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Abstract. In this paper we prove global convergence for first and second-order stationary points
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are based on the sequential minimization of quadratic (or linear) models built from evaluating the
objective function at sample sets. The derivative-free models are required to satisfy Taylor-type
bounds but, apart from that, the analysis is independent of the sampling techniques.
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1. Introduction. Trust-region methods are a well studied class of algorithms
for the solution of nonlinear programming problems [2, 8]. These methods have a
number of attractive features. The fact that they are intrinsically based on quadratic
models makes them particularly attractive to deal with curvature information. Their
robustness is partially associated with the regularization effect of minimizing quadratic
models over regions of predetermined size. Extensive research on solving trust-region
subproblems and related numerical issues has led to efficient implementations and
commercial codes. On the other hand, the convergence theory of trust-region methods
is both comprehensive and elegant in the sense that it covers many problem classes and
particularizes from one problem class to a subclass in a natural way. Many extensions
have been developed and analyzed to deal with different algorithmic adaptations or
problem features (see [2]).

One problem feature which frequently appears in computational science and en-
gineering is the unavailability of derivative information, which can occur in several
forms and degrees. Trust-region methods have been designed since the beginning of
their development to deal with the absence of second-order derivatives and to in-
corporate quasi-Newton techniques. However, the design and analysis of rigorous
trust-region methods for derivative-free optimization, when both first and second-
order derivatives are unavailable and hard to approximate directly, is a relatively
recent topic [1, 3, 7, 12].

In this paper we address trust-region methods for unconstrained derivative-free
optimization. These methods maintain linear or quadratic models which are based
only on the objective function values computed at sample points. The corresponding
models can be constructed by means of polynomial interpolation or regression or by
any other approximation technique. The approach taken in this paper abstracts from

∗Department of Mathematical Sciences, IBM T.J. Watson Research Center, Route 134, P.O. Box
218, Yorktown Heights, New York 10598, USA (arconn@us.ibm.com).
†Department of Mathematical Sciences, IBM T.J. Watson Research Center, Route 134, P.O. Box

218, Yorktown Heights, New York 10598, USA (katya@us.ibm.com).
‡CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

(lnv@mat.uc.pt). Support for this author was provided by FCT under grant POCI/59442/MAT/2004
and PTDC/MAT/64838/2006.

1



the specifics of model building. In fact, it is not even required that these models are
polynomial functions as long as Cauchy and eigenvalue decreases can be extracted
from the trust-region subproblems. Instead, it is required that the derivative-free
models have a uniform local behavior (possibly after a finite number of modifications
of the sample set) similar to what is observed by Taylor models in the presence of
derivatives. We call such models, depending on their accuracy, fully linear and fully
quadratic. It is shown in [4, 5] how such fully-linear and fully-quadratic models can
be constructed in the context of polynomial interpolation or regression.

In recent years there have been a number of trust-region based methods for deriva-
tive-free optimization. These methods can be classified into two categories: the meth-
ods which target good practical performance, such as the methods in [7, 12], and
which, up to now, had no supporting convergence theory; and the methods for which
global convergence was shown, but at the expense of practicality, such as described
in [2, 3]. In this paper we are trying to bridge the gap by describing an algorithmic
framework in the spirit of the first category of methods, while retaining all the same
global convergence properties of the second category. We list next the features that
make our algorithm closer to a practical one when compared to the methods in [2, 3].

The trust-region maintenance in this paper is different from the approaches in
derivative-based methods [2]. In derivative-based methods, under appropriate condi-
tions, the trust-region radius becomes bounded away from zero when the iterates con-
verge to a local minimizer [2, Theorem 6.5.5], hence, its radius can remain unchanged
or increase near optimality. This is not the case in trust-region derivative-free meth-
ods. The trust region for these methods serves two purposes: it restricts the step
size to the neighborhood where the model is assumed to be good, and it also defines
the neighborhood in which the points are sampled for the construction of the model.
Powell in [12] suggests to use two different trust regions, which makes the method and
its implementation more complicated. We choose to maintain only one trust region.
However, it is important to keep the radius of the trust region comparable to some
measure of stationarity so that when the measure of stationarity is close to zero (that
is the current iterate may be close to a stationary point) the models become more
accurate, a procedure that is accomplished by the so-called criticality step [3]. The
update of the trust-region radius at the criticality step forces it to converge to zero,
hence defining a natural stopping criterion for this class of methods.

Another feature of our algorithm is the acceptance of new iterates that provide
simple decrease in the objective function, rather than a sufficient decrease. This fea-
ture is of particular relevance in the derivative-free context, especially when function
evaluations are expensive. As in the derivative case [9], the standard liminf-type re-
sults are obtained for general trust-region radius updating schemes. In particular, it is
possible to update the trust-region radius freely at the end of successful iterations (as
long as it is not decreased). However, to derive the classical lim-type global conver-
gence result [13] (see also [2, Theorem 6.4.6]) an additional requirement is imposed on
the update of the trust-region radius at successful iterations, to avoid a cycling effect
of the type described in [14]. But, because of the update of the trust-region radius
at the criticality step mentioned in the previous paragraph, such provisions are not
needed to achieve lim-type global convergence to first-order critical points even when
iterates are accepted based on simple decrease. (We point out that a modification to
derivative-based trust-region algorithms based on a criticality step would produce a
similar lim-type result. However, forcing the trust-region radius to converge to zero
may jeopardize the fast rates of local convergence in the presence of derivatives.)
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In our framework it is possible to make steps, and for the algorithm to progress,
without insisting that the model is made fully linear or fully quadratic on every
iteration. In contrast with [2] and [3], we only require (i) that the models can be
made fully linear or fully quadratic during a finite, uniformly bounded, number of
iterations and (ii) that if a model is not fully linear or fully quadratic (depending
on the order of optimality desired) in a given iteration then the new iterate can be
accepted as long as it provides decrease in the objective function (sufficient decrease
for the lim-result). This modification slightly complicates the convergence analysis,
but it reflects much better the typical implementation of a trust-region derivative-free
algorithm.

As far as we are aware, we provide the first comprehensive analysis of global
convergence of trust-region derivative-free methods to second-order stationary points.
It is mentioned in [2, Pages 321–322] that such analysis can be simply derived from the
classical analysis for the derivative-based case. However, as we remarked above, the
algorithms in [2, 3] are not as close to a practical one as the one suggested here and,
moreover, the details of adjusting a ‘classical’ derivative-based convergence analysis
to the derivative-free case are not as trivial as one might expect, even without the
additional ‘practical’ changes to the algorithm. We observe, for instance, that it is not
necessary to increase the trust-region radius on every successful iteration, as it is done
in classical derivative-based methods to ensure lim-type global convergence to second-
order critical points (even when iterates are accepted based on simple decrease of the
objective function). In fact, in the case of the second-order analysis, the trust region
needs to be increased only when it is much smaller than the measure of stationarity,
to allow large steps when the current iterate is far from a stationary point and the
trust-region radius is too small.

The trust-region framework we propose and analyze is sufficiently general to cover
a wide class of derivative-free methods. The focus of the paper, however, is on global
convergence (convergence to some form of stationarity from arbitrary starting points).
We provide no analysis for local rates of convergence. As a result, the fully-linear
models constructed with n + 1 points, 2n + 1 points or (n + 1)(n + 2)/2 − 1 points,
for instance, are treated exactly the same by our theory, while it is clear that the
corresponding local convergence rates might differ significantly. As mentioned earlier,
the theory supporting global convergence to first-order stationary points presented
in this paper only requires that fully-linear models are constructed in a finite and
uniformly bounded number of iterations. While fully-quadratic models are required
for global convergence to second-order stationary points they may require an excessive
number of sample points (of the order of n2). Our framework does not enforce fully-
quadratic models on every iteration, but does not eliminate the necessity of these
models to achieve second-order global convergence. In cases when n is too large to
allow for the use of fully-quadratic models, underdetermined quadratic models can be
successfully used and the first-order global convergence theory applies.

The paper is organized as follows. In Section 2 we review the basic concepts of
trust-region methods needed in this paper. The properties of fully-linear and fully-
quadratic models are discussed in Section 3. Then, in Section 4 we introduce a general
derivative-free trust-region method. The corresponding analysis of global convergence
for first-order stationary points is given in Section 5. The second-order case is covered
in Section 6 (algorithm description) and in Section 7 (analysis of global convergence
to second-order stationary points).
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Notation. There are several constants used in this paper which are denoted by
κ with acronyms for the subscripts that are meant to be helpful. We collected their
definition in this subsection, for convenience. The actual meaning of the constants
will become clear when each of them is introduced in the paper.

κfcd ‘fraction of Cauchy decrease’
κfed ‘fraction of eigenstep decrease’
κfod ‘fraction of optimal decrease’
κblg ‘bound on the Lipschitz constant of the gradient of the models’
κblh ‘bound on the Lipschitz constant of the Hessian of the models’
κef ‘error in the function value’
κeg ‘error in the gradient’
κeh ‘error in the Hessian’
κbhm ‘bound on the Hessian of the models’

2. The trust-region framework basics. The problem we are considering is

min
x∈Rn

f(x),

where f is a real-valued function, assumed once (or twice) continuously differentiable
and bounded from below.

As in traditional derivative-based trust-region methods, the main idea is to use a
model for the objective function which one, hopefully, is able to trust in a neighbor-
hood of the current point. The model has to be fully linear in order to ensure global
convergence to a first-order critical point. One would also like to have something
approaching a fully-quadratic model, to allow global convergence to a second-order
critical point (and to speed up local convergence). Typically, the model is a quadratic,
written in the form

mk(xk + s) = mk(xk) + s>gk + 1
2s
>Hks, (2.1)

where xk is the current iterate, gk ∈ IRn, and Hk is a symmetric matrix in IRn×n.
The derivatives of this quadratic model with respect to the s variables are given by
∇mk(xk + s) = Hks+ gk, ∇mk(xk) = gk, and ∇2mk(xk) = Hk.

