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tober 1, 1999Abstra
tThis paper addresses the lo
al 
onvergen
e properties of the aÆne-s
aling interior-pointalgorithm for nonlinear programming.The analysis of lo
al 
onvergen
e is developed in terms of parameters that 
ontrol the interior-point s
heme and the size of the residual of the linear system that provides the step dire
tion.The analysis follows the 
lassi
al theory for quasi-Newton methods and addresses q-linear, q-superlinear, and q-quadrati
 rates of 
onvergen
e.Keywords. interior-point methods, aÆne s
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al 
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t 
lassi�
ations. 49M37, 90C06, 90C301 Introdu
tionInterior-point methods have been intensively and su

essfully applied to linear programming prob-lems, linear 
omplementarity problems, 
onvex programming problems and other related 
lassesof problems. For more general 
lasses of problems, the appli
ation and analysis of interior-pointmethods is 
ompli
ated by the presen
e of nonlinearity and non
onvexity. In the following para-graphs, we will survey the resear
h 
arried in the �eld of interior-point methods for nonlinear andnon
onvex optimization problems.The lo
al 
onvergen
e theory for primal-dual interior-point methods has been established by El-Bakry et al [14℄, Martinez et al [21℄, and Yamashita and Yabe [29℄. A few authors have 
onsideredprimal-dual interior-point algorithms for whi
h they proved global 
onvergen
e (see the work byArgaez and Tapia [1℄, Conn et al [8℄, and Yamashita [28℄). The appli
ation of these algorithms todis
retized optimal 
ontrol problems has also been subje
t of study in the papers by Battermannand Heinkens
hloss [2℄, Leibfritz and Sa
hs [19℄, Vi
ente [26℄, and Wright [27℄. The re
ent papersby Gay, Overton, and Wright [16℄ and Vanderbei and Shanno [25℄ introdu
e and test globalizationstrategies for primal-dual interior-point algorithms.In the papers 
ited above, the step dire
tion for the interior-point method is de�ned in theprimal variables, in the multipliers 
orresponding to equality 
onstraints and in the multipliers
orresponding to inequality 
onstraints. Other authors (Forsgren and Gill [15℄, Byrd et al [5℄, and�Departamento de Matem�ati
a, Universidade de Coimbra, 3000 Coimbra, Portugal. E-Mail: lvi
ente�mat.u
.pt.Support for this work has been provided by Centro de Matem�ati
a da Universidade de Coimbra, FCT, and PraxisXXI 2/2.1/MAT/346/94. 1



referen
es therein) investigated interior-point methods where the dire
tion is de�ned only in the�rst two set of variables and an approximation is used to the multipliers 
orresponding to theinequality 
onstraints.On the other hand, aÆne-s
aling interior-point methods for nonlinear optimization were de-veloped by Coleman and Li (see, e.g., [3℄, [6℄, and [12℄) for minimization problems with simplebounds. The Coleman-Li aÆne s
aling in
orporates dual information and relates to the Dikin-Karmarkar aÆne s
aling (see, e.g., [13℄, [18℄, [22℄, and [23℄). One attra
tive feature of aÆne-s
alinginterior-point methods is that they 
an be appropriately tailored to spe
i�
 
lasses of problems.They have been applied to dis
retized optimal 
ontrol problems by Dennis et al [10℄ and to in�nitedimensional 
ontrol problems by Ulbri
h and Ulbri
h [24℄. They have also been applied to other
lasses of problems like quadrati
 programming and nonlinear minimization subje
t to linear in-equality 
onstraints, but also to general nonlinear programming (Coleman and Li [7℄, Das [9℄, andLi [20℄). One other attra
tive aspe
t of aÆne-s
aling interior-point methods is that they exhibitstrong lo
al and global 
onvergen
e properties: In many of the papers 
ited above the aÆne-s
alings
heme has been 
ombined with the trust-region strategy and the resulting interior-point algorithm
onverges globally to points satisfying �rst-order and se
ond-order ne
essary 
onditions. The paperby Heinkens
hloss et al [17℄ 
ombines the s
aling with a proje
tion and establishes superlinear andquadrati
 
