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Abstract

Objective

The increased survival in Systemic Lupus Erythematosus (SLE) patients implies the devel-

opment of chronic damage, occurring in up to 50% of cases. Its prevention is a major goal in

the SLE management. We aimed at predicting chronic damage in a large monocentric SLE

cohort by using neural networks.

Methods

We enrolled 413 SLE patients (M/F 30/383; mean age ± SD 46.3±11.9 years; mean disease

duration ± SD 174.6 ± 112.1 months). Chronic damage was assessed by the SLICC/ACR

Damage Index (SDI). We applied Recurrent Neural Networks (RNNs) as a machine-learning

model to predict the risk of chronic damage. The clinical data sequences registered for each

patient during the follow-up were used for building and testing the RNNs.

Results

At the first visit in the Lupus Clinic, 35.8% of patients had an SDI�1. For the RNN model,

two groups of patients were analyzed: patients with SDI = 0 at the baseline, developing dam-

age during the follow-up (N = 38), and patients without damage (SDI = 0). We created a

mathematical model with an AUC value of 0.77, able to predict damage development. A

threshold value of 0.35 (sensitivity 0.74, specificity 0.76) seemed able to identify patients at

risk to develop damage.

Conclusion

We applied RNNs to identify a prediction model for SLE chronic damage. The use of the lon-

gitudinal data from the Sapienza Lupus Cohort, including laboratory and clinical items,
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resulted able to construct a mathematical model, potentially identifying patients at risk to

develop damage.

Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a mul-

tifactorial pathogenesis in which genetic and environmental factors interplay, determining dis-

ease development [1]. The production of a wide range of autoantibodies is a disease hallmark,

leading to different clinical phenotypes [2]. The survival of SLE patients dramatically changed

in the last 60 years, moving from the 50%, described in the 1950s, to the current over 90% [3].

The increased survival determined the possible accrual of chronic damage, related to adverse

events of treatment, disease activity and comorbidities [4–6]. In order to quantify the damage

in SLE patients and to measure over time modifications, the Systemic Lupus Collaborating

Clinics (SLICC) and the American College of Rheumatology (ACR) proposed and validated a

specific index, the SLICC/ACR Damage Index (SDI) [7]. Studies using such index in SLE

cohorts demonstrated that damage accrual is associated with several demographic and clinical

features including age and disease duration. Moreover, the presence of specific lupus-associ-

ated autoantibodies, such as anti-phospholipid antibodies (aPL), seems to be associated with

damage development as well as disease activity, in particular, the occurrence of flares [8].

Nonetheless, some treatments such as glucocorticoids and immunosuppressive agents, despite

their role in disease management, could intervene in determining chronic damage [4, 9].

However, despite an earlier diagnosis and the improvement of therapeutic strategies, the

development of chronic damage represents a frequent event in SLE patients. A recent analysis

of our Sapienza Lupus Cohort showed the presence of an SDI�1 in 35.8% of patients after a

mean disease duration of about 14 years [10].

The majority of SLE patients begins to accrue damage during the early stages of the disease

and it increases overtime. This phenomenon has been associated with different factors, such as

age and activity at the onset, sex, ethnicity, disease duration and early appearance of damage

[4]. Data from the Hopkins Lupus Cohort on 2,054 prospectively evaluated SLE patients, dem-

onstrated that SDI score increased at a rate of 0.13 per year. Moreover, in this cohort, older age

at diagnosis, ethnicity, and low income were the most important demographic predictors of

damage progression [9]. The recently published study conducted by Legge et al. showed an

increase in the SDI score� 1 in more than 40% of patients after a mean follow-up of seven

years [11]. According to these evidences, the identification of new tools able to predict the

accrual and the progression of SLE damage is a strategic goal in order to identify patients at

higher risk.