At each iterate k, we consider the model mk(xk + s) that is intended to approx-
imate the true objective f within a suitable neighborhood of xk — the trust region.
This region is taken for simplicity as the set of all points

B(xk; ∆k) = {x ∈ Rn : ‖x− xk‖ ≤ ∆k},

where ∆k is called the trust-region radius, and where ‖ · ‖ could be an iteration
dependent norm, but usually is fixed and in our case will be taken as the standard
Euclidean norm.

Thus, in the unconstrained case, the local model problem we are considering is
stated as

min
s∈B(0;∆k)

mk(xk + s), (2.2)

where mk(xk + s) is the model for the objective function given at (2.1) and B(0; ∆k)
is our trust region, now centered at 0 and expressed in terms of s = x− xk.
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The Cauchy step. If we define

tCk = argmint≥0:xk−tgk∈B(xk;∆k)mk(xk − tgk),

then the Cauchy step is a step given by

sC
k = −tCkgk. (2.3)

A fundamental result that drives trust-region methods to first-order criticality is
stated below (see [2, Theorem 6.3.3] for a proof).

Theorem 2.1. Consider the model (2.1) and the Cauchy step (2.3). Then,

mk(xk)−mk(xk + sC

k) ≥ 1
2‖gk‖min

[
‖gk‖
‖Hk‖

,∆k

]
, (2.4)

where we assume that ‖gk‖/‖Hk‖ = +∞ when Hk = 0.
In fact, it is not necessary to actually find the Cauchy step to achieve global

convergence to first-order stationarity. It is sufficient to relate the step computed to
the Cauchy step and thus what is required is the following assumption.

Assumption 2.1. For all iterations k,

mk(xk)−mk(xk + sk) ≥ κfcd [mk(xk)−mk(xk + sC

k)] , (2.5)

for some constant κfcd ∈ (0, 1].
The steps computed under Assumption 2.1 will therefore provide a fraction of

Cauchy decrease, which from Theorem 2.1 can be bounded below as

mk(xk)−mk(xk + sk) ≥ κfcd
2
‖gk‖min

[
‖gk‖
‖Hk‖

,∆k

]
. (2.6)

If mk(xk + s) is not a linear or a quadratic function then Theorem 2.1 is not
directly applicable. In this case one could, for instance, define a Cauchy step by
applying a line search at s = 0 along −gk to the model mk(xk+s), stopping when some
type of sufficient decrease condition is satisfied (see [2, Section 6.3.3]). Calculating a
step yielding a decrease better than the Cauchy decrease could be achieved whenever
possible by approximately solving the trust-region subproblem, which involves now
the minimization of a nonlinear function within a trust region.

The eigenstep. When considering a quadratic model and global convergence
to second-order critical points, the model reduction that is required can be achieved
along a direction related to the greatest negative curvature. Let us assume that Hk

has at least one negative eigenvalue and let τk < 0 be the most negative eigenvalue of
Hk. In this case, we can determine a step of negative curvature sE

k, such that

(sE
k)>(gk) ≤ 0, ‖sE

k‖ = ∆k, and (sE
k)>Hk(sE

k) = τk∆2
k. (2.7)

We refer to sE
k as the eigenstep.

The eigenstep sE
k is the eigenvector of Hk corresponding to the most negative

eigenvalue τk, whose sign and scale are chosen to ensure that the first two parts
of (2.7) are satisfied. Note that due to the presence of negative curvature, sE

k is
the minimizer of the quadratic function along that direction inside the trust region.
Also we do not have to insist that we use the eigenvector corresponding to the most
negative eigenvalue, any direction with sufficient negative curvature would be suitable,
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whereupon the lemma that follows would provide a fraction of the same decrease.
The eigenstep sE

k induces the following decrease in the model (the proof is trivial and
omitted).

Lemma 2.2. Suppose that the model Hessian Hk has negative eigenvalues. Then
we have that

mk(xk)−mk(xk + sE

k) ≥ −1
2τk∆2

k. (2.8)

The eigenstep plays a role similar to that of the Cauchy step, in that, provided
negative curvature is present in the model, we now require the model decrease at
xk + sk to satisfy

mk(xk)−mk(xk + sk) ≥ κfed[mk(xk)−mk(xk + sE
k)],

for some constant κfed ∈ (0, 1]. Since we also want the step to yield a fraction of
Cauchy decrease, we will consider the following assumption.

Assumption 2.2. For all iterations k,

mk(xk)−mk(xk + sk) ≥ κfod [mk(xk)−min{mk(xk + sC

k),mk(xk + sE

k)}] , (2.9)

for some constant κfod ∈ (0, 1].
A step satisfying this assumption is given, for instance, by computing both the

Cauchy step and, in the presence of negative curvature in the model, the eigenstep,
and by choosing the one that provides the larger reduction in the model. By combin-
ing (2.4), (2.8), and (2.9), we obtain that

mk(xk)−mk(xk + sk) ≥ κfod
2

max
{
‖gk‖min

[
‖gk‖
‖Hk‖

,∆k

]
,−τk∆2

k

}
. (2.10)

In some trust-region literature what is required for global convergence to second-order
critical points is a fraction of the decrease obtained by the optimal trust-region step
(i.e, an optimal solution of (2.2)). Note that a fraction of optimal decrease condition
is stronger than (2.10) for the same value of κfod.

If mk(xk+s) is not a quadratic function then Theorem 2.1 and Lemma 2.2 are not
directly applicable. Similarly to the Cauchy step case, one could here define an eigen-
step by applying a line search to the model mk(xk+s), at s = 0 and along a direction
of negative (or most negative) curvature of Hk, stopping when some type of suffi-
cient decrease condition is satisfied (see [2, Section 6.6.2]). Calculating a step yielding
a decrease better than the Cauchy and eigen decreases could be achieved whenever
possible by approximately solving the trust-region subproblem, which, again, involves
now the minimization of a nonlinear function within a trust region.

3. Conditions on derivative-free models. Since we cannot use Taylor mod-
els, the most obvious replacement is a polynomial interpolation model. In fact, in
what follows we may use polynomial interpolation or regression models (see [4, 5])
depending upon the underlying basis and the number of function values available.
What one requires in these cases for the theory to hold is Taylor-like error bounds
with a uniformly bounded constant that characterizes the geometry of the sample
sets.

In this paper we will abstract from the specifics of the models that we use. We will
only impose those requirements on the models that are essential for the convergence
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theory. We will then indicate that polynomial interpolation and regression models, in
particular, satisfy our requirements.

We will now discuss the assumptions on the models which we use to prove the
convergence of our derivative-free trust-region framework.

Fully-linear models. For the purposes of convergence to first-order critical
points, we assume that the function f and its gradient are Lipschitz continuous in
regions considered by a potential algorithm. To better define this region, we suppose
that x0 (the initial iterate) is given and that new iterates correspond to reductions in
the value of the objective function. Thus, the iterates must necessarily belong to the
level set

L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} .

However, when considering models based on sampling it is possible (especially at the
early iterations) that the function f is evaluated outside L(x0). Let us assume that
sampling is restricted to regions of the form B(xk; ∆k) and that ∆k never exceeds a
given (possibly large) positive constant ∆max. Under this scenario, the region where f
is sampled is within the set

Lenl(x0) = L(x0) ∪
⋃

x∈L(x0)

B(x; ∆max) =
⋃

x∈L(x0)

B(x; ∆max).

For fully-linear models and global convergence to first-order critical points we require
the existence of the first-order derivatives and their Lipschitz continuity.

Assumption 3.1. Suppose x0 and ∆max are given. Assume that f is continuously
differentiable in an open domain containing the set Lenl(x0) and that ∇f is Lipschitz
continuous on Lenl(x0).

Now we discuss the corresponding assumptions on the models, by introducing the
abstract concept of a fully-linear model.

Definition 3.1. Let a function f : Rn → R, that satisfies Assumption 3.1, be
given. A set of model functions M = {m : Rn → R, m ∈ C1} is called a fully-linear
class of models if:

1. There exist positive constants κef , κeg, and κblg such that for any x ∈ L(x0)
and ∆ ∈ (0,∆max] there exists a model function m(x+s) inM, with Lipschitz
continuous gradient and corresponding Lipschitz constant bounded by κblg,
and such that
• the error between the gradient of the model and the gradient of the func-

tion satisfies

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg ∆, ∀s ∈ B(0; ∆), (3.1)

and
• the error between the model and the function satisfies

|f(x+ s)−m(x+ s)| ≤ κef ∆2, ∀s ∈ B(0; ∆). (3.2)

Such a model m is called fully linear on B(x; ∆).
2. For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with respect to
x and ∆) number of steps can
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• either establish that a given model m ∈M is fully linear on B(x; ∆) (we
will say that a certificate has been provided and the model is certifiably
fully linear),

• or find a model m̃ ∈M that is fully linear on B(x; ∆).

If a model is fully linear on B(x; ∆̄) with respect to some (large enough) constants
κef , κeg, and κblg and for some ∆̄ ∈ (0,∆max], then it is also fully linear on B(x; ∆)
for any ∆ ∈ [∆̄,∆max], with the same constants. This result is stated next. The
proof is omitted since it can be derived easily from the proof of the fully-quadratic
case (see Lemma 3.4).

Lemma 3.2. Consider a function f satisfying Assumption 3.1 and a model m
fully linear, with respect to constants κef , κeg, and κblg on B(x; ∆̄), with x ∈ L(x0)
and ∆̄ ≤ ∆max.

Assume also, without loss of generality, that κeg is no less than the sum of κblg
and the Lipschitz constant of the gradient of f , and that κef > (1/2)κeg.