onvergen
e without the stri
t 
omplementarity assumption.The paper by Vi
ente [26℄ gives a uni�ed perspe
tive of primal-dual and aÆne-s
aling interior-point algorithms and introdu
es redu
ed primal-dual interior-point methods.As far as the author is 
on
erned, there is no general analysis of lo
al 
onvergen
e for aÆne-s
aling interior-point algorithms like the analysis given in the aforementioned papers [14℄, [21℄, [29℄for primal-dual interior-point methods. Our intention is to �ll this gap in the 
urrent paper byproviding a lo
al 
onvergen
e analysis of the aÆne-s
aling interior-point algorithm for nonlinearprogramming when se
ond-order derivatives are repla
ed by quasi-Newton updates and linear sys-tems are solved inexa
tly. We do not present any analysis of global 
onvergen
e or polynomiality.We start in Se
tion 2 by des
ribing the lo
al version of the aÆne-s
aling interior-point algorithm fornonlinear programming. The analysis will follow the approa
h given by Yamashita and Yabe [29℄for primal-dual interior-point algorithms, whi
h in turn relies on the theory developed by Broydenet al [4℄ and Dennis and Mor�e [11℄ for quasi-Newton methods. However, the te
hni
al results neededfor the analysis are obtained di�erently from [29℄ and they will be the subje
t of a 
areful study inSe
tion 3. The results for linear, superlinear, and quadrati
 
onvergen
e are stated in Se
tion 4.2 The aÆne-s
aling interior-point algorithmConsider a nonlinear programming problem written in the formminimize f(x)subje
t to g(x) = 0 ;x � 0 ; (1)where x 2 IRn, f : 
 �! IR, g : 
 �! IRm, n and m are positive integers satisfying n > m, and 
is an open set of IRn. We will assume that the fun
tions f and g are twi
e Lips
hitz 
ontinuouslydi�erentiable in 
.
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2.1 MotivationIf a point x is a lo
al minimizer for problem (1) and if it satis�es a given 
onstraint quali�
ation (likethe regularity 
ondition to be des
ribed later), then x veri�es the Karush-Kuhn-Tu
ker �rst-orderne
essary 
onditions, i.e., there exist � 2 IRm and z 2 IRn su
h thatrx`(x; �)� z = 0 ; (2)g(x) = 0 ; (3)xi zi = 0 ; i = 1; : : : ; n ; (4)x; z � 0 ; (5)where `(x; �) = f(x) + �>g(x) and rx`(x; �) = rf(x) +rg(x)�.The aÆne-s
aling algorithm is based on the de�nition of the diagonal matrix D(x; �) whosediagonal elements are given by:�D(x; �)�ii = 8><>: (xi) 12 if (rx`(x; �))i � 0 ;1 if (rx`(x; �))i < 0 ;for i = 1; : : : ; n.Given the de�nition of this diagonal matrix, we 
an eliminate the multipliers z from the �rst-order ne
essary 
onditions. In fa
t, a point x satis�es the �rst-order ne
essary 
onditions if andonly if there exists � 2 IRm su
h that D(x; �)2rx`(x; �) = 0 ; (6)g(x) = 0 ; (7)x � 0 : (8)The ve
tor fun
tion D(x; �)2rx`(x; �) is 
ontinuous, but not di�erentiable if (rx`(x; �))i = 0for some i 2 f1; : : : ; ng. If (rx`(x; �))i 6= 0, we will di�erentiate the i-th fun
tion in (6) using theprodu
t rule. For that purpose we introdu
e the diagonal matrix E(x; �) whose diagonal elementsare the produ
t of the derivative of the diagonal elements of D(x; �)2 and the 
omponents ofrx`(x; �): �E(x; �)�ii = 8><>: (rx`(x; �))i if (rx`(x; �))i > 0 ;0 otherwise ;for i = 1; : : : ; n. If (rx`(x; �))i = 0, we formally apply the produ
t rule assuming that the derivativeof (D(x; �)2)ii is zero.Given these 
onsiderations, the Newton step for (6)-(7) is 
omputed from the solution of thelinear system D(x; �)2r2xx`(x; �) +E(x; �) D(x; �)2rg(x)rg(x)> 0 !  �x�� ! = �  D(x; �)2rx`(x; �)g(x) ! ; (9)where r2xx`(x; �) = r2f(x) +Pmi=1 �ir2gi(x). 3