In the last years, it has been suggested that Artificial Neural Networks (ANNs) could be a

useful prediction tool in medical scenarios. Such mathematical models express complex rela-

tionships between input and output data mimicking the human neural architecture of the

brain and have been used in different ways in order to learn the relationship between a set of

inputs and their outputs [12]. In the medical application, patients’ data could be considered as

inputs and the specific outcomes as outputs. The supervised training procedure consists in tun-

ing the parameters (weights) of the ANN model to produce the desired outputs using a set of

training examples. Each example consists of some data (set of features), used as input to the

network, and a label, which is what the network must learn to reproduce. The weights are

modified iteratively until the output of the network for each training example is sufficiently

Machine-learning models and lupus chronic damage

PLOS ONE | https://doi.org/10.1371/journal.pone.0174200 March 22, 2017 2 / 13

https://doi.org/10.1371/journal.pone.0174200


close to its label. A trained ANN should be able to provide the correct labels in correspondence

to new input data never used during the training process (generalization capability) [12, 13].

Few previous studies suggested that ANN could predict specific outcomes in SLE cohorts

[14–17].

Focusing on renal involvement, neural network approach demonstrated an accuracy signif-

icantly higher compared with other methods in the LN prediction [14]. Moreover, ANNs were

able to predict histological class, by identifying correlations between urinary protein spots and

different parameters [15]. Machine-learning models was also applied to predict one-year out-

comes of LN patients moving from baseline biomarker assessments [16]. Finally, these mathe-

matical models could be applied in order to predict 3-year kidney graft survival in recipients

affected by SLE [17].

Indeed, in the International Conference on Advanced Computing and Communication

Systems, held in Coimbatore in 2015, it was underlined the possible application of sophisti-

cated data analysis tools, such as machine learning methods, in SLE patients, in the light of

their potential application to diagnostic and prediction purposes [18].

Moving from these premises, we aimed at evaluating whether the usage of ANN is able to

predict the onset of damage in patients with SLE. Therefore, we employed these mathematical

models as a model-based technique to analyze clinical and laboratory data deriving from the

Sapienza Lupus Cohort.

Materials and methods

We conducted a longitudinal study on adult SLE patients attending at the Sapienza Lupus

Cohort. All patients satisfied the revised 1997 ACR criteria for SLE classification [19]. The

local ethical committee of “Policlinico Umberto I/Sapienza Università di Roma” approved the

study. Patients provided written informed consent at the time of the first visit at the Sapienza

Lupus Clinic.

At each visit, the patients underwent a complete physical examination. Clinical and labora-

tory data were collected in a standardized, computerized, and electronically filled form, includ-

ing demographics, past medical history with the date of diagnosis, co-morbidities, previous

and concomitant treatments. All the patients were evaluated at least twice per year, even

though most of the patients were observed quarterly. Selected patients could be followed more

often, according to their clinical condition.

With regard to the laboratory assessment, antinuclear antibodies (ANA) were determined

by indirect immunofluorescence assay (IIFA) on HEp-2, anti-dsDNA by IIFA on Crithidia
luciliae, ENA (anti-Ro/SSA, anti-La/SSB, anti-Sm, anti-RNP), anti-cardiolipin (anti-CL) of

IgG or IgM isotype and anti-Beta2glicoprotein I (anti-Beta2GPI) of IgG or IgM isotype by

ELISA. Lupus anticoagulant (LA) was assessed according to the guidelines of International

Society on Thrombosis and Hemostasis (ref). For all the subjects, complement C3 and C4 con-

centrations were determined by nephelometry (mg/dl).

Disease activity was evaluated at each visit by using the SLE Disease Activity Index 2000

(SLEDAI-2K) [20] and for the purpose of the ANN considered as a binary instance as absent

(SLEDAI-2K = 0) versus any level of activity (SLEDAI-2k�1).

Chronic damage

Damage was measured by SDI in all the available examinations. The SDI score was calculated

based on organ damage that occurred after SLE diagnosis. According to the SDI, damage was

assessed in 12 organ systems: ocular (range 0–2), neuropsychiatric (0–6), renal (0–3), pulmo-

nary (0–5), cardiovascular (0–6), peripheral vascular (0–5), gastrointestinal (0–6),
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musculoskeletal (0–7), skin (0–3), gonadal (0–1), endocrine (0–1) and malignancy (0–2), with

a possible maximum total score of 47. The damage, defined as irreversible impairment, had to

be persistent for at least six months [7].