Then m is fully linear on B(x; ∆), for any ∆ ∈ [∆̄,∆max], with respect to the
same constants κef , κeg, and κblg.

For the remainder of the paper we assume, without loss of generality, that the
constants κef , κeg, and κblg of any fully-linear classM which we use in our algorithm
are such that Lemma 3.2 holds.

The algorithmic framework which we describe and analyze in Sections 4 and 5
relies on a fully-linear classM. To prove global convergence all that is needed is that
the models used in the algorithm belong to such a class and that Assumption 2.1
is satisfied. We allow as much flexibility for the choice of models as we can, while
retaining the convergence properties.

As a consequence of this flexibility some of the model classes that fit in the
framework are usually of no interest for a practical algorithm. For instance, consider
M = {f} — a class consisting of the function f itself. Clearly, by Definition 3.1 such
anM is a fully-linear class of models, since f is a fully-linear model of itself for any x
and ∆ and since the algorithm for verifying that f is fully-linear is trivial. However,
in derivative-free optimization, m = f is not expected to be a quadratic function.
We already discussed in Section 2 how to compute Cauchy steps and eigensteps for
non-quadratic models based on existing model gradients (which in this case would
amount to gradients of the function f itself). And, even if some model gradient is
available to extract, for instance, some form of fraction of Cauchy decrease by line
search, improving this decrease by approximately solving the trust-region subproblem,
min f(xk+s) s.t. s ∈ B(0; ∆k), seems a problem nearly as complicated as the original
one.

Another source of impractical fully-linear classes is the flexibility in the choice
of a model-improvement algorithm. The definition requires the existence of a finite
procedure which either certifies that a model is fully linear or produces such a model.
For example, Taylor models based on suitably chosen finite-differences gradient eval-
uations are a fully-linear class of models, but a model-improvement algorithm needs
to build such models ‘from scratch’ for each new x and ∆. In a derivative-free algo-
rithm with expensive (and often noisy) function evaluations this approach is typically
impractical. However, our framework still supports such an approach and guarantees
its convergence, provided that all necessary assumptions are satisfied.

To justify the usefulness of our framework we will show at the end of this section
that, reasonable, practical fully-linear model classes exist, i.e., such classes for which
the fraction of Cauchy decrease is easy to obtain and improve by approximately solving
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the trust-region subproblem, and for which there exists a practical model-improvement
algorithm.

First, we extend Definition 3.1 to fully-quadratic classes of models.

Fully-quadratic models. For global convergence to second-order critical points,
we will need an assumption on the Hessian of f .

Assumption 3.2. Suppose x0 and ∆max are given. Assume that f is twice
continuously differentiable in an open domain containing the set Lenl(x0) and that
∇2f is Lipschitz continuous on Lenl(x0).

We will now introduce formally the concept of fully-quadratic classes and models.
Definition 3.3. Let a function f , that satisfies Assumption 3.2, be given. A set

of model functions M = {m : Rn → R, m ∈ C2} is called a fully-quadratic class of
models if

1. There exist positive constants κef , κeg, κeh, and κblh, such that for any x ∈
L(x0) and ∆ ∈ (0,∆max] there exists a model function m(x+ s) in M, with
Lipschitz continuous Hessian and corresponding Lipschitz constant bounded
by κblh, and such that
• the error between the Hessian of the model and the Hessian of the func-

tion satisfies

‖∇2f(x+ s)−∇2m(x+ s)‖ ≤ κeh ∆, ∀s ∈ B(0; ∆), (3.3)

• the error between the gradient of the model and the gradient of the func-
tion satisfies

‖∇f(x+ s)−∇m(x+ s)‖ ≤ κeg ∆2, ∀s ∈ B(0; ∆), (3.4)

and
• the error between the model and the function satisfies

|f(x+ s)−m(x+ s)| ≤ κef ∆3, ∀s ∈ B(0; ∆). (3.5)

Such a model m is called fully quadratic on B(x; ∆).
2. For this class M there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with respect to
x and ∆) number of steps can
• either establish that a given model m ∈M is fully quadratic on B(x; ∆)

(we will say that a certificate has been provided and the model is certifi-
ably fully quadratic),

• or find a model m̃ ∈M that is fully quadratic on B(x; ∆).

We will now show that if a model is fully quadratic on B(x; ∆̄) with respect to
some (large enough) constants κef , κeg, κeh, and κblh and for some ∆̄ ∈ (0,∆max],
then it is also fully quadratic on B(x; ∆) for any ∆ ∈ [∆̄,∆max], with the same
constants.

Lemma 3.4. Consider a function f satisfying Assumption 3.2 and a model m
fully quadratic, with respect to constants κef , κeg, κeh, and κblh on B(x; ∆̄), with
x ∈ L(x0) and ∆̄ ≤ ∆max.

Assume also, without loss of generality, that κeh is no less than the sum of κblh
and the Lipschitz constant of the Hessian of f , and that κeg ≥ (1/2)κeh and κef ≥
(1/3)κeg.

Then m is fully quadratic on B(x; ∆), for any ∆ ∈ [∆̄,∆max], with respect to the
same constants κef , κeg, κeh, and κblh.
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Proof. Let us consider any ∆ ∈ [∆̄,∆max]. Consider, also, an s such that ∆̄ ≤
‖s‖ ≤ ∆, and let θ = ∆̄/‖s‖. Since x + θs ∈ B(x; ∆̄) then, due to the model being
fully quadratic on B(x; ∆̄), we know that

‖∇2f(x+ θs)−∇2m(x+ θs)‖ ≤ κeh∆̄.

Since ∇2f and ∇2m are Lipschitz continuous and since κeh is no less than the sum
of the corresponding Lipschitz constants, we have

‖∇2f(x+ s)−∇2f(x+ θs)−∇2m(x+ θs) +∇2m(x+ s)‖ ≤ κeh(‖s‖ − ∆̄).

Thus, by combining the above expressions we obtain

‖∇2f(x+ s)−∇2m(x+ s)‖ ≤ κeh‖s‖ ≤ κeh∆. (3.6)

Now let us consider the vector function g(α) = ∇f(x+αs)−∇m(x+αs), α ∈ [0, 1].
From the fact that m is a fully-quadratic model on B(x; ∆̄) we have ‖g(θ)‖ ≤ κeg∆̄2.
We are interested in bounding ‖g(1)‖, which can be achieved by bounding ‖g(1)−g(θ)‖
first. By applying the integral mean value theorem componentwise, we obtain

‖g(1)− g(θ)‖ =
∥∥∥∥∫ 1

θ

g′(α)dα
∥∥∥∥ ≤ ∫ 1

θ

‖g′(α)‖dα.

Now, using (3.6) we have∫ 1

θ

‖g′(α)‖dα ≤
∫ 1

θ

‖s‖‖∇2f(x+ αs)−∇2m(x+ αs)‖ dα

≤
∫ 1

θ

ακeh‖s‖2dα = (1/2)κeh(‖s‖2 − ∆̄2).

Hence from κeg ≥ 1/2κeh we obtain

‖∇f(x+ s)−∇m(x+ s)‖ ≤ ‖g(1)− g(θ)‖+ ‖g(θ)‖ ≤ κeg‖s‖2 ≤ κeg∆2. (3.7)

Finally, we consider the function φ(α) = f(x+αs)−m(x+αs), α ∈ [0, 1]. From
the fact that m is a fully-quadratic model on B(x; ∆̄), we have |φ(θ)| ≤ κef ∆̄3. We
are interested in bounding |φ(1)|, which can be achieved by bounding |φ(1) − φ(θ)|
first by using (3.7):∣∣∣∣∫ 1

θ

φ′(α)dα
∣∣∣∣ ≤ ∫ 1

θ

‖s‖‖∇f(x+ αs)−∇m(x+ αs)‖ dα

≤
∫ 1

θ

α2κeg‖s‖3dα = (1/3)κeg(‖s‖3 − ∆̄3).

Hence, from κef ≥ (1/3)κeg we obtain

|f(x+ s)−m(x+ s)| ≤ |φ(1)− φ(θ)|+ |φ(θ)| ≤ κef‖s‖3 ≤ κef∆3.

The proof is complete.
For the remainder of the paper we assume, without loss of generality, that the

constants κef , κeg, κeh, κblh of any fully-quadratic class M which we use in our
algorithm are such that Lemma 3.4 holds.
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The discussion after the definition of fully-linear class of models applies to the
fully-quadratic case almost word for word. In particular, this means that there is much
flexibility in the definition of the fully-quadratic class of models which allows for both
practical and generally impractical choices. We justify our definition by showing that
the classical choice of derivative-free models — quadratic interpolation polynomials
— form a practical fully-quadratic class (and, hence, a practical fully-linear class as
well).

Polynomial models. Given a function f that satisfies Assumption 3.2 let us
consider the set of all quadratic functions that interpolate f at exactly (n+1)(n+2)/2
distinct points. Given x and ∆, let Y ∈ B(x; ∆) be a set of interpolation points.

Definition 3.5. Given a set of interpolation points Y = {y0, y1, . . . , yp}, with
p = (n + 1)(n + 2)/2 − 1, a basis of p + 1 polynomials `j(x), j = 0, . . . , p, of degree
≤ 2, is called a basis of Lagrange polynomials if

`j(yi) = δij =
{

1 if i = j,
0 if i 6= j.

A set Y is called poised if and only if the basis of Lagrange polynomials exists and
is unique (see [6, Chapter 3]). Given Λ > 0, we say that a poised set Y is Λ–poised
in B(x; ∆) if Y ⊂ B(x; ∆) and

Λ ≥ max
0≤i≤p

max
‖s‖≤∆

|`i(x+ s)|.