With the de�nitions of the matri
es D(x; �) and E(x; �) we 
an 
hara
terize the stri
t 
om-plementarity 
ondition and the se
ond-order suÆ
ient 
onditions in terms of the pair of variables(x; �). We de�ne �rst the set of indi
es A(x):A(x) = fi 2 f1; : : : ; ng : xi = 0g :The stri
t 
omplementarity 
ondition is satis�ed at a point x, with 
orresponding multipliers �and z satisfying the �rst-order ne
essary 
onditions (2)-(5), ifzi > 0 for all i 2 A(x)or, equivalently, if �E(x; �)�ii > 0 for all i 2 A(x) : (10)The se
ond-order suÆ
ient 
onditions are given by (2)-(5) and the positive de�niteness ofr2xx`(x; �) on the subspa
end 2 IRn : rg(x)>d = 0 ; di � 0 if i 2 A(x) ; and di = 0 if i 2 A(x) and zi > 0o :If the pair (x; �) satis�es stri
t 
omplementarity (see (10)), the se
ond-order suÆ
ient 
onditionsare equivalent to (6)-(8) and the positive de�niteness ofD(x; �)r2xx`(x; �)D(x; �) +E(x; �) : (11)on the null spa
e of rg(x)>D(x; �).Finally, we address the regularity 
ondition. A feasible point x is regular if the matrix� rg(x) IA(x) �has full 
olumn rank, where IA(x) is a submatrix of the identity formed by 
olumns 
orrespondingto indi
es in A(x). For the lo
al 
onvergen
e of the algorithm addressed in this paper, we need thetwo following fa
ts:1. If x is a regular point, then the matrix D(x; �)rg(x) has full 
olumn rank.2. If the regular point x, with 
orresponding multipliers �, is su
h that the matrix (11) is positivede�nite, then the matrix D(x; �)r2xx`(x; �)D(x; �) +E(x; �) D(x; �)rg(x)rg(x)>D(x; �) 0 ! (12)is nonsingular.The proofs are given in [26, Prop. 3.3℄. Note that the matrix (12) is obtained from the linearsystem (9) that de�nes the Newton step and the 
hange of variables g�x = D(x; �)�1�x.We end this se
tion with the assumptions on problem (1) needed for the analysis. Let 
 be anopen set of IRn and x� a point in 
.Assumptions 2.11. The fun
tions f and g are twi
e Lips
hitz 
ontinuously di�erentiable in 
.2. The point x� (with 
orresponding multipliers ��) is regular, veri�es the stri
t 
omplementarity
ondition, and satis�es the se
ond-order suÆ
ient 
onditions.4



2.2 Algorithm and notationWe des
ribe next the main steps of the aÆne-s
aling interior-point algorithm. We use Hk torepresent a symmetri
 approximation to r2xx`k. The ve
tors e and ê are given bye = (1; : : : ; 1)> 2 IRn and ê = �e>; 0; : : : ; 0�> 2 IRn+m :We use subs
ripted indi
es to represent the evaluation of a fun
tion at a parti
ular point ofthe sequen
es fxkg and f�kg. The ve
tor and matrix norms used are the `2 norms, k � kF is theFrobenius matrix norm, and k � kM is a given matrix norm.Algorithm 2.1 (AÆne-s
aling interior-point algorithm)1. Choose an initial point (x0; �0) with x0 > 0.2. For k = 0; 1; : : : do2.1 Compute an approximate solution (�xk;��k) to the linear system D2kHk +Ek D2krgkrg>k 0 !  �x�� ! = � D2krx`k � �kegk ! ; (13)given the approximation Hk to the Hessian matrix r2xx`(xk; �k) and �k > 0. (�k is aperturbation parameter for 
entralization purposes, see [14℄, [26℄, and [30℄.)2.2 Set �k = �kmini=1;:::;n n1; minn� (xk)i(�xk)i : (�xk)i < 0oo, where �k 2 [�̂ ; 1℄ and �̂ 2(0; 1).2.3 Set the new iterates: xk+1 = xk + �k�xk ; �k+1 = �k +��k :For the analysis, it is 
onvenient to use the following notations:wk =  xk�k ! ; �wk =  �xk��k ! ;�k =  �kIn 00 Im ! ; wk+1 = wk +�k�wk ;and Ak =  D2kHk +Ek D2krgkrg>k 0 ! :
5