Statistical analysis

Categorical variables are summarized as frequencies and percentages, while continuous vari-

ables are presented as means and standard deviation (SD) or median (range), if normally or

non normally distributed, respectively. Mann-Whitney test was performed when appropriate.

Univariate comparisons between nominal variables were calculated using chi-square test or

Fisher’s exact-test where appropriate. P values less than 0.05 were considered significant.

Artificial neural networks

We designed an ANN as a machine-learning model to predict the risk to develop chronic dam-

age in SLE patients. In particular, for the aim of the present study, we employ Recurrent Neu-

ral Networks (RNNs) as model suited to deal with sequential information. This represents a

neural network model suitable for sequential inputs. Specifically, the input data consisting of a

sequence of sets of features are processed by the network one-step at a time through a series of

layers: the input layer which receives the external inputs, a hidden layer, and an output layer

which contains the outputs of the network. Each layer is composed of several units called neu-
rons whose value depends on the connections with the other neurons. All layers are connected

in a forward manner except for the hidden layer, which presents also a special backward con-

nection like depicted in Fig 1. This special backward connection introduces a recurrence in the

model, which is employed by the network to “remember” the information of the previous time

steps (Fig 1).

Fig 1. Illustration of a Recurrent Neural Network (dashed lines are backward).

https://doi.org/10.1371/journal.pone.0174200.g001
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At each time step, the network produces an output, but often, only the output of the last

time step is considered. The labels associated with the training sequences can be sequences

themselves, if we are interested also in the intermediate outputs of the network, or a single

value only for the last step. It is important to remark that RNNs deal with sequences of arbi-

trary length and that the sequences that constitute the training examples do not need to have

the same length. This makes RNNs an extremely versatile model. Therefore, for the aim of the

present study, the sequences of clinical data registered for each SLE patient in the standardized,

computerized and electronically-filled form during the follow-up have been used for building

and testing the RNNs.

Results

Four hundred and thirteen patients were enrolled consecutively in the present study (M/F

30/383; mean age ±SD 46.3±11.9 years; mean disease duration ±SD 174.6±112.1 months; Eth-

nicity: Caucasian 97.3%, Asian 1.7%, Latino-American 1.0%). Referring to the disease history,

joint and skin involvement and hematological manifestations were the most frequent, occur-

ring in 67.1%, 66.3% and 63.9% respectively. Patients were followed in the present outpatient

clinic for a mean period ±SD of 63.9±30.7 months.

With regard to other associated systemic autoimmune diseases, 61 patients (14.8%) had

anti-phospholipid syndrome (APS) and 28 (6.8%) Sjögren’s Syndrome (SS). Concerning other

comorbidities not included in the SDI, treatment-required fibromyalgia and arterial hyperten-

sion were the most frequent (8.2% and 7.7%, respectively).

At the time of the first visit in our Lupus Clinic, 148 patients out of 413 (35.8%) had an

SDI�1, with a mean±SD value of 1.7±1.1 (median 1.0, range 1–8, 95% CI 3.0–4.0). Eighty-

eight out of 148 patients (59.4%) showed an SDI = 1, 38/148 patients (25.7%) SDI = 2, 10/148

patients (6.7%) SDI = 3, 10 patients (6.7%) SDI = 4, one patient (0.7%) SDI = 7 and another

one (0.7%) SDI = 8. During the observation period (mean ±SD 63.9±30.6 months, range

12–218), 66/413 SLE patients (15.9%) showed a progression of SDI score. When considering

the distribution of damage according to the involved organ/system, neuropsychiatric and mus-

culosketal involvement represent the most frequent in the present cohort, occurring both in 46

SLE patients (11.1%).

Artificial neural networks

For the machine-learning model, we selected two groups: patients with SDI = 0 at the baseline,

developing chronic damage during the follow-up (case, N = 38); patients without chronic

damage (SDI = 0) at baseline who did not develop chronic damage. In particular, we used all

the visits before a positive SDI was registered for patients in the first group. Concerning the

second group, we considered patients with at least 5 visits and a successive follow-up of 2

years. We adopted this stringent selection in order to train and test the model with robust data

with respect to (putative) negative patients. Without the adoption of the above criterion, the

risk was of including in the negative instances patients controlled for a period too short to

assign the label of negative patient.

