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1 Introduction and historical notesMultilevel optimization problems are mathematical programs which have a subset oftheir variables constrained to be an optimal solution of other programs parameter-ized by their remaining variables. When these other programs are pure mathematicalprograms we are dealing with bilevel programming. Three level programming resultswhen these other programs are themselves bilevel programs. By extending this ideait is possible to de�ne multilevel programs with any number of levels.The (continuous) bilevel programming problem (BPP) is de�ned as:minx;y F (x; y)subject to g(x; y) � 0;where y, for each value of x, is the solution of the so{called lower level problem:miny f(x; y)subject to h(x; y) � 0;with x 2 IRnx, y 2 IRny , F; f : IRnx+ny ! IR, g : IRnx+ny ! IRnu and h :IRnx+ny ! IRnl. Variables x (y) are called the upper (respectively lower) levelvariables, g(x; y) � 0 (h(x; y) � 0) the upper (lower) level constraints and F (x; y)(f(x; y)) the upper (lower) level objective function. Furthermore the relaxed problemassociated with BPP can be stated as:minx;y F (x; y)subject to g(x; y)� 0; h(x; y) � 0;and its optimal value is a lower bound for the optimal value of the BPP. Otherimportant BPP de�nitions and notations are itemized below.� the relaxed feasible set (or constraint region),
 = f(x; y) : g(x; y)� 0; h(x; y) � 0g:� for each x, the lower level feasible set,
(x) = fy : h(x; y) � 0g:� for each x, the lower level reaction set (follower's feasible region),M(x) = fy : y 2 argminff(x; y) : y 2 
(x)gg :� for each x and any value of y in M(x), the lower level optimal value,v(x) = f(x; y)2



� the induced (inducible) region,IR = f(x; y) : (x; y) 2 
; y 2M(x)g:The induced region is the feasible set of the BPP. It is usually nonconvex and,in the presence of upper level constraints, can be disconnected or even empty. Thereader is referred to T. Edmunds and J. Bard [73] for a short description of theconditions under which the induced region is compact and the BPP has an optimalsolution.The BPP is convex if f(x; y) and h(x; y) are convex functions in y for all valuesof x (i.e., if the lower level problem is convex). The convex BPP has received mostof the attention in the literature. The advantage of dealing with the convex BPPis that under an appropriate constraint quali�cation, the lower level problem canbe replaced by its Karush{Kuhn{Tucker (KKT) conditions to obtain an equivalent(one{level) mathematical program. However, despite their designation, convex BPPshave nonconvex induced regions that can be disconnected or even empty in thepresence of upper level constraints. There are three important classes of convexBPPs, namely:� the linear BPP, where all functions involved are a�ne.� the linear{quadratic BPP, where the lower level objective is a convex quadraticand all remaining functions are a�ne.� the quadratic BPP, that di�ers from the linear{quadratic BPP in that theupper level objective is also a quadratic function.The original formulation for bilevel programming appeared in 1973, in a paperauthored by J. Bracken and J. McGill [41], although is was W. Candler and R. Nor-ton [51] that �rst used the designation bilevel and multilevel programming. However,it was not until the early eighties that these problems started receiving the attentionthey deserve. Motivated by the game theory of H. Stackelberg [150], several authorsstudied bilevel programming intensively and contributed to its proliferation in themathematical programming community. At this stage, references such as E. Aiyoshiand K. Shimizu [1], [146], [147], J. Bard and J. Falk [11], [20], W. Bialas, H. Karwanand J. Shaw [34], [35], [37], W. Candler, J. Fortuny-Amat, B. McCarl, R. Nortonand R. Townley [50], [51], [52], [53], [77] and U. Wen [163] should be distinguished.Since 1980 a signi�cant e�ort has been devoted to understanding the fundamentalconcepts associated with bilevel programs. At the same time several algorithms havebeen proposed for solving these problems. Important surveys of these e�orts includethose by C. Kolstad [99], G. Savard [140] and G. Anandalingam and T. Friesz [8].Recently, a survey on the linear case has been written by O. Ben-Ayed [25].3