It is known (for example, see [4]) that if Y is Λ–poised in B(x; ∆) then the corre-
sponding interpolating polynomial m(x+ s) exists, is unique, and satisfies (3.3)–(3.5)
(for this given x and ∆ ≤ ∆max and for some constants κef , κeg, and κeh which de-
pend only on Λ, n, and the Lipschitz constant of ∇2f in the Assumption 3.2). Hence,
we conclude that any quadratic polynomial which interpolates f on any Λ-poised
interpolation set Y is an element of the same fully-quadratic class.

We now discuss possible model-improvement algorithms to construct Λ–poised
interpolation sets with uniformly bounded Λ. There are two main requirements for a
set Y to be Λ–poised in B(x; ∆):

1. Y ⊂ B(x; ∆).
2. max0≤i≤p max‖s‖≤∆ |`i(x+ s)| ≤ Λ.

The first condition is easy to check and to enforce, at least in theory, by replacing
at most p points (it is usually assumed that x ∈ Y , hence at least one interpolation
point is always in B(x; ∆)).

Ensuring the bound on the Lagrange polynomials, on the other hand, requires
significant effort. In [4] two algorithms are proposed based on QR or LU factorizations
of a multivariate version of a Vandermonde matrix to determine whether a given
set Y is Λ–poised. It is shown that if the pivot values encountered during such
a factorization remain (in absolute value) above a certain fixed positive threshold,
then the set is Λ–poised for some large enough Λ, whose value depends on the pivot
threshold. Each pivot corresponds to an interpolation point, in fact it is a value of a
certain polynomial, let us call it a pivot polynomial, at this interpolation point. At
each step of the factorization algorithm such a pivot polynomial is generated, and
is evaluated at all remaining interpolation points. The point which gives the largest
pivot value is selected and if the pivot value is above the threshold, then the point it
accepted and the next factorization step begins. If the pivot value is too small, then
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a new point is generated. It is shown in [4] that if the threshold is reasonably small
(smaller than 1/4 in the quadratic case), then it is always possible to find a point in
B(x; ∆) for which the absolute value of this pivot polynomial is above the threshold.
Moreover, such a point can be obtained by a simple enumerating scheme. Hence, if
small pivots are encountered during the factorization, then the ‘unacceptable’ points
are replaced by ‘acceptable’ ones and after the factorization is completed the resulting
set Y is Λ–poised, with Λ independent of x and ∆.

Let us discuss whether such procedure is ‘practical’. Derivative-free optimization
problems typically address functions whose evaluation is expensive, hence a practical
approach should attempt to economize on function evaluations. The first question
about the pivoting algorithm is whether too many interpolation points need to be
replaced at each iteration.

If an interpolation point is outside B(x; ∆), then it has to be replaced. Our
algorithmic framework allows replacing only one point per iteration, hence allowing for
the possibility of further progress even before a fully-quadratic model is constructed.
Another situation when an interpolation point needs to be replaced is when a new
iterate is found and needs to be included in the interpolation set. In this case the
factorization algorithm will simply start by choosing the new iterate to generate the
first pivot and then proceed by choosing points which produce the best pivot value
until the factorization is complete. The remaining unused point will be the one which
is replaced.

If at a given step of the factorization algorithm one cannot find an interpolation
point which gives the pivot value above the threshold then a new interpolation point
needs to be generated. Our framework again allows generating only one such new
point per iteration. In practice, it turns out that if care is taken when replacing ‘far
away’ points, it is rarely necessary to replace points because of bad pivot values. It is
often beneficial to replace points anyway to improve overall poisedness, but this can
be done in an economical manner, in the sense that at most one point per iteration
gets replaced. Hence we claim that this procedure is reasonably efficient in practice
in terms of the number of function evaluations.

In terms of the linear algebra cost involved in completing the factorization proce-
dure, this cost can be as high asO(n6) per iteration to recompute all (n+1)(n+2)/2−1
pivot values. This cost is acceptable for many derivative-free applications, where the
cost of function evaluations is dominant and the dimension n is not large. However,
there are some cases when n is of the order of 100 and the cost of a function evaluation
is not as high as the cost of linear algebra per iteration.

An alternative method of maintaining interpolation models was suggested by
Powell in [10], [11], and in [12]. His method is based on considering the absolute value
of the Lagrange polynomials as the criterion for the acceptance of new interpolation
points. There are two possible situations when interpolation points are replaced.

1. A new interpolation point has to be included in the interpolation set (because
it is the new iterate). It replaces an interpolation point whose corresponding
Lagrange polynomial has a large absolute value at the new point.

2. A model is suspected of being inaccurate. Then a point furthest from the cur-
rent iterate is replaced by a point within B(x; ∆), which maximizes, possibly
approximately, the absolute value of the corresponding Lagrange polynomial.

Both of these actions are aimed at keeping points within B(x; ∆), and at reducing
the maximum value Λ of the Lagrange polynomials. This approach is efficient in
that it only replaces one or two points per iteration and the update of all Lagrange
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polynomial coefficients requires at most O(n4) per iteration. However, in addition
we need to globally optimize an absolute value of a Lagrange polynomial. See [6,
Chapter 6] for more details.

In [12] Powell suggests using 2n + 1 points to construct quadratic models based
on the minimization of the Frobenius norm of the change of the model Hessian. This
ensures the reduction of the linear algebra per-iteration cost, while still providing
adequate quadratic models. Similar techniques can be used in conjunction with the
algorithm in [4] to reduce the cost of the linear algebra. If appropriate care is taken,
the models based on 2n+ 1 points can be guaranteed to be fully linear.

We conclude this section by noting that the case of fully-linear models fits into a
similar framework. In fact, linear interpolation models can be chosen to satisfy the
requirements of Definition 3.1 (see [4]). In addition, linear and quadratic regression
polynomial models can also be chosen to satisfy the requirements of Definitions 3.1
and 3.3, respectively (see [5]). We have therefore shown the existence of several classes
of models which fit into our algorithmic framework.

The purpose of our abstraction of fully-linear and fully-quadratic models is to
allow for the use of models different from polynomial interpolation and regression,
as long as these models satisfy Assumptions 2.1 and 2.2 and fit the Definitions 3.1
and 3.3. The abstraction highlights, in our opinion, the fundamental requirements for
obtaining the appropriate convergence results.

4. Derivative-free trust-region methods (first order). We now formally
state the first-order version of the algorithm that we consider. We point out that the
model mk and the trust-region radius ∆k are only set at the end of the criticality step
(Step 1). The iteration ends by defining an incumbent model micb

k+1 and an incumbent
trust-region radius ∆icb

k+1 for the next iteration, which might then be changed or not
by the criticality step.

Algorithm 4.1 (Derivative-free trust-region method (1st order)).

Step 0 (initialization): Choose a fully-linear class of modelsM and a correspond-
ing model-improvement algorithm (see, e.g., [4]). Choose an initial point x0

and ∆max > 0. We assume that an initial model micb
0 (with gradient and

possibly the Hessian at s = 0 given by gicb0 and Hicb
0 , respectively) and a

trust-region radius ∆icb
0 ∈ (0,∆max] are given.

The constants η0, η1, γ, γinc εc, β, µ, and α are also given and satisfy the
conditions 0 ≤ η0 ≤ η1 < 1 (with η1 6= 0), 0 < γ < 1 < γinc, εc > 0,
µ > β > 0, and α ∈ (0, 1). Set k = 0.

Step 1 (criticality step): If ‖gicbk ‖ > εc then mk = micb
k and ∆k = ∆icb

k .
If ‖gicbk ‖ ≤ εc then proceed as follows. Call the model-improvement algorithm
to attempt to certify if the model micb

k is fully linear on B(xk; ∆icb
k ). If at

least one of the following conditions holds,
• the model micb

k is not certifiably fully linear on B(xk; ∆icb
k ),

• ∆icb
k > µ‖gicbk ‖,

then apply Algorithm 4.2 (described below) to construct a model m̃k(xk + s)
(with gradient and possibly the Hessian at s = 0 given by g̃k and H̃k, re-
spectively), which is fully linear (for some constants κef , κeg, and κblg, which
remain the same for all iterations of Algorithm 4.1) on the ball B(xk; ∆̃k),
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for some ∆̃k ∈ (0, µ‖g̃k‖] given by Algorithm 4.2. In such a case set1

mk = m̃k and ∆k = min{max{∆̃k, β‖g̃k‖},∆icb
k }.

Otherwise set mk = micb
k and ∆k = ∆icb

k .
Step 2 (step calculation): Compute a step sk that sufficiently reduces the model

mk (in the sense of (2.5)) and such that xk + sk ∈ B(xk; ∆k).
Step 3 (acceptance of the trial point): Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully linear (for the positive
constants κef , κeg, and κblg) on B(xk; ∆k), then xk+1 = xk + sk and the
model is updated to include the new iterate into the sample set, resulting in
a new model micb

k+1 (with gradient and possibly the Hessian at s = 0 given
by gicbk+1 and Hicb

k+1, respectively); otherwise the model and the iterate remain
unchanged (micb

k+1 = mk and xk+1 = xk).
Step 4 (model improvement): If ρk < η1 use the model-improvement algorithm

to
• attempt to certify that mk is fully linear on B(xk; ∆k),
• if such a certificate is not obtained, we say that mk is not certifiably

fully linear and make one or more suitable improvement steps.
Define micb

k+1 to be the (possibly improved) model.
Step 5 (trust-region radius update): Set

∆icb
k+1 ∈


[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,
{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.
The procedure invoked in the criticality step (Step 1 of Algorithm 4.1) is described

in the following algorithm.

Algorithm 4.2 (Criticality step: 1st order). This algorithm is only applied
if ‖gicbk ‖ ≤ εc and at least one of the following holds: the model micb

k is not certifiably
fully linear on B(xk; ∆icb

k ) or ∆icb
k > µ‖gicbk ‖. The constant α ∈ (0, 1) is chosen at

Step 0 of Algorithm 4.1.
Initialization: Set i = 0. Set m(0)

k = micb
k .