Demographic, clinical and laboratory data of SLE cases and controls were reported in

Table 1.

As expect, we registered significantly higher mean age and disease duration values in the

cases than in controls (43.4±10.0 versus 35.6±10.9 years, P = 0.0009; 126.0±97.2 versus 87.6

±80.4 months, P = 0.03, respectively). Moreover, a concomitant Sjögren’s Syndrome was less

frequent in SLE cases (P = 0.03).
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Table 1. Demographic features, clinical and laboratory manifestations and treatment of case (N = 38) and controls 8N = 94).

CASES (N = 38) CONTROLS (N = 94) P-Values

Demographic features

M/F 2/36 5/89 NS

Mean age ±SD (years) 43.4±10.0 35.6±10.9 0.0009

Mean disease duration ±SD (months) 126.0±97.2 87.6±80.4 0.03

Ethnicity—N (%)

Caucasian 37 (97.4) 93 (98.9) NS

Asian 1 (2.6) 1 (1.1) NS

Latino-American -

Clinical manifestations—N (%)

Joint involvement 26 (68.4) 62 (65.9) NS

Skin involvement 21 (55.2) 65 (69.1) NS

Serositis 1 (2.6) 14 (14.9) 0.002

Hematological manifestations 28 (73.8) 67 (71.3) NS

Neuropsychiatric involvement 4 (10.5) 8 (8.5) NS

Renal involvement 8 (21.0) 25 (26.6) NS

Laboratory manifestations—N (%)

Anti-DNA 21 (55.2) 58 (61.7) NS

Anti-Sm 4 (10.5) 12 (12.8) NS

Anti-SSA 10 (26.3) 29 (30.8) NS

Anti-SSB 5 (13.1) 17 (18.1) NS

Anti-RNP 8 (21.0) 15 (15.9) NS

Anti-cardiolipin IgG/IgM 12 (31.6) 32 (34.0) NS

Anti-β2Glycoprotein I IgG/IgM 10 (26.3) 14 (14.9) NS

Lupus Anticoagulant 8 (21.0) 17 (18.1) NS

Low C3 levels 14 (36.8) 32 (34.0) NS

Low C4 levels 9 (23.7) 26 (27.6) NS

Treatments—N (%)

Corticosteroids 35 (92.1) 77 (81.9) NS

Hydroxychloroquine 33 (86.8) 85 (90.4) NS

Cyclosporine A 12 (31.6) 19 (20.2) NS

Methotrexate 12 (31.6) 14 (14.9) 0.006

Cyclophosphamide 2 (5.3) 12 (12.8) NS

Mycophenolate Mofetil 12 (31.6) 26 (27.6) NS

Azathioprine 8 (21.0) 24 (25.5) NS

Rituximab 2 (5.3) 3 (3.2) NS

Belimumab 2 (5.3) 1 (1.1) NS

ASA 21 (55.3) 37 (39.4) 0.03

Anticoagulant therapy 7 (18.4) 6 (6.4) 0.01

Concomitant diseases and comorbidities—N (%)

Anti-phospholipid syndrome 4 (10.5) 10 (10.6) NS

Sjögren’s Syndrome 6 (15.8) 6 (6.4) 0.03

Autoimmune thyroiditis 3 (7.9) 6 (6.4) NS

Fibromyalgia 4 (10.5) 11 (11.7) NS

Dyslipidemia 5 (13.1) 9 (9.6) NS

Arterial hypertension 5 (13.1) 8 (8.5) NS

NS: not significant.

https://doi.org/10.1371/journal.pone.0174200.t001
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We discarded all the binary features with less than four positive occurrences among all the

patients. In Table 2, we reported the features used to build RNN model.

The network we employed in this study was composed of 100 hidden units and organized

as described by the following equations:

yj
t ¼

1

1þ expð� Wo � hj
tÞ

hj
t ¼ tanhðWr � hj

t� 1 þWi � x
j
tÞ

hj
0 ¼ 0, where xj

t and hj
t are vectors, Wr, Wi, Wo are matrices and tanh is applied element-wise.