2.3 Inexa
tnessThe linear system (13) 
an be solved inexa
tly, meaning that: D2kHk +Ek D2krgkrg>k 0 !  �xk��k ! = � D2krx`k � �kegk !+  r1kr2k ! ; (14)where rk =  r1kr2k !is the residual ve
tor. The analysis in this paper determines how fast the norm of the residual rkmust go to zero. We will also impose asymptoti
 
onditions on the norm of the ve
tors1k = 0BBB� (r1k)1(xk)1...(r1k)n(xk)n 1CCCA :2.4 Di�erentiabilityThe step �wk 
an be seen as a Newton step on a system of Lips
hitz 
ontinuously di�erentiablenonlinear equations. For this purpose, we 
onsider a point w� = (x�; ��) in the 
onditions of theAssumptions 2.1. Of importan
e for this dis
ussion is the fa
t that w� satis�es the stri
t 
om-plementarity 
ondition (10) and the �rst-order ne
essary 
onditions (6)-(8). We de�ne a diagonalmatrix D[x�; ��; k℄(x; �) with diagonal elements given by
�D[x�; ��; k℄(x; �)�ii =

8>>>>>>>>>>>><>>>>>>>>>>>>:
(xi) 12 if (rx`(x�; ��))i > 0 ;(xi) 12 if (rx`(x�; ��))i = 0 and (rx`k)i � 0 ;1 if (rx`(x�; ��))i = 0 and (rx`k)i < 0 ;1 if (rx`(x�; ��))i < 0 ;for i = 1; : : : ; n. Given this de�nition, we 
an easily dedu
e the three following fa
ts:1. The ve
tor fun
tion D[x�; ��; k℄(x; �)rx`(x; �) is Lips
hitz 
ontinuously di�erentiable on thevariables x and �. The de�nition of the ve
tor fun
tion D[x�; ��; k℄(�; �) depends on (x�; ��)and (xk; �k). However, the de�nition of the i-th prin
ipal diagonal element ofD[x�; ��; k℄(x; �)is independent of (x; �).2. If wk is suÆ
iently 
lose to w�, thenD[x�; ��; k℄(xk; �k) = D(xk; �k) :To simplify notation, we de�neD�;k(x; �) = D[x�; ��; k℄(x; �) and D�;k = D�;k(xk; �k) :6



Thus we 
an write D2�;kHk +Ek D2�;krgkrg>k 0 !  �xk��k ! = � D2�;krx`k � �kegk !+  r1kr2k ! : (15)Introdu
ing the notation A�;k =  D2�;kHk +Ek D2�;krgkrg>k 0 !and F�;k(w) = F�;k(x; �) =  D�;k(x; �)2rx`(x; �)g(x) ! ;we rewrite the quasi-Newton step �wk asA�;k�wk = �F�;k(wk) + �kê+ rk : (16)3. If rk = 0, Hk = r2xx`(xk; �k), and wk is suÆ
iently 
lose to w�, then �wk is the Newton stepfor D[x�; ��; k℄(x; �)rx`(x; �)� �ke = 0 ;g(x) = 0 ;at w = wk. ThusrF�;k(w) = rF�;k(x; �) =  D2�;k(x; �)r2xx`(x; �) +E(x; �) D2�;k(x; �)rg(x)rg>(x) 0 !and the Newton step �wk satis�esrF�;k(wk)�wk = �F�;k(wk) + �kê+ rk :3 Te
hni
al lemmasThe set of a
tive indi
es at x� is de�ned asA(x�) = fi 2 f1; : : : ; ng : (x�)i = 0g :Lemma 3.1 There exist positive numbers �, �1, �2, and �3 independent of k, su
h that if kwk �w�k � �, �1k�wkk � 1, and �2k�wkk+ �3ks1kk � 1, thenj1� �kj � j1� �kj+ �k ��2k�wkk+ �3ks1kk� :
7



