00 A+ = A(z; �) A0 = ; 9.7e-046 f1,2g 3.6e-01 A+ = A(z; �) A0 = ; 4.3e-0578 f2,3g 6.3e-01 A+ = A(z; �) A0 = ; 6.3e-019 "two 
uts"5 f1g 1.2e-08 A+ = A(z; �) A0 = ; 1.2e-089 "one 
ut" f1g 7.6e-01 A+ = A(z; �) A0 = ; 7.6e-0110 f1,2,3,4g 4.3e-02 A+ = A(z; �) A0 = ; 2.1e-0211 f1,3g 2.1e-01 A+ = A(z; �) A0 = ; 2.1e-0112 f1,2g 6.4e-10 A+ = A(z; �) A0 = ; 6.4e-10 64.3 Problems without obje
tive fun
tionWe have tested the ability of the sSQPa method to �nd feasible points for feasibledegenerate problems and to �nd least infeasible points for infeasible degenerateproblems. For this purpose the obje
tive fun
tion and its derivatives were setto zero in the algorithm. No globalization s
heme was used. We have tried four4 For the �rst and se
ond starting points it is obtained a 
orre
t partitioning of A(z; �)into A+ and A0, while for the third starting point g4 is in
orre
tly in A0 from thetenth iteration until the end.5 The se
ond 
ut is perturbed a little so that its value at the solution is 10�7 (seeproblem 9). Pro
edure ID0 identi�es the two 
onstraints in A(z; �) from the initialstarting point until kz � z�k = 1:2e � 08, and then ex
ludes g2 in
orre
tly fromA(z; �).6 At the �rst iteration A+ = A(z; �) = f1; 2g, then in the following 4 iterations g2 isex
luded from A(z; �) until the last iteration (the �fth iteration) at whi
h g2 returnsto A(z; �) with a value of �3:04e� 09.



16possibilities for the fun
tion �(z; �) used in the stopping 
riterion:�1(z; �I) = ���������min(�I ;�gI(z))gE(z) ��������� ; �2(z; �) = ������������24 rzL(z; �)min(�I ;�gI(z))gE(z) 35������������ ;�3(z; �) = ��������� gA(z;�)(z)gE(z) ��������� ; �4(z) = ���������max(gI(z); 0)gE(z) ��������� :Note that �2(z; �) is the one that is used in 
omputing stationary points andthat �4(z) represents a measure of the true feasibility.We ran the 12 feasible problems introdu
ed in se
tion 4.1. In addition, wehave designed 2 more infeasible problems that will be des
ribed later on in thisse
tion. For ea
h of these problems we 
onsidered three di�erent starting points.The stopping 
riterion was also �(z; �) � 10�8. The initial multipliers have beenobtained by �0 = �max(0; gI(z0))gE(z0) � :The overall results are given in table 6, where we report the average number ofiterations and the number of wins out of 57 trials for ea
h of the four types of�(z; �) given above. We observe that �1(z; �) and �4(z) seem to be most eÆ
ient
hoi
es. With the ex
eption of the se
ond and third starting points of example 8,and of the three starting points of example 11, sSQPa with �4 has su

essfully
onverged to feasible points.Table 6. Performan
e of sSQPa for �nding feasible or infeasible points.�1(z; �I) �2(z; �) �3(z; �) �4(z)Iteration average 10.18 10.63 12.95 9.23Number of wins 50 48 25 52In general, the feasible point 
omputed 
hanges with the starting point z0and the 
hoi
e of �(z; �). The sSQPa method also worked well for the two 
asesof problem 9 and problem 12, with the parti
ularity that the feasible point
omputed was found to be also stationary.Next, we introdu
e two infeasible test problems, where at the least infeasiblepoints the gradients of the nearby a
tive 
onstraints are linearly dependent.Test problem 13: This test problem is a modi�
ation of both of problems 6and 12, and has the following form:g1(z) = (z1 � (2 + �))2 + z22 � 4 � 0;g2(z) = �(z1 � 4)2 � z22 + (4 + �)2 � 0:If � is set to zero, the problem be
omes feasible and rank de�
ient at the solution.The problem is infeasible for small positive values of �.



17Fig. 9. Convergen
e for example 13: � = 10�4.
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Example 13: convergence from the third starting point, ε = 10−4
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Performance of sSQPa on example 13, ε = 10−4
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Fig. 10. Convergen
e for example 13: � = 10�7.
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Example 13: convergence from the third starting point, ε = 10−7
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Performance of sSQPa on example 13, ε = 10−7
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In the 
omputations, we have tested this example for � = 10�4 and � = 10�7.Again, the sSQPa method has been applied to these two instan
es with theobje
tive fun
tion and its derivatives set to zero and without any globalizations
heme.The results are given in �gures 9 and 10 for the two instan
es (� = 10�4 and� = 10�7) and for the four 
hoi
es of �(z; �), in terms of the distan
e to the least-squares minimizer z� of the 
onstraints obtained by Matlab and also in terms of�(z; �). Here we tested another fun
tion �(z; �) for the stopping 
riterion:�5(z; �) = 





 Xi2A(z;�)[E gi(z)rgi(z)





 :Test problem 14: Test problem 14 is also infeasible, de�ned by an hyper-plane and a 
ir
le: g1(z) = z1 + � � 0;g2(z) = (z1 � (1 + �))2 + z22 � 1 � 0:The results are given in �gures 11 and 12. The main 
on
lusion that we 
andraw from these two test problems is that the stabilized SQP with 
onstraint



18 Fig. 11. Convergen
e for example 14: � = 10�4.
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Example 14: convergence from the third starting point, ε = 10−4
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Performance of sSQPa on example 14, ε = 10−4
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Fig. 12. Convergen
e for example 14: � = 10�7.
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Example 14: convergence from the third starting point, ε = 10−7
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identi�
ation (algorithm sSQPa) was quite e�e
tive to determine least infeasiblepoints with nearby rank de�
ien
y. Among the �ve measures of least infeasibility,�5(z; �) seems to be the most eÆ
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