If we denote by p be the number of features and by n the number of hidden units then h_t^jis

a vector of lenth n andx_t^jof length p. As for the weight matrices, W ris n by n, W_jis p by n

and W_ois n by 1.

The input of the network is represented by the vector x and it is indexed by j, which identi-

fies a patient, and t which loops over the time steps, namely, in our context, the visits of the

patien. For instance x1
1

is the vector of the features for the first visit of patient 1. The output of

the network is y and, like x, is indexed in the temporal dimension by t, although in our case

only the last value was considered. Note that, by definition, yj
t is a value in the interval [0, 1]

and hence is interpreted as the probability of a patient to develop an organ/system damage in

the next 2 years. The vector hj
t , instead, expresses the values of the hidden units and it is used

only as an intermediate step in the computation of the response yj
t . It is interesting to notice

how the preceding history of a patient is taken into account through the dependency of hj
t

from hj
t� 1. The other quantities, Wr, Wi, Wo are the matrices which contain the weights of the

connections which are tuned in order to produce the desired output. We used the Stochastic

Gradient Descent (SGD) algorithm, one of the most commonly employed for ANNs training,

to tune the weights of the network. We stopped the training procedure once the predictions

Table 2. Features used for the Recurrent Neural Network model.

Features

Sex

Age

Concomitant diseases (APS, Sjögren’s Syndrome, autoimmune thyroiditis, fibromyalgia)

Comorbidities (dyslipidemia and arterial hypertension)

Renal involvement

Skin involvement

Neurological involvement

Joint involvement

Hematological manifestations

Occurrence of arterial and/or venous thrombosis

Obstetrical complications

Autoantibodies positivity (anti-dsDNA, anti-SSA, anti-SSB, anti-Sm, anti-RNP, anti-Cl, anti-β2GPI, LA)

C3 and C4 serum level reduction

Disease activity (SLEDAI-2k)

Treatment during disease history (GC, HCQ, MTX, AZA, CyA, Cy, MMF, RTX, BLM)

GC: glucocorticoid, HCQ: hydroxychloroquine; MTX: methotrexate; AZA: azathioprine; CyA: Cyclosporine

A; Cy: Cyclosphosphamide; MMF: mycophenolate mofetil; RTX: rituximab; BLM: belimumab.

https://doi.org/10.1371/journal.pone.0174200.t002
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for the training examples were sufficiently accurate, namely when the area under the ROC

curve (AUC) was above 0.95. This technique, know as early stopping, is widely employed to

avoid over-fitting. We evaluated the ability of the network to generalize with an eight-fold vali-

dation. We split the data, both positives, and negatives, in eight different parts and we itera-

tively trained an RNN using as a training set seven parts out of eight and computed the

predictions on the leaved out part (test set). Once we had the predictions on all the eight parts

we put them together and computed the true positive and false positives rates for increasing

thresholds in the interval [0, 1] to obtain the ROC curve shown in Fig 2.

In order to assess the robustness of the model, we performed experiments by varying the

architecture of the network, i.e., the number of hidden units. We did not observe substantial

differences increasing the number of hidden units from 50 to 100. This is due to the effect of

the early stopping criterion to avoid overfitting.

With this method, we observed that the area under curve (AUC) for the prediction of

chronic damage was 0.77. In Table 3, we reported threshold values, which yield both sensitivity

and specificity equal to 0.7 or higher.

According with the best sensitivity and specificity values, a threshold value of 0.35 could

identify patients developing chronic damage. Finally, we performed further experiments by

Feed-Forward Neural Networks (FFNNs) and by the common logistic regression approach.

More specifically, we considered a "static" model, where the input of the network is a vector

whose components are the features of the patient in the last L (> = 1) visits up to the second to

last, available visit. In this way, we build a model with a single input vector that contains

patient features across multiple time points. With L = 1, 2, 3, both FFNNs and the logistic

regression approach obtained AUC slightly greater than 0.5. These results point out the

Fig 2. ROC curve for RNN model.

https://doi.org/10.1371/journal.pone.0174200.g002
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advantages of using, for the specific predict task of the work, RNN that can deal with sequences

of inputs.