2 Properties of bilevel programsIt is our opinion that bilevel programming represents an interesting and rich �eldof mathematical programming and although some important results have alreadybeen obtained it is still a fertile area for research. In this section we list some of thewell{known properties of the BPP.Optimality conditionsSeveral di�erent optimality conditions have been proposed in the literature.A �rst attempt was made by J. Bard [16] using an equivalence with a one{level mathematical program having an in�nite and parametric set of constraints.However a counter example to these conditions was discovered by P. Clarke andA. Westerberg [61] and by A. Haurie, G. Savard and D. White [85]. Consequently,two algorithms based on these conditions (proposed in [13], [14] and [158]) are notconvergent (see [140]).Y. Chen and M. Florian [57], S. Dempe [66, 67], Y. Ishizuka [88], J. Outrata [135],and J. Ye and D. Zhu [174] used nonsmooth analysis, whereas Z. Bi and P. Cala-mai [31] explored the relationship between the BPP and an associated exact penaltyfunction, to derive other necessary and su�cient optimality conditions.Unlike much of the optimality analysis that has been done for (one{level) mathe-matical programs these aforementioned contributions have mostly ignored the specialgeometry of the BPP. To partially address this void G. Savard and J. Gauvin [141]have proposed necessary optimality conditions based on the concept of the steepestdescent direction. More directly, L. Vicente and P. Calamai [160] have proposed nec-essary and su�cient optimality conditions, based on the geometry of the BPP, thatare generalizations of the well{known �rst and second order optimality conditionsfor mathematical programs.ComplexityThe di�culty and complexity of the BPP is easily con�rmed by looking at whatmight be considered its simplest version, the linear BPP. Examples of linear BPPswith an exponential number of local minima can be generated using a techniqueproposed by P. Calamai and L. Vicente [48]. R. Jeroslow [92] showed that the linearBPP is NP{Hard. A few years later, J. Bard [19] and O. Ben-Ayed and C. Blair [26],con�rmed this result and presented shorter proves. The tightest complexity resultis due to P. Hansen, B. Jaumard and G. Savard [81], where it is established that thelinear BPP is strongly NP{Hard. Recently, L. Vicente, G. Savard and J. J�udice [162]have shown that checking local optimality in a linear BPP is a NP{Hard problem.4



Related problemsThe fact that important mathematical programs, such as minimax problems, linearinteger, bilinear and quadratic programs, can be stated as special instances of bilevelprograms illustrates the importance of these problems.Although it is a simple matter to see that a minimax problem can be rewritten asa BPP problem, the �rst authors exploiting the reduction of a bilinear program to alinear BPP were G. Gallo and A. �Ulk�uc�u [80]. This result also established that anyinteger or concave quadratic program could be written as a linear BPP. One mightthink that any linear BPP can also be reduced to a bilinear program, thereby estab-lishing an equivalence between these problems. However this is not entirely possiblesince the reciprocal result states that there exists a (penalized) bilinear programwhose optimal (global) solutions are also global solutions of the corresponding lin-ear BPP (see [171]). Finally, the reduction of any quadratic program to a quadraticBPP with bilinear objective functions is described in L. Vicente [159].Although several authors have attempted to establish a link between two objec-tive optimization and bilevel programming (J. Bard [16] and G. �Unl�u [158]), nonehave succeeded thus far in proposing conditions that guarantee that the optimal so-lution of a given bilevel program is Pareto-optimal or e�cient [85] for both upper andlower level objective functions (W. Candler [49], P. Clarke and A. Westerberg [61],A. Haurie, G. Savard and D. White [85], P. Marcotte [115], P. Marcotte and G.Savard [117] and U. Wen and S. Hsu [167]).The static Stackelberg problem (SSP) can be posed as:minx F (x; y)subject to g(x; y)� 0;y 2 argminff(x; y) : h(x; y) � 0g;and di�ers from the BPP in the way the upper level function is minimized. If thereaction set fy : y 2 argminff(x; y) : h(x; y) � 0gg is not a singleton for somevalues of x with g(x; y) � 0, then a solution of the SSP might not be a solution ofthe BPP. Comments on this problem and its relationships with game theory can befound in [140].Other two{level optimization problems might also be confused with bilevel pro-grams. That is the case with the following problem studied by T. Tanino and T.Ogawa [154]. minx;y F(x) = F (x; v(x))subject to G(x) � 0;where y, for each value of x, is the solution of the second optimization problem:miny f(x; y)subject to h(x; y) � 0;5