Repeat Increment i by one. Use the model-improvement algorithm to improve the
previous model m(i−1)

k until it is fully linear on B(xk;αi−1∆icb
k ) (notice that

this can be done in a finite, uniformly bounded number of steps given the
choice of the model-improvement algorithm in Step 0 of Algorithm 4.1). De-
note the new model by m(i)

k . Set ∆̃k = αi−1∆icb
k and m̃k = m

(i)
k .

Until ∆̃k ≤ µ‖g(i)
k ‖.

Note that if ‖gicbk ‖ ≤ εc in the criticality step of Algorithm 4.1 and Algorithm 4.2
is invoked, the model mk is fully linear on B(xk; ∆̃k) with ∆̃k ≤ ∆k. Then, by
Lemma 3.2, mk is also fully linear on B(xk; ∆k) (as well as on B(xk;µ‖gk‖)).

1Note that ∆k is selected to be the number in [∆̃k,∆
icb
k ] closest to β‖g̃k‖.
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We will prove in the next section that Algorithm 4.2 terminates after a finite
number of steps if ‖∇f(xk)‖ 6= 0. If ‖∇f(xk)‖ = 0, then we will cycle in the criticality
step until some stopping criterion is met.

An analogue of this step can be found in Powell’s work (e.g., [12]), and is related
to improving geometry when the step sk is much smaller than ∆k, which occurs when
the gradient of the model is small relative to the Hessian. Here we use the size of the
gradient as the criticality test. Scaling with respect to the size of the Hessian is also
possible, as long as arbitrarily small or large scaling factors are not allowed.

After Step 3 of Algorithm 4.1, we may have the following possible situations at
each iteration:

1. ρk ≥ η1, hence, the new iterate is accepted and the trust-region radius is
retained or increased. We will call such iterations successful. We will denote
the set of indices of all successful iterations by S.

2. η1 > ρk ≥ η0 and mk is fully linear. Hence, the new iterate is accepted and
the trust-region radius is decreased. We will call such iterations acceptable.
(There are no acceptable iterations when η0 = η1 ∈ (0, 1).)

3. η1 > ρk and mk is not certifiably fully linear. Hence, the model is improved.
The new point might be included in the sample set but is not accepted as a
new iterate. We will call such iterations model-improving.

4. ρk < η0 and mk is fully linear. This is the case when no (acceptable) decrease
was obtained and there is no need to improve the model. The trust-region
radius is reduced and nothing else changes. We will call such iterations un-
successful.

5. Global convergence for first-order critical points. We will first show
that unless the current iterate is a first-order stationary point then the algorithm
will not loop infinitely in the criticality step of Algorithm 4.1 (Algorithm 4.2). The
proof is very similar to the one in [3, Lemma 5.iii] but we repeat the details here for
completeness.

Lemma 5.1. If ∇f(xk) 6= 0, Step 1 of Algorithm 4.1 will terminate in a finite
number of improvement steps (by applying Algorithm 4.2).

Proof. Assume that the loop in Algorithm 4.2 is infinite. We will show that
∇f(xk) has to be zero in this case. At the start, we know that we do not have a
certifiably fully-linear model micb

k or that the radius ∆icb
k exceeds µ‖gicbk ‖. We then

define m
(0)
k = micb

k and the model is improved until it is fully linear on the ball
B(xk;α0∆icb

k ) (in a finite number of improvement steps). If the gradient g(1)
k of the

resulting model m(1)
k satisfies µ‖g(1)

k ‖ ≥ α0∆icb
k , the procedure stops with

∆̃icb
k = α0∆icb

k ≤ µ‖g(1)
k ‖.

Otherwise, that is if µ‖g(1)
k ‖ < α0∆icb

k , the model is improved until it is fully linear on
the ball B(xk;α∆icb

k ). Then, again, either the procedure stops or the radius is again
multiplied by α, and so on.

The only way for this procedure to be infinite (and to require an infinite number
of improvement steps) is if

µ‖g(i)
k ‖ < αi−1∆icb

k ,

for all i ≥ 1, where g(i)
k is the gradient of the model m(i)

k . This construction implies
that limi→+∞ ‖g(i)

k ‖ = 0. Since each model m(i)
k was fully linear on B(xk;αi−1∆icb

k )
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then (3.1) with s = 0 and x = xk provide

‖∇f(xk)− g(i)
k ‖ ≤ κegα

i−1∆icb
k

for each i ≥ 1. Thus, using the triangle inequality, it holds for all i ≥ 1

‖∇f(xk)‖ ≤ ‖∇f(xk)− g(i)
k ‖+ ‖g(i)

k ‖ ≤
(
κeg +

1
µ

)
αi−1∆icb

k .

Since α ∈ (0, 1), this implies that ∇f(xk) = 0.
We will prove now the results related to global convergence to first-order critical

points. For minimization we need to assume that f is bounded from below.
Assumption 5.1. Assume f is bounded below on L(x0), that is there exists a

constant κ∗ such that, for all x ∈ L(x0), f(x) ≥ κ∗.
We will make use of the assumptions on the boundedness of f from below and on

the Lipschitz continuity of the gradient of f (i.e., Assumptions 3.1 and 5.1), and of the
existence of fully-linear models (Definition 3.1). For simplicity of the presentation, we
also require the model Hessian Hk = ∇2mk(xk) to be uniformly bounded. In general,
fully-linear models are only required to have continuous first-order derivatives (κbhm
below can then be regarded as a bound on the Lipschitz constant of the gradient of
these models).

Assumption 5.2. There exists a constant κbhm > 0 such that, for all xk generated
by the algorithm,

‖Hk‖ ≤ κbhm.

We start the main part of the analysis with the following key lemma.
Lemma 5.2. If mk is fully linear on B(xk; ∆k) and

∆k ≤ min
[

1
κbhm

,
κfcd(1− η1)

4κef

]
‖gk‖,

then the k-th iteration is successful.
Proof. Since

∆k ≤
‖gk‖
κbhm

,

the fraction of Cauchy decrease condition (2.5)–(2.6) immediately gives that

mk(xk)−mk(xk + sk) ≥ κfcd
2
‖gk‖min

[
‖gk‖
κbhm

,∆k

]
=

κfcd
2
‖gk‖∆k. (5.1)

On the other hand, since the current model is fully linear on B(xk; ∆k), then from
the bound (3.2) on the error between the function and the model and from (5.1) we
have

|ρk − 1| ≤
∣∣∣∣f(xk + sk)−mk(xk + sk)
mk(xk)−mk(xk + sk)

∣∣∣∣+
∣∣∣∣ f(xk)−mk(xk)
mk(xk)−mk(xk + sk)

∣∣∣∣
≤ 4κef∆2

k

κfcd‖gk‖∆k

≤ 1− η1,
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where we have used the assumption ∆k ≤ κfcd‖gk‖(1− η1)/(4κef ) to deduce the last
inequality. Therefore, ρk ≥ η1, and iteration k is successful.

It now follows that if the gradient of the model is bounded away from zero then
so is the trust-region radius.

Lemma 5.3. Suppose that there exists a constant κ1 > 0 such that ‖gk‖ ≥ κ1 for
all k. Then, there exists a constant κ2 > 0 such that

∆k ≥ κ2

for all k.
Proof. We know from Step 1 of Algorithm 4.1 (independently of whether Algo-

rithm 4.2 has been invoked) that

∆k ≥ min{β‖gk‖,∆icb
k }.

Thus,

∆k ≥ min{βκ1,∆icb
k }. (5.2)

By Lemma 5.2 and by the assumption that ‖gk‖ ≥ κ1 for all k, whenever ∆k falls
below a certain value given by

κ̄2 = min
[
κ1

κbhm
,
κfcdκ1(1− η1)

4κef

]
,

the k-th iteration has to be either successful or model improving (when it is not
successful and mk is not certifiably fully linear) and hence, from Step 5, ∆icb

k+1 ≥ ∆k.
We conclude from this, (5.2), and the rules of Step 5 that ∆k ≥ min{∆icb

0 , βκ1, γκ̄2} =
κ2.

We will now consider what happens when the number of successful iterations is
finite.

Lemma 5.4. If the number of successful iterations is finite then

lim
k→+∞

‖∇f(xk)‖ = 0.

Proof. Let us consider iterations that come after the last successful iteration.
We know that we can have only a finite (uniformly bounded, say by N) number of
model-improving iterations before the model becomes fully linear and, hence, there
is an infinite number of iterations that are either acceptable or unsuccessful and in
either case the trust region is reduced. Since there are no more successful iterations,
then ∆k is never increased for sufficiently large k. Moreover, ∆k is decreased at least
once every N iterations by a factor of γ. Thus, ∆k converges to zero.

Now, for each j, let ij be the index of the first iteration after the j-th iteration
for which the model mj is fully linear. Then

‖xj − xij‖ ≤ N∆j → 0

as j goes to +∞.
Let us now observe that

‖∇f(xj)‖ ≤ ‖∇f(xj)−∇f(xij )‖+ ‖∇f(xij )− gij‖+ ‖gij‖.
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What remains to show is that all three terms on the right-hand side are converging
to zero. The first term converges to zero because of the Lipschitz continuity of ∇f
and the fact that ‖xij − xj‖ → 0. The second term is converging to zero because of
the bound (3.1) on the error between the gradients of a fully-linear model and the
function f and the fact that mij is fully linear. Finally, the third term can be shown
to converge to zero by Lemma 5.2, since if ‖gij‖ was bounded away from zero for a
subsequence, then for small enough ∆ij (recall that ∆ij → 0), ij would be a successful
iteration, which would then yield a contradiction.