Discussion

To the best of our knowledge, this is the first study aimed at developing an RNN model to pre-

dict chronic damage in a large SLE population-based data.

We used the longitudinally recorded data from the Sapienza Lupus Cohort, including labo-

ratory and clinical features, in order to apply the machine-learning model to predict SLE dam-

age development. The selected items resulted able to construct a mathematical model

characterized by a good performance, as demonstrated by the AUC value, higher than 0.7.

In the last years, several studies have suggested the possibility to apply mathematical sys-

tems in the medical sciences, in order to create models able to predict a specific outcome.

Among these, ANN which mimicking biological neural networks could be trained in order to

recognize underlying patterns of diseases. ANNs could simulate the neuron functions in order

to process data and to learn from the experiences. After an appropriate training, neural net-

works could develop a higher accuracy in comparison with conventional classification analysis.

More recently, the application of ANNs in medical decision support systems has been sug-

gested, thanks their ability to detect complex nonlinear relationships between predictors and

diseases [21–23]. Moving from real cases, the neural system can be trained in order to discover

the relationships between different variables and to learn which features of the inputs are

mostly related to the output [23].

Some studies evaluated the possible application of machine-learning models in SLE cohorts,

focusing on kidney involvement. Rajimehr et al. published the first study on this topic in 2002:

the neural networks efficiency for lupus nephritis (LN) prediction was compared with a logis-

tic regression model and with clinicians’ diagnosis. Neural network approach showed an accu-

racy significantly higher compared with other methods, especially in predicting LN [14]. The

study published by Oates and colleagues in 2005 aimed at applying ANNs to identify correla-

tions between urinary protein spots, identified by gel electrophoresis, and different parameters

in a cohort of 20 SLE patients with renal involvement undergoing renal biopsy. The output

considered in this study was the binary value for each histological class according to the ISN/

RPS classification, and an ordinal value for activity and chronicity indices. The input data were

analyzed by the ANNs to determine their ability to predict the disease. For all histological clas-

ses, a sensitivity higher than 86% was identified, with a specificity of 92%. The ROC of the

trained networks demonstrated an AUC value ranging from 0.85 to 0.95. The results of the

study suggest the possibility to apply ANNs in order to identify a list of protein spots useful to

develop a clinical assay able to predict ISN/RPS class and chronicity for LN patients, poten-

tially replacing the renal biopsy [15].

Table 3. Threshold and the corresponding sensitivity and specificity values.

Threshold Sensitivity Specificity

0.486 0.819 0.711

0.383 0.755 0.711

0.365 0.745 0.737

0.358 0.745 0.763

0.290 0.702 0.763

0.271 0.702 0.789

https://doi.org/10.1371/journal.pone.0174200.t003
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More recently, the same research group aimed at applying machine-learning models to pre-

dict one-year outcomes of LN patients moving from baseline biomarker assessments. The

urine samples from 140 biopsy-proven LN patients were collected prior to the induction treat-

ment; numerous traditional and novel biomarkers were analyzed. The outcome variable con-

sidered in the study was complete remission after 12 months. For each biomarker, a ROC

curve was generated by traditional statistical analysis and these were compared with AUC val-

ues obtained from machine learning models developed using random forest (RF) algorithms.

A significantly greater AUC (0.79) was observed in the combined models in comparison with

models created with traditional clinical markers alone. Moreover, the RF combined model had

a significantly better AUC than the majority of the individual biomarkers, determining an

improvement in terms of sensitivity [16]. In 2011, Tang and colleagues applied machine-

learning models in order to predict 3-year kidney graft survival in recipients affected by SLE.

Data from 4,754 SLE transplant recipients were obtained: among these 3,313 were followed for

a 3-years period and included in the study. Thirty-eight variables were selected to perform

three different classification methods: classification trees, artificial neural networks, and logis-

tic regression. In particular, with regard to the neural networks, a feed-forward multilayer per-

ceptron architecture was used, a model including an input layer, a single hidden layer—

calculating the sum of weighted input predictors—and an output layer—producing the pre-

dicted probability of class membership. An AUC value of 0.71 was obtained by the application

of ANN. Moreover, the performance of logistic regression and classification trees were not

inferior to more complex artificial neural network. The authors of the study concluded that

different prediction models could be used in clinical practice to identify patients at risk of the

poorer outcome [17].