Proof: If i =2 A(x�) and � � (x�)i2 then�(�xk)i(xk)i � �1k�wkk ;where �1 = maxn 2(x�)i : i =2 A(x�)o.If i 2 A(x�) and � is suÆ
iently small, then from the assumption (10) on stri
t 
omplementaritywe know that (Ek)ii � (E�)ii =2. On the other hand, from the �rst equation in (15)(�xk)i = ��D2�;kHk�xk�i(Ek)ii � �D2�;krgk��k�i(Ek)ii � �D2�;krx`k�i(Ek)ii + �k(Ek)ii + (r1k)i(Ek)ii :Thus, � (�xk)i(xk)i = (Hk�xk)i(Ek)ii + (rgk��k)i(Ek)ii � 1� �k(xk)i(Ek)ii � (r1k)i(xk)i(Ek)ii :Sin
e �k(xk)i (Ek)ii > 0we get �(�xk)i(xk)i � 1 + �2k�wkk+ �3ks1kk ;where �2 and �3 are positive 
onstants independent of k.A simple derivation yields j1� �kj � j1� �kj+ �k ����1� �k�k ���� : (17)If �k = �k then j1 � �kj � j1 � �kj and the proof is 
ompleted. If �k < �k, then the value of �kis determined by an index i for whi
h (�xk)i < 0. In this 
ase, we have two situations. Eitheri =2 A(x�), in whi
h 
ase� (xk)i(�xk)i � 1�1k�wkk � 1 � 1� �2k�wkk � �3ks1kk ; (18)or i 2 A(x�), in whi
h 
ase� (xk)i(�xk)i � 11 + �2k�wkk+ �3ks1kk � 1� �2k�wkk � �3ks1kk : (19)The proof is 
ompleted by 
ombining inequality (17) with the de�nition of �k, and the two inequal-ities (18) and (19). 2From this lemma and the form of the quasi-Newton step �wk given by (16), we 
an establishj1� �kj � j1� �kj+ �k ��2kA�1�;kk (kF�;kk+ �kkêk+ krkk) + �3ks1kk� ; (20)provided A�;k is nonsingular. This bound on 1 � �k is determinant for the analysis sin
e I � �kappears in the formula for wk+1 � w�:wk+1 � w� = wk � �kA�1�;k (F�;k(wk)� �kê� rk)� w�= (I � �k)(wk � w�) + �kA�1�;k (F�;k(w�)� F�;k(wk)�A�;k(w� � wk))+ �kA�1�;k (�kê+ rk) : (21)8



The matrix A�;k will be nonsingular and its norm bounded if wk is suÆ
iently 
lose to w� andHk is suÆ
iently 
lose to r2xx`(xk; �k), 
f. Lemma 3.2. The analysis for lo
al 
onvergen
e 
onsistsof bounding kwk+1 � w�k in terms of kwk � w�k (for q-linear and q-superlinear 
onvergen
e) orkwk � w�k2 (for q-quadrati
 
onvergen
e). From the expressions (20) and (21), we observe thatthese bounds will depend on the following quantities:j1� �kj ; �k ; krkk ; ks1kk ;kF�;k(wk)� F�;k(w�)�rF�;k(w�)(wk �w�)k ;k(rF�;k(w�)�A�;k)(wk � w�)k :We 
an monitor the sizes of j1� �kj, �k, krkk, and ks1kk, for
ing these quantities to satisfy spe
i�
asymptoti
 
onditions.The term kF�;k(wk)�F�;k(w�)�rF�;k(w�)(wk�w�)k is bounded by a 
onstant times kwk�w�k2.If Hk = r2xx`(xk; �k) then (rF�;k(w�) � A�;k)(wk � w�) = 0 and the q-quadrati
 
onvergen
e isa
hievable. In the 
ase where Hk is an approximation to r2xx`(xk; �k), we 
an expe
t q-linear orq-superlinear 
onvergen
e. The following lemma is important for the q-linear 
onvergen
e sin
eit determines that A�;k is 
lose to rF�;k(w�) provided wk is suÆ
iently 
lose to w� and Hk issuÆ
iently 
lose to r2xx`(xk; �k).Lemma 3.2 There exist positive numbers � and Æ su
h that if kwk�w�k � � and kHk�r2xx`(x�; ��)k �Æ, then A�;k is nonsingular, kA�1�;kk � �4 ;and kA�;k �rF�;k(w�)k � �5(Æ + �) ;where �4 and �5 are positive 
onstants independent of k.Proof: We haveA�;k�rF�;k(w�) =  D�;k(wk)2Hk �D�;k(w�)2r2xx`� +Ek �E� D�;k(wk)2rgk �D�;k(w�)2rg�rg>k �rg>� 0 ! :Now, if we add and subtra
t D�;k(wk)2r2xx`� in the 1; 1 blo
k and D�;k(wk)2rg� in the 1; 2 blo
k,we obtainkA�;k �rF�;k(w�)k2F � kD�;k(wk)2k2F kHk �r2xx`�k2F + kD�;k(wk)2 �D�;k(w�)2k2F kr2xx`�k2F+ kEk �E�k2F+ kD�;k(wk)2k2F krgk �rg�k2F + kD�;k(wk)2 �D�;k(w�)2k2F krg�k2F+ krg>k �rg>� k2F :Sin
e kD�;k(wk)2 �D�;k(w�)2k2F � kxk � x�k2 ; kEk �E�k2F � kxk � x�k2 ;and rg(x) is Lips
hitz 
ontinuous, we getkA�;k �rF�;k(w�)k2 � �25(Æ2 + �2) � �25(Æ2 + �2 + 2Æ�) ;where �5 is positive and independent of k. The proof is 
omplete sin
e we know, from fa
t 2 (inSe
tion 2.1), that the matrix rF�;k(w�) is nonsingular. 29