v(x) is the optimal value of the second problem parameterized by x, and G : IRnx !IRnu. Under certain convexity and di�erentiability assumptions these authors havedemonstrated that this problem can be treated as a one{level convex optimizationproblem and proposed a descent algorithm for its solution.Authors who have studied generalized bilevel programming problems include T.Friesz et. al. [79], J. Outrata [136] and P. Marcotte and D. Zhu [119] who replacedthe BPP lower level problem with a variational inequality problem.3 Solution of bilevel programsThe algorithms that have been proposed for solving continuous bilevel programmingproblems may be divided in �ve di�erent classes. In most cases these algorithms canbe tested and compared using the test problem generators proposed by P. Calamaiand L. Vicente [46], [48], [47] for generating linear, linear{quadratic and quadraticBPPs.Extreme point algorithmsMost of these algorithms are applied to the solution of linear BPPs. Every linearBPP with a �nite optimal solution shares the important property that at least oneoptimal (global) solution is attained at an extreme point of the set 
. This result was�rst established by W. Candler and R. Townsley [53] for linear BPPs with no upperlevel constraints and with unique lower level solutions. Afterwards J. Bard [15] andW. Bialas and M. Karwan [36] proved it under the assumption that 
 is bounded.The result for the case where upper level constraints exist has been established byG. Savard [140] under no particular assumptions. We remark that this property isno longer valid for linear{quadratic BPPs.Based on this property, W. Candler and R. Townsley [53] and W. Bialas andM. Karwan [36] have proposed algorithms that compute global solutions of linearBPPs by enumerating the extreme points of 
. Whereas the former algorithmenumerates basis of the lower level problem, the latter, known as the \Kth{best",enumerates basis of the relaxed problem. Other extreme point approaches for linearBPPs have been proposed by Y. Chen and M. Florian [58], [60], S. Dempe [64], G.Papavassilopoulos [138] and H. Tuy, A. Midgalas and P. V�arbrand [156].L. Vicente, G. Savard and J. J�udice [162] have studied the induced regions of thequadratic BPP and introduced the concepts of extreme induced region points andextreme induced region directions. They proposed extreme point algorithms thatcompute local star minima and local minima depending on the nature of the upperlevel objective function. 6



Branch and bound algorithmsBranch and bound methods are widely applied to convex bilevel programs. Al-though they are associated with large computational e�orts they are also capable ofcomputing global minima. Several approaches exploit the complementarity betweenthe multipliers and the slack variables that arises from the KKT conditions of thelower level problem. That is the case of the algorithms proposed by J. Bard andJ. Falk [20] and J. Fortuny-Amat and B. McCarl [77] for the linear case, J. Bardand J. Moore [21] for the linear{quadratic case and F. Al-Khayyal, R. Horst and P.Pardalos [3], J. Bard [18] and T. Edmunds and J. Bard [73] for the quadratic case.Using di�erent branching strategies, P. Hansen, B. Jaumard and G. Savard [81]have proposed a branch and bound algorithm for the solution of the linear BPPthat seems particularly e�cient for the solution of medium{scale problems.Although little attention has been given to the case in which some variables arerestricted to have integer values J. Bard and J. Moore [22], [124] and U. Wen and Y.Yang [170] have proposed branch and bound procedures for the solution of integerlinear instances of the