Other possible applications in SLE cohorts have been suggested. The study conducted by

Ward and colleagues in 2006 suggested the use of RF to predict short-term mortality in a

cohort of 3,839 hospitalized SLE patients. Among these, 109 patients died during hospitaliza-

tion. The RF demonstrated high predictive accuracy for classification of death, identifying

Charlson Index, respiratory failure, SLE Comorbidity Index, age, sepsis, nephritis, and throm-

bocytopenia as the most important predictors of mortality [24].

In the present study, for the first time, we applied the neural-network analysis to generate a

prediction model for the chronic damage in patients affected by SLE.

Moving from a large monocentric SLE data set longitudinally evaluated a stringent selection

of patients and of features inserted in the model has been performed, in order to safeguard the

results power.

In particular, as cases we considered only patients without damage at the first visit develop-

ing it during the follow-up. Moreover, as controls, we selected only those patients without

chronic damage at baseline who did not develop chronic damage in a follow-up period higher

than 2 years with at least 5 visits. Even though such stringent selection reduced the number of

available data (patients) used to train the neural network-based model, we obtained promising

results.

Moreover, the computational study confirms that the recorded medical data contain infor-

mation useful to predict damage development in SLE patients. A large number of features

have been evaluated by a longitudinal approach in the Sapienza Lupus Cohort and these vari-

ables resulted able to predict damage development. With regard to clinical manifestations, in

the RNN model all the clinical features considered in the 1997-revised ACR criteria have been

included (namely renal and neurological involvement, articular, skin and hematological mani-

festations, serositis) [19]. Moreover, disease activity assessment was considered in the model,

with the inclusion of SLEDAI-2K index and serological activity biomarkers (in particular anti-

dsDNA antibodies and C3/C4 serum levels). Nonetheless, we inserted in the model some
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clinical manifestations—occurrence of arterial and/or venous thrombosis; obstetrical compli-

cations—potentially related to aPL positivity. This appears very interesting in the light of a

large number of studies identifying an association between the damage accrual and the pres-

ence of these autoantibodies in SLE patients [8].

Moreover, among the comorbidities, the presence of an associated APS have been consid-

ered, in addition to Sjögren’s Syndrome, autoimmune thyroiditis, fibromyalgia, frequently

identified in SLE patients.

Nonetheless, comorbidities, such as hypertension and dyslipidemia were also included in

the model.

We chose to adopt the RNNs model because it seem to be suitable to deal with the predic-

tion task object of the present work. Moreover, this specific model allows the evaluation of

data deriving from sequential visits in the same patients.

In the present analysis, similarly to the others applying neural-network models, the AUC

was chosen as the primary measure to evaluate a model’s discriminative power because it does

not depend on the prediction threshold chosen for a model. We obtained an AUC value of

0.77, indicating a good performance of our model. We believe that significant improvements

in the prediction performance of the RNNs could be obtained by using a larger number of

training data. Moreover, we suggested the possibility to use a cut-off value, with good perfor-

mance in terms of sensitivity and specificity, identifying patients at risk to develop chronic

damage, moving from the baseline condition.

In conclusion, in the present study, we applied for the first time a machine-learning analysis

in order to create a model able to predict chronic damage development in SLE patients. Our

results suggest that moving from a core-set of clinical and laboratory features, it is possible to

create a mathematical model able to predict chronic damage. This prediction tool could be

used potentially in a clinical practice setting to stratify SLE patients according to the risk of

developing chronic damage. The model we designed is a “black box” model for finding com-

plex and implicit relationships between clinic features and SLE damage. The model was trained

and tested using all the selected features. The identification of contributor features relevant for

the model could be very interesting in order to better understand the pathogenic mechanisms

involved in damage development. To this aim, standard feature ranking techniques of the liter-

ature, computing a score for each risk factor, could be applied. However, the available data for

the present work are not sufficient to perform a reliable study along this direction and to draw

sound conclusions. Larger cohorts are needed to test risk factor ranking issue to predict dam-

age in SLE.
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