We now prove that the trust-region radius converges to zero, which is particularly
relevant in the derivative-free context.

Lemma 5.5.

lim
k→+∞

∆k = 0. (5.3)

Proof. When S is finite the result is shown in the proof of Lemma 5.4. Let us
consider the case when S is infinite. For any k ∈ S we have

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)].

By using the bound on the fraction of Cauchy decrease (2.6), we have

f(xk)− f(xk+1) ≥ η1
κfcd

2
‖gk‖min

[
‖gk‖
‖Hk‖

,∆k

]
.

Due to Step 1 of Algorithm 4.1 we have ‖gk‖ ≥ min{εc, µ−1∆k}, hence

f(xk)− f(xk+1) ≥ η1
κfcd

2
min{εc, µ−1∆k}min

[
min{εc, µ−1∆k}

‖Hk‖
,∆k

]
.

Since S is infinite and f is bounded from below, the right-hand side of the above
expression has to converge to zero. Hence limk∈S ∆k = 0, and the proof is complete
if all iterations are successful. Now recall that the trust-region radius can only be
increased during a successful iteration, and it can only be increased by a ratio of at
most γinc. Let k /∈ S be the index of an iteration (after the first successful one). Then
∆k ≤ γinc∆sk

, where sk is the index of the last successful iteration before k. Since
∆sk
→ 0, then ∆k → 0, for k /∈ S.
The following lemma now follows.
Lemma 5.6.

lim inf
k→+∞

‖gk‖ = 0. (5.4)

Proof. Assume, for the purpose of deriving a contradiction, that, for all k,

‖gk‖ ≥ κ1 (5.5)

for some κ1 > 0. By Lemma 5.3 we have that ∆k ≥ κ2 for all k. We obtain a
contradiction with Lemma 5.5.

We now show that if the model gradient ‖gk‖ converges to zero on a subsequence
then so does the true gradient ‖∇f(xk)‖.

Lemma 5.7. For any subsequence {ki} such that

lim
i→+∞

‖gki‖ = 0 (5.6)
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it also holds that

lim
i→+∞

‖∇f(xki
)‖ = 0. (5.7)

Proof. First we note that, by (5.6), ‖gki‖ ≤ εc for i sufficiently large. Thus, the
mechanism of the criticality step (Step 1) ensures that the model mki

is fully linear
on a ball B(xki

; ∆ki
) with ∆ki

≤ µ‖gki
‖ for all i sufficiently large (if ∇f(xki

) 6= 0).
Then, using the bound (3.1) on the error between the gradients of the function and
the model, we have

‖∇f(xki
)− gki

‖ ≤ κeg∆ki
≤ κegµ‖gki

‖.

As a consequence, we have

‖∇f(xki
)‖ ≤ ‖∇f(xki

)− gki
‖+ ‖gki

‖ ≤ (κegµ+ 1)‖gki
‖,

for all i sufficiently large. But since ‖gki‖ → 0 then this implies (5.7).
Lemmas 5.6 and 5.7 immediately give the following global convergence result.
Theorem 5.8. Let Assumptions 3.1, 5.1, and 5.2 hold. Then,

lim inf
k→+∞

∇f(xk) = 0.

If the sequence of iterates is bounded then this result implies the existence of one
limit point that is first-order critical. In fact we are able to prove that all limit points
of the sequence of iterates are first-order critical.

Theorem 5.9. Let Assumptions 3.1, 5.1, and 5.2 hold. Then,

lim
k→+∞

∇f(xk) = 0.

Proof. Lemma 5.4 establishes that in the case when S is finite the theorem holds.
Hence, we will assume that S is infinite. Suppose, for the purpose of establishing a
contradiction, that there exists a subsequence {ki} of successful or acceptable itera-
tions such that

‖∇f(xki
)‖ ≥ ε0 > 0, (5.8)

for some ε0 > 0 and for all i (we can ignore the other types of iterations, since xk does
not change during such iterations). Then, because of Lemma 5.7, we obtain that

‖gki‖ ≥ ε > 0,

for some ε > 0 and for all i sufficiently large. Without loss of generality, we pick ε
such that

ε ≤ min
{

ε0
2(2 + κegµ)

, εc

}
. (5.9)

Lemma 5.6 then ensures the existence, for each ki in the subsequence, of a first
iteration `i > ki such that ‖g`i‖ < ε. By removing elements from {ki}, without loss of
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generality and without a change of notation, we thus obtain that there exists another
subsequence indexed by {`i} such that

‖gk‖ ≥ ε for ki ≤ k < `i and ‖g`i‖ < ε, (5.10)

for sufficiently large i, with inequality (5.8) being retained.
We now restrict our attention to the set K corresponding to the subsequence of

iterations whose indices are in the set

∪i∈N0{k ∈ N0 : ki ≤ k < `i},

where ki and `i belong to the two subsequences given above in (5.10).
We know that ‖gk‖ ≥ ε for k ∈ K. From Lemma 5.5 limk→+∞∆k = 0 and

by Lemma 5.2 we conclude that for any large enough k ∈ K the iteration k is either
successful, if the model is fully linear, or model improving, otherwise.

Moreover, for each k ∈ K ∩ S we have

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)] ≥ η1
κfcd

2
‖gk‖min

[
‖gk‖
κbhm

,∆k

]
.

(5.11)
and for any such k large enough, ∆k ≤ ε

κbhm
. Hence, we have for k ∈ K∩S sufficiently

large,

∆k ≤
2

η1κfcdε
[f(xk)− f(xk+1)].

Since for any k ∈ K large enough the iteration is either successful or model improving
and since for a model improving iteration xk = xk+1 we have, for all i sufficiently
large,

‖xki − x`i‖ ≤
`i−1∑
j=ki
j∈K∩S

‖xj − xj+1‖ ≤
`i−1∑
j=ki
j∈K∩S

∆j ≤
2

η1κfcdε
[f(xki

)− f(x`i)].

Since the sequence {f(xk)} is bounded below (Assumption 5.1) and monotonic de-
creasing, we see that the right-hand side of this inequality must converge to zero, and
we therefore obtain that

lim
i→+∞

‖xki
− x`i‖ = 0.

Now,

‖∇f(xki)‖ ≤ ‖∇f(xki)−∇f(x`i)‖+ ‖∇f(x`i)− g`i‖+ ‖g`i‖.

The first term of the right-hand side tends to zero because of the Lipschitz continuity
of the gradient of f (Assumption 3.1), and is thus bounded by ε for i sufficiently
large. The third term is bounded by ε by (5.10). For the second term we use the fact
that from (5.9) and the mechanism of the criticality step (Step 1) at iteration `i, the
model m`i is fully linear on B(x`i ;µ‖g`i‖). Thus, using using (3.1) and (5.10), we
also deduce that the second term is bounded by κegµε (for i sufficiently large). As a
consequence, we obtain from these bounds and (5.9) that

‖∇f(xki
)‖ ≤ (2 + κegµ)ε ≤ 1

2ε0
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for i large enough, which contradicts (5.8). Hence our initial assumption must be false
and the theorem follows.

Remark 5.1. This last theorem is the only result for which we need to use the
fact that xk = xk+1 at the model-improving iterations. So, this requirement could be
lifted from the algorithm if only a liminf-type result is desired. The advantage of this
is that it becomes possible to accept simple decrease in the function value even when
the model is not fully linear. The disadvantage, aside from the weaker convergence
result, is in the inherent difficulty of producing fully-linear models after at most N
consecutive model-improvement steps when the region where each such model has to
be fully linear can change at each iteration.

6. Derivative-free trust-region methods (second order). In order to
achieve global convergence to second-order critical points, the algorithm must at-
tempt to drive to zero a quantity that expresses second-order stationarity. Following
[2, Section 9.3], one possibility is to work with

σmk = max {‖gk‖,−λmin(Hk)} ,

which measures the second-order stationarity of the model.
The algorithm follows mostly the same arguments as those of Algorithm 4.1. One

fundamental difference is that σmk now plays the role of ‖gk‖. Another is the need to
work with fully-quadratic models. A third main modification is the need to be able
to solve the trust-region subproblem better, so that the step yields both a fraction of
Cauchy decrease and a fraction of the eigenstep decrease when negative curvature is
present. Finally, to prove the lim-type convergence result in the second-order case,
we also need to increase the trust-region radius on some of the successful iterations,
whereas in the first-order case that was optional. Unlike the case of traditional trust-
region methods [2, Page 158] that seek second-order convergence results we do not
increase the trust-region radius on every successful iteration. We only insist on such
an increase when the size of the trust-region radius is small when compared to the
measure of stationarity.

We state the version of the algorithm that we consider.

Algorithm 6.1 (Derivative-free trust-region method (2nd order)).
Step 0 (initialization): Choose a fully-quadratic class of models M and a corre-

sponding model-improvement algorithm (see, e.g., [4]). Choose an initial
point x0 and ∆max > 0. We assume that an initial model micb

0 micb
0 (x0 + s)

(with gradient and Hessian at s = 0 given by gicb0 and Hicb
0 , respectively),

with σm,icb0 = max{‖gicb0 ‖,−λmin(Hicb
0 )}, and a trust-region radius ∆icb

0 ∈
(0,∆max] are given.
The constants η0, η1, γ, γinc εc, β, µ, and α are also given and satisfy the
conditions 0 ≤ η0 ≤ η1 < 1 (with η1 6= 0), 0 < γ < 1 < γinc, εc > 0,
µ > β > 0, and α ∈ (0, 1). Set k = 0.