4 Lo
al 
onvergen
eThe results in this se
tion rely on the 
lassi
al theory of quasi-Newton methods (see the papersby Broyden, Dennis, and Mor�e [4℄ and Dennis and Mor�e [11℄) and 
orrespond to the results thatYamashita and Yabe [29℄ obtained for the lo
al version of the primal-dual interior-point algorithm.The proofs are similar and are omitted. The �rst result is the q-linear 
onvergen
e of the aÆne-s
aling interior-point algorithm. We require the approximation Hk to the Hessian to satisfy thebounded deterioration property (22). In the following theorems, if fakg and fbkg are sequen
esof positive numbers, then ak = O(bk) is a notation for lim supk!+1 ak=bk < +1 and ak = o(1)represents lim supk!+1 ak = 0.Theorem 4.1 Suppose Assumptions 2.1 hold. Consider a sequen
e generated by Algorithm 2.1where 0 < �̂ � �k � 1 ; �k = O �kF�;k(wk)k1+�1� ;krkk = O �kF�;k(wk)k1+�1� ; and ks1kk = O �kF�;k(wk)k�2� ;and fHkg satis�es the bounded deterioration propertykHk+1 �r2xx`�kM � (1 + �1�k)kHk �r2xx`�kM + �2�k ; (22)with �k = maxfkwk+1 �w�k; kwk � w�kg :(The 
onstants �1, �2, �1, and �2 are positive.)For ea
h � 2 (1� �̂ ; 1) there exist an �(�) > 0 and a Æ(�) > 0 su
h that if kw0�w�k � �(�) andkH0 �r2xx`�k � Æ(�), the sequen
e fwkg is well de�ned, 
onverges to w�, and the rate is q-linearwith 
onstant �, i.e., kwk+1 � w�k � �kwk � w�k :The 
hara
terization of q-superlinearity is given by a Dennis-Mor�e 
ondition (see (23) below).Theorem 4.2 Suppose Assumptions 2.1 hold. Consider a sequen
e fwkg generated by Algorithm2.1 
onverging q-linearly to w�, where1� �k = o(1) ; �k = O (kF�;k(wk)k) ;krkk = O (kF�;k(wk)k) ; and ks1kk = o(1) :The sequen
e fwkg 
onverges q-superlinearly to w� if and only iflimk!+1 k(Ak �rF�;k(w�))(wk+1 � wk)kkwk+1 � wkk = 0 :It is easy to prove that limk!+1 k(Hk �r2xx`�)(xk+1 � xk)kkxk+1 � xkk = 0 (23)implies limk!+1 k(Ak �rF�;k(w�))(wk+1 � wk)kkwk+1 � wkk = 0 :Finally, we state the q-quadrati
 
onvergen
e of the aÆne-s
aling interior-point algorithm.10



Theorem 4.3 Suppose Assumptions 2.1 hold. Consider a sequen
e generated by Algorithm 2.1where Hk = r2xx`(xk; �k),1� �k = O (kF�;k(wk)k) ; �k = O �kF�;k(wk)k2� ;krkk = O �kF�;k(wk)k2� ; and ks1kk = O (kF�;k(wk)k) :There exists � > 0 su
h that if kw0 �w�k � �, then the sequen
e fwkg is well de�ned, 
onverges tow�, and the rate is q-quadrati
, i.e.,kwk+1 �w�k � �6kwk � w�k2 ; (24)where �6 is positive and independent of k.Referen
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