BPP, and T. Edmunds and J. Bard [74] have introduced abranch and bound algorithm for the solution of the integer quadratic BPP.Complementarity pivot algorithmsThe �rst complementarity pivot algorithm for solving linear BPPs was proposed byW. Bialas, M. Karwan and J. Shaw [37]. This algorithm cannot, as suggested in [36],compute global solutions of linear BPPs (see examples in [26] and [93]).By combining some of the ideas from the last two classes of algorithms, J. J�udiceand A. Faustino proposed the SLCP (sequential linear complementarity problem)algorithm for the computation of �{global solutions of linear ([93], [94]) and linear{quadratic ([95]) BPPs. This algorithm seems quite e�cient for the solution ofmedium{scale problems.Another complementarity pivot approach which can be classi�ed as a modi�edsimplex approach was proposed by H. �Onal [133].Descent methodsIn this class we include methods incorporating descent directions that are designedto compute stationary points and local minima. A classical example is the steepestdescent direction algorithm extended to nonlinear bilevel programming by G. Savardand J. Gauvin [141]. Here the computation of the steepest descent direction for aBPP is done with the help of a linear{quadratic BPP. L. Vicente, G. Savard and J.J�udice [162] studied the application of this algorithm to convex bilevel programming,where the lower level problems are strictly convex quadratic programs, and proposedappropriate stepsize rules to displacements along directions in the induced region.A second classical algorithm is the one proposed by C. Kolstad and L. Las-don [100] for the solution of nonlinear BPPs. This algorithm consists of applying7



gradient information to the implicit optimization problem:minx F (x; y(x))subject to g(x; y(x))� 0where fy(x)g is the lower level reaction set for all values of x. The authors introduceda local estimation of the gradient of y and applied a BFGS quasi{Newton algorithmto the solution of an unconstrained version of this problem.Another descent approach can be found in M. Florian and Y. Chen [75].Penalty function methodsSome of the methods in this class can also be classi�ed as descent algorithms. Theyusually incorporate exact penalty functions and are limited to computing stationarypoints and local minima. See E. Aiyoshi and K. Shimizu [1], [2], [147], and Z. Bi, P.Calamai and A.R. Conn [32], [33] for the case where the penalty term incorporatesthe lower level objective function, and Y. Ishizuka and E. Aiyoshi [89] for the casewhere both objective functions are penalized. The reader is also referred to thework of P. Loridan and J. Morgan on approximation and stability results for bilevelprogramming that might be of interest for the convergence theory of these and otheralgorithms, and to Z.-Q. Luo, J.-S. Pang and S. Wu [112] for the derivation of anexact penalty function that only uses the square-root of the complementarity termassociated with the lower level quadratic program as the penalty term.In [171], D. White and G. Anandalingam exploit the penalized bilinear versionof a linear BPP and introduce a exact penalty function algorithm that �nds a globalsolution of the linear BPP by solving a sequence of bilinear programs.4 Multilevel programming and applicationsAs stated before, bilevel programming is a special case of multilevel programming.However, as described by C. Blair [39], the complexity of these problems increasessigni�cantly when the number of levels is greater than two. In spite of this, three leveland multilevel programming has been studied in the literature by, among others, J.Bard [15], J. Bard and J. Falk [20], H. Benson [29], R. Jan and M. Chen [90] and U.Wen and W. Bialas [166].The particular structure of bilevel and multilevel programs facilitates the formu-lation of a number of practical problems that involve an hierarchical decision makingprocess. Among the several applications of bilevel and multilevel programming thefollowing are noteworthy:� Transportation { Network design problem (L. LeBlanc and D. Boyce [102],O. Ben-Ayed, C. Blair, D. Boyce and L. LeBlanc [27], [28], P. Marcotte [114], P.Marcotte and G. Marquis [116] and S. Suh and T. Kim [151]) and trip demand8