Step 1 (criticality step): If σm,icbk > εc then mk = micb
k and ∆k = ∆icb

k .
If σm,icbk ≤ εc then proceed as follows. Call the model-improvement algorithm
to attempt to certify if the model micb

k is fully quadratic on B(xk; ∆icb
k ). If

at least one of the following conditions holds,
• the model micb

k is not certifiably fully quadratic on B(xk; ∆icb
k ),

• ∆icb
k > µσm,icbk ,

then apply Algorithm 6.2 (described below) to construct a model m̃k(xk + s)
(with gradient and Hessian at s = 0 given by g̃k and H̃k, respectively),
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with σ̃mk = max{‖g̃k‖,−λmin(H̃k)}, which is fully quadratic (for some con-
stants κef , κeg, κeh, and κblh, which remain the same for all iterations of
Algorithm 6.1) on the ball B(xk; ∆̃k) for some ∆̃k ∈ (0, µσ̃mk ] given by Algo-
rithm 6.2. In such a case set2

mk = m̃k and ∆k = min{max{∆̃k, βσ̃
m
k },∆icb

k }.

Otherwise set mk = micb
k and ∆k = ∆icb

k .
Step 2 (step calculation): Compute a step sk that sufficiently reduces the model

mk (in the sense of (2.9)) and such that xk + sk ∈ B(xk; ∆k).
Step 3 (acceptance of the trial point): Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully quadratic (for the positive
constants κef , κeg, κeh, and κblh) on B(xk; ∆k), then xk+1 = xk +sk and the
model is updated to include the new iterate into the sample set resulting in
a new model micb

k+1 (with gradient and Hessian at s = 0 given by gicbk+1 and
Hicb
k+1, respectively), with σm,icbk+1 = max{‖gicbk+1‖,−λmin(Hicb

k+1)}; otherwise the
model and the iterate remain unchanged (micb

k+1 = mk and xk+1 = xk).
Step 4 (model improvement): If ρk < η1 use the model-improvement algorithm

to
• attempt to certify that mk is fully quadratic on B(xk; ∆k),
• if such a certificate is not obtained, we say that mk is not certifiably

fully quadratic and make one or more suitable improvement steps.
Define micb

k+1 to be the (possibly improved) model.
Step 5 (trust-region radius update): Set

∆icb
k+1 ∈



{min{γinc∆k,∆max}} if ρk ≥ η1 and ∆k < βσmk ,
[∆k,min{γinc∆k,∆max}] if ρk ≥ η1 and ∆k ≥ βσmk ,
{γ∆k} if ρk < η1 and mk

is fully quadratic,
{∆k} if ρk < η1 and mk

is not certifiably fully quadratic.

Increment k by one and go to Step 1.
We need to recall for Algorithm 6.1 the definitions of successful, acceptable,

model-improving, and unsuccessful iterations which we stated for the sequence of
iterations generated by Algorithm 4.1. We will use the same definitions here, adapted
to the quadratic models. We denote the set of all successful iterations by S and the
set of all such iterations when ∆k < βσmk by S+.

As in the first-order case, during a model-improvement step, ∆k and xk remain
unchanged, hence there can only be a finite number of model-improvement steps before
a fully-quadratic model is obtained. The comments outlined in Remark 5.1 about
possibly changing xk at any model-improving iteration, suitably modified, apply in
the fully-quadratic case as well.

The criticality step can be implemented following a procedure similar to the one
described in Algorithm 4.2, essentially by replacing ‖gk‖ by σmk and by using fully-
quadratic models rather than fully-linear ones.

2Note that ∆k is selected to be the number in [∆̃k,∆
icb
k ] closest to β‖σ̃m

k ‖.
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Algorithm 6.2 (Criticality step: 2nd order). This algorithm is only applied
if σm,icbk ≤ εc and at least one the following holds: the model micb

k is not certifiably
fully quadratic on B(xk; ∆icb

k ) or ∆icb
k > µσm,icbk . The constant α ∈ (0, 1) is chosen

at Step 0 of Algorithm 6.1.
Initialization: Set i = 0. Set m(0)

k = micb
k .

Repeat Increment i by one. Improve the previous model m(i−1)
k until it is fully

quadratic on B(xk;αi−1∆icb
k ) (notice that this can be done in a finite, uni-

formly bounded number of steps, given the choice of the model-improvement
algorithm in Step 0 of Algorithm 6.1). Denote the new model by m

(i)
k . Set

∆̃k = αi−1∆icb
k and m̃k = m

(i)
k .

Until ∆̃k ≤ µ(σmk )(i).
Note that if σm,icbk ≤ εc in the criticality step of Algorithm 6.1 and Algorithm 6.2

is invoked, the new model mk is fully quadratic on B(xk; ∆̃k) with ∆̃k ≤ ∆k. Then,
by Lemma 3.4, mk is also fully quadratic on B(xk; ∆k) (as well as on B(xk;µσmk )).

7. Global convergence for second-order critical points. For global con-
vergence to second-order critical points, we will need one more order of smoothness,
namely Assumption 3.2 on the Lipschitz continuity of the Hessian of f . It will be also
necessary to assume that the function f is bounded from below (Assumption 5.1).
Naturally, we will also assume the existence of fully-quadratic models.

We start by introducing the notation

σm(x) = max
{
‖∇m(x)‖,−λmin(∇2m(x))

}
and

σ(x) = max
{
‖∇f(x)‖,−λmin(∇2f(x))

}
.

It will be important to bound the difference between the true σ(x) and the model
σm(x). For that purpose, we first derive a bound on the difference between the
smallest eigenvalues of a function and of a corresponding fully-quadratic model.

Proposition 7.1. Suppose that Assumption 3.2 holds and m is a fully-quadratic
model on B(x; ∆). Then,

|λmin(∇2f(x))− λmin(∇2m(x))| ≤ κeh∆.

Proof. The proof follows directly from the bound (3.3) on the error between the
Hessians of m and f and the simple observation that if v is a normalized eigenvector
corresponding to the smallest eigenvalue of ∇2m(x) then

λmin(∇2f(x))− λmin(∇2m(x)) ≤ v>[∇2f(x)−∇2m(x)]v

≤ ‖∇2f(x)−∇2m(x)‖
≤ κeh ∆.

Analogously, letting v be a normalized eigenvector corresponding to the smallest eigen-
value of ∇2f(x), we obtain

λmin(∇2m(x))− λmin(∇2f(x)) ≤ κeh ∆
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and the result follows.
The following lemma shows that the difference between the true σ(x) and the

model σm(x) is of the order of ∆.
Lemma 7.2. Let ∆ be bounded by ∆max. Suppose that Assumption 3.2 holds and

m is a fully-quadratic model on B(x; ∆). Then, we have that

|σ(x)− σm(x)| ≤ κσ∆, (7.1)

for some κσ > 0.
Proof. It follows that

|σ(x)− σm(x)| =
∣∣max

{
‖∇f(x)‖,max{−λmin(∇2f(x)), 0}

}
− max

{
‖∇m(x)‖,max{−λmin(∇2m(x)), 0}

}∣∣
≤ max {| ‖∇f(x)‖ − ‖∇m(x)‖ | ,∣∣max{−λmin(∇2f(x)), 0} −max{−λmin(∇2m(x)), 0}

∣∣} .
The first argument | ‖∇f(x)‖ − ‖∇m(x)‖ | is bounded above by κeg∆max∆, because
of the error bound (3.4) between the gradients of f and m, and from the bound ∆ ≤
∆max. The second argument is clearly dominated by |λmin(∇2f(x))−λmin(∇2m(x))|,
which is bounded above by κeh∆ because of Proposition 7.1. Finally we need only to
write κσ = max{κeg∆max, κeh} and the result follows.

The convergence theory will require the already mentioned Assumptions 3.2,
and 5.1, as well as the uniform upper bound on the Hessians of the quadratic models
(Assumption 5.2).

As for the first-order case, we begin by noting that the criticality step can be
successfully executed in a finite number of improvement steps.

Lemma 7.3. If σ(xk) 6= 0, Step 1 of Algorithm 6.1 will terminate in a finite
number of improvement steps (by applying Algorithm 6.2).

Proof. The proof is analogous to the proof of Lemma 5.1, with ‖g(i)
k ‖ replaced by

(σmk )(i) and ∇f(xk) replaced by σ(xk).
We now show that an iteration must be successful if the current model is fully

quadratic and the trust-region radius is small enough with respect to σmk .
Lemma 7.4. If mk is fully quadratic on B(xk; ∆k) and

∆k ≤ min
[

1
κbhm

,
κfod(1− η1)
4κef∆max

,
κfod(1− η1)

4κef

]
σmk ,

then the k-th iteration is successful.
Proof. The proof is similar to the proof of Lemma 5.2 for the first-order case,

except that now we need to take the second-order terms into account.
First we recall the fractions of Cauchy and eigenstep decreases (2.10), which

provide

mk(xk)−mk(xk + sk) ≥ κfod

2 max
{
‖gk‖min

[
‖gk‖
κbhm

,∆k

]
,−τk∆2

k

}
.

From the expression for σmk , one of the two cases has to hold: either ‖gk‖ = σmk
or −τk = −λmin(Hk) = σmk .

In the first case, using the fact that ∆k ≤ σmk /κbhm, we conclude that

mk(xk)−mk(xk + sk) ≥ κfod
2
‖gk‖∆k =

κfod
2

σmk ∆k. (7.2)
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On the other hand, since the current model is fully quadratic on B(xk; ∆k), we may
deduce from (7.2) and the bound (3.5) on the error between the model mk and f that

|ρk − 1| ≤
∣∣∣∣f(xk + sk)−mk(xk + sk)
mk(xk)−mk(xk + sk)

∣∣∣∣+
∣∣∣∣ f(xk)−mk(xk)
mk(xk)−mk(xk + sk)

∣∣∣∣
≤ 4κef∆3

k

(κfodσmk )∆k

≤ 4κef∆max

κfodσmk
∆k

≤ 1− η1.

In the case when −τk = σmk , we first write

mk(xk)−mk(xk + sk) ≥ −κfod

2 τk∆2
k = κfod

2 σmk ∆2
k. (7.3)

But, since the current model is fully quadratic on B(xk; ∆k), we deduce from (7.3)
and the bound (3.5) on the error between mk and f that

|ρk − 1| ≤
∣∣∣∣f(xk + sk)−mk(xk + sk)
mk(xk)−mk(xk + sk)

∣∣∣∣+
∣∣∣∣ f(xk)−mk(xk)
mk(xk)−mk(xk + sk)

∣∣∣∣
≤ 4κef∆3

k

(κfodσmk )∆2
k

≤ 1− η1.

In either case ρk ≥ η1 and iteration k is, thus, successful.
As in the first-order case, the following result follows readily from Lemma 7.4.
Lemma 7.5. Suppose that there exists a constant κ1 > 0 such that σmk ≥ κ1 for

all k. Then, there exists a constant κ2 > 0 such that

∆k ≥ κ2

for all k.
Proof. The proof is trivially derived by combining Lemma 7.4 and the proof of

Lemma 5.3.
We are now able to show that if there are only finitely many successful iterations

then we approach a second-order stationary point.
Lemma 7.6. If the number of successful iterations is finite then

lim
k→+∞

σ(xk) = 0.

Proof. The proof of this lemma is virtually identical to that of Lemma 5.4 for the
first-order case, with ‖gk‖ being substituted by σmk and ‖∇f(xk)‖ being substituted
by σ(xk) and by using Lemmas 7.2 and 7.4.

We now prove that the whole sequence of trust-region radii converges to zero.
Lemma 7.7.

lim
k→+∞

∆k = 0. (7.4)
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Proof. When S is finite the proof is as in the proof of Lemma 5.4 (the argument
is exactly the same). Let us consider the case when S is infinite. For any k ∈ S we
have

f(xk)− f(xk+1) ≥ η1[m(xk)−m(xk + sk)]

≥ η1
κfod

2 max
{
‖gk‖min

[
‖gk‖
κbhm

,∆k

]
,−τk∆2

k

}
.

Due to Step 1 of Algorithm 6.1 we have that σmk ≥ min{εc, µ−1∆k}. If on iteration k
‖gk‖ ≥ max{−τk, 0} = {−λmin(Hk), 0}, then σmk = ‖gk‖ and

f(xk)− f(xk+1) ≥ η1
κfod

2
min{εc, µ−1∆k}min

[
min{εc, µ−1∆k}

κbhm
,∆k

]
. (7.5)

If, on the other hand, ‖gk‖ < −τk, then σmk = −τk and

f(xk)− f(xk+1) ≥ η1
κfod

2
min{εc, µ−1∆k}∆2

k. (7.6)

There are two subsequences of successful iterations, possibly overlapping, {k1
i }, for

which (7.5) holds, and {k2
i }, for which (7.6) holds. The union of these subsequences

contains all successful iterations. Since S is infinite and f is bounded from below, then
either the corresponding subsequence {k1

i } (resp. {k2
i }) is finite or the right-hand side

of (7.5) (resp. (7.6)) has to converge to zero. Hence limk∈S ∆k = 0, and the proof
is complete if all iterations are successful. Now recall that the trust-region radius can
only be increased during a successful iteration, and it can only be increased by a ratio
of at most γinc. Let k /∈ S be the index of an iteration (after the first successful one).
Then ∆k ≤ γinc∆sk

, where sk is the index of the last successful iteration before k.
Since ∆sk

→ 0, then ∆k → 0, for k /∈ S.
We obtain the following lemma as a simple corollary.
Lemma 7.8.

lim inf
k→+∞

σmk = 0.

Proof. Assume, for the purpose of deriving a contradiction, that, for all k,

σmk ≥ κ1

for some κ1 > 0. Then by Lemma 7.5 there exists a constant κ2 such that ∆k ≥ κ2

for all k. We obtain contradiction with Lemma 7.7.
We now verify that the criticality step (Step 1 of Algorithm 6.1) ensures that

a subsequence of the iterates approach second-order stationarity, by means of the
following auxiliary result.

Lemma 7.9. For any subsequence {ki} such that

lim
i→+∞

σmki
= 0 (7.7)

it also holds that

lim
i→+∞

σ(xki
) = 0. (7.8)
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Proof. From (7.7), σmki
≤ εc for i sufficiently large. The mechanism of the crit-

icality step (Step 1) ensures then that the model mki is fully quadratic on the ball
B(xki ; ∆ki) with ∆ki ≤ µσmki

for all i sufficiently large (if σmki
6= 0). Now, using (7.1),

σ(xki
) =

(
σ(xki

)− σmki

)
+ σmki

≤ (κσµ+ 1)σmki
.

The limit (7.7) and this last bound then give (7.8).
Lemmas 7.8 and 7.9 immediately give the following global convergence result.
Theorem 7.10. Let Assumptions 3.2, 5.1, and 5.2 hold. Then,

lim inf
k→+∞

σ(xk) = 0.

If the sequence of iterates is bounded this result implies the existence of at least
one limit point that is second-order critical. We are, in fact, able to prove that all
limit points of the sequence of iterates are second-order critical. In this proof we make
use of the additional requirement on Step 5, which imposes in successful iterations an
increase on the trust-region radius ∆k if it is too small compared to σmk .

Theorem 7.11. Let Assumptions 3.2, 5.1, and 5.2 hold. Then,

lim
k→+∞

σ(xk) = 0.

Proof. Lemma 7.6 establishes that in the case when S is finite the theorem holds.
Hence, we will assume that S is infinite. Suppose, for the purpose of establishing a
contradiction, that there exists a subsequence {ki} of successful or acceptable itera-
tions such that

σ(xki
) ≥ ε0 > 0, (7.9)

for some ε0 > 0 and for all i (as in the first-order case, we can ignore the other itera-
tions, since xk does not change during such iterations). Then, because of Lemma 7.9,
we obtain that

σmki
≥ ε > 0,

for some ε > 0 and for all i sufficiently large. Without loss of generality, we pick ε
such that

ε ≤ min
{

ε0
2(2 + κσµ)

, εc

}
. (7.10)

Lemma 7.8 then ensures the existence, for each ki in the subsequence, of a first
successful or acceptable iteration `i > ki such that σm`i < ε. By removing elements
from {ki}, without loss of generality and without a change of notation, we thus obtain
that there exists another subsequence indexed by {`i} such that

σmk ≥ ε for ki ≤ k < `i and σm`i < ε, (7.11)

for sufficiently large i, with inequality (7.9) being retained.
We now restrict our attention to the set K which is defined as the subsequence of

iterations whose indices are in the set

∪i∈N0{k ∈ N0 : ki ≤ k < `i},
27



where ki and `i belong to the two subsequences defined above in (7.11).
From Lemmas 7.4 and 7.7, just as in the proof of Theorem 5.9, it follows that for

large enough k ∈ K the k-th iteration is either successful, if the model is fully linear,
or model improving, otherwise, i.e., that there is only a finite number of acceptable
iterations in K.

Let us now consider the situation where an index k is in K∩S \S+. In this case,
∆k ≥ βσmk ≥ βε. It immediately follows from ∆k → 0 for k ∈ K that K ∩ S \ S+

contains only a finite number of iterations. Hence, k ∈ K ∩ S is also in S+ when k is
sufficiently large.

Let us now show that for k ∈ K∩S+ sufficiently large it holds that ∆k+1 = γinc∆k

(when the last successful iteration in [ki, `i − 1] occurs before `i − 1). We know that
since k ∈ S+, then ∆icb

k+1 = γinc∆k after execution of Step 5. However, ∆icb
k+1 may

be reduced during Step 1 of the k + 1-st iteration (or any subsequent iteration). By
examining the assignments at the end of Step 1, we see that on any iteration k+1 ∈ K,
the radius ∆icb

k+1 is only reduced when ∆k+1 ≥ βσ̃mk+1 = βσmk+1 ≥ βε, but this can
only happen a finite number of times, due to the fact that ∆k → 0. Hence for large
enough k ∈ K ∩ S+, we obtain ∆k+1 = γinc∆k.

Let Si+ = [ki, `i−1]∩S+ = {j1
i , j

2
i , . . . , j

∗
i } be the set of all indices of the successful

iterations that fall in the interval [ki, `i − 1]. From the scheme that updates ∆k at
successful iterations, and from the fact that xk = xk+1 and ∆k+1 = ∆k for model
improving steps, we can deduce that, for i large enough,

‖xki − x`i‖ ≤
∑
j∈Si

+

∆j ≤
∑
j∈Si

+

(1/γinc)j
∗
i −j∆j∗i

≤ γinc
γinc − 1

∆j∗i
.

Thus, from the fact that ∆j∗i
→ 0, we conclude that ‖xki

− x`i‖ → 0. We therefore
obtain that

lim
i→+∞

‖xki
− x`i‖ = 0.

Now,

σ(xki) = (σ(xki)− σ(x`i)) +
(
σ(x`i)− σm`i

)
+ σm`i .

The first term of the right-hand side tends to zero because of the Lipschitz continuity
of σ(x), and is thus bounded by ε for i sufficiently large. The third term is at most ε
by (7.11). For the second term we use the fact that from (7.10) and the mechanism
of the criticality step (Step 1) at iteration `i, the model m`i is fully quadratic on
B(x`i ;µσ

m
`i

). Using (7.1) and (7.11), we also deduce that the second term is bounded
by κσµε (for i sufficiently large). As a consequence, we obtain from these bounds
and (7.10) that

σ(xki) ≤ (2 + κσµ)ε ≤ 1
2ε0

for i large enough, which contradicts (7.9). Hence our initial assumption must be false
and the theorem follows.
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