estimation problem (M. Florian and Y. Chen [75], [76] and R.L. Tobin and T.L.Friesz [155]).� Management { Coordination of multidivisional �rms (J. Bard [13]), net-work facility location with delivered price competition (T. Miller, T. Frieszand R. Tobin [122]) and credit allocation (R. Cassidy and M. Kirby and W.Raike [54]).� Planning { Application of agricultural policies (W. Candler, J. Fortuny-Amatand B. McCarl [50], W. Candler and R. Norton [51], [52] and H. �Onal [132])and electric utility planning (A. Haurie, R. Loulou and G. Savard [83] and B.Hobbs and S. Nelson [86]).� Engineering Design { Optimal design problems (M. Kocvara and J. Out-rata [97], [98] and P. Neittaanm�aki and A. Stachurski [130]).We believe that bilevel programming can play an important role in other branchesof mathematical programming. For example, bilevel programming can provide anovel approach for analyzing the step selection subproblem in a trust region al-gorithm for nonlinear equality constrained optimization (see [55]), and has beenapplied to the discriminant problem [118].5 How to contribute and how to get this reportThe subjects covered in this bibliography review are bilevel and multilevel program-ming and Stackelberg problems when considered as optimization problems { usuallycalled static Stackelberg problems. We have selected contributions in this area thatdeal with theory issues (properties, existence of solution, optimality conditions andso on), algorithms and numerical results, software and generation of test problems,applications and complexity issues.References to be cited should be books, articles published in journals or specialvolumes and technical reports that are available to the broad research community.Conferences and seminar abstracts are not included.Many of the references listed in our bibliography have been cited in the texthowever for completeness we have included all qualifying references that we arefamiliar with.This bibliography review is updated biannually and is available via email oranonymous ftp. It consists of the BibTeX �le bilevel-review.bib that contains thebibliographic entries and the LaTeX �le bilevel-review.tex that constitutes thismanuscript. In order to get these �les:� Most preferably, using anonymous ftp:Compressed versions of these two �les can be obtained using the procedure9



described below. Entries on the left are the prompts (typewriter type style)and example responses (bold typewriter type style) whereas those on the rightare comments that describe the corresponding action.% ftp dial.uwaterloo.ca connect to machineName (machine:userid): anonymous use userid anonymousPassword: jqpublic@domain use email address passwordftp> cd pub/phcalamai/bilevel-review move to correct directoryftp> binary set transfer typeftp> get bilevel-review.tex.Z fetch compressed latex �leftp> get bilevel-review.bib.Z fetch compressed bib �leftp> quit terminate ftp session% uncompress bilevel-review.tex.Z expand latex �le% uncompress bilevel-review.bib.Z expand bib �le% latex bilevel-review create aux �le% bibtex bilevel-review create bbl �le% latex bilevel-review incorporate bibliography% latex bilevel-review handle forward references� Less preferably, using email:Simply send an email message requesting bilevel-review.bib and bilevel-review.texto phcalamai@dial.uwaterloo.caAll contributions, corrections and suggestions are welcome and should be sentto either of the authors' addresses or (preferably) to the email address listed above.References[1] E. Aiyoshi and K. Shimizu. Hierarchical decentralized systems and its newsolution by a barrier method. IEEE Transactions on Systems, Man, andCybernetics, 11:444{449, 1981.[2] E. Aiyoshi and K. Shimizu. A solution method for the static constrainedStackelberg problem via penalty method. IEEE Transactions on AutomaticControl, 29:1111{1114, 1984.[3] F. Al-Khayyal, R. Horst, and P. Pardalos. Global optimization of concavefunctions subject to quadratic constraints: an application in nonlinear bilevelprogramming. Annals of Operations Research, 34:125{147, 1992.[4] N. Alexandrov and J. E. Dennis. Algorithms for bilevel optimization. TechnicalReport TR94{34, Department of Computational and Applied Mathematics,Rice University, 1994. 10
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