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h the 
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ond step that we insist yields a de
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tivefun
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ien
y. Extensive numeri
al results are presented toshow the e�e
tiveness of these te
hniques.Keywords. Trust regions, line sear
hes, two-step algorithms, spa
er steps, sla
k variables,LANCELOT, minimax problems, expensive fun
tion evaluations, 
ir
uit optimization.AMS subje
t 
lassi�
ations. 49M37, 90C06, 90C301 Introdu
tionIn nonlinear optimization problems with expensive fun
tion and gradient evaluations, it is desirableto extra
t as mu
h improvement as possible at ea
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TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 2available analyti
ally), their appli
ability is really rather broad. We propose modi�
ations to ex-isting nonlinear optimization algorithms. An alternative approa
h, when feasible, is to reformulatethe original problem by eliminating a subset of variables and then to apply the algorithms in theremaining variables (see, for example, Golub and Pereyra [17℄).This paper deals with two-step algorithms where the se
ond step is required to yield a de
reasein the value of the obje
tive fun
tion. The analysis given here 
overs the global 
onvergen
e oftwo-step trust-region algorithms and it is presented for the un
onstrained minimization problem:minimize f(y) ; (1)where y 2 IRp, and f : IRp �! IR is a twi
e 
ontinuously di�erentiable fun
tion. For both trustregions and line sear
hes, one 
an 
onsider two versions of the two-step algorithms, one 
alledgreedy and the other 
alled 
onservative. The greedy version exploits as mu
h as possible thede
rease obtained by the se
ond step, whereas the 
onservative approa
h 
al
ulates the se
ond steponly after the �rst step has been 
on�rmed to satisfy the traditional 
riteria required for global
onvergen
e. We point out that the 
onservative two-step line-sear
h algorithm is not new and 
anbe found in the books by Bertsekas [1℄, Se
tion 1.3.1, and Luenberger [19℄, Se
tion 7.10, where these
ond step is 
alled a spa
er step. A des
ription of the greedy and 
onservative two-step line-sear
halgorithms 
an be found in [11℄.In trust regions, if the se
ond step is guaranteed to de
rease the value of the obje
tive fun
tion,global 
onvergen
e of the type lim infk�!+1 krf(yk)k = 0 is immediately attained. Further, inthe 
ases where the �rst step would be reje
ted, the sum of the �rst and se
ond steps has a better
han
e of being a

epted (see Remark 3.1). To obtain limk�!+1 krf(yk)k = 0 either the norm ofthe se
ond step has to be 
ontrolled by the trust region (see 
ondition (13)) or the de
rease on theobje
tive fun
tion attained by the se
ond step has to be of the order of magnitude of the norm ofthis step (see 
ondition (12)).The update of the sla
k variables referred to above motivated the study of the lo
al rate of
onvergen
e of a two-step Newton's method. We show that a se
ond Newton step in some of thevariables retains the q-quadrati
 rate of 
onvergen
e of the traditional Newton's method.This paper is stru
tured as follows. In Se
tion 2 we introdu
e the two-step trust-region al-gorithms, and in Se
tion 3 we analyze their global 
onvergen
e properties. The lo
al rate of thetwo-step Newton's method is studied in Se
tion 4. The appli
ation of the two-step ideas to updatesla
k variables and variables introdu
ed for the solution of minimax problems is des
ribed in Se
tion5. Se
tion 6 presents the numeri
al results obtained with LANCELOT using these updates for ana-lyti
 problems and dynami
-simulation-based and analyti
 stati
-timing-based 
ir
uit optimizationproblems. Finally, some 
on
lusions are drawn in Se
tion 7.2 Two-step trust-region algorithmsWe �rst 
onsider the trust-region framework presented in the paper by Mor�e [20℄ for un
onstrainedminimization. The (
lassi
al) trust-region algorithm builds a quadrati
 model of the formmk(yk + s) = f(yk) +rf(yk)>s+ 12s>Hksat the 
urrent point yk, where Hk is an approximation to r2f(yk) (note that mk(yk) = f(yk)).Then a step sk is 
omputed by approximately solving the trust-region subproblemminimize mk(yk + s)subje
t to ksk � �k ; (2)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 3where �k is 
alled the trust-region radius and k�k is an arbitrary norm. The new point yk+1 = yk+skis tested for a

eptan
e. If the a
tual redu
tion f(yk)� f(yk+ sk) is larger than a given fra
tion ofthe predi
ted redu
tionmk(yk)�mk(yk+sk), then the step sk and the new point yk+1 are a

epted.In this situation, the quadrati
 model mk(yk + s) is 
onsidered to be a good approximation to thefun
tion f(y) in the region kyk � yk � �k. The trust radius may be in
reased. Otherwise, thequadrati
 model mk(yk + s) is 
onsidered not to be a good approximation to the fun
tion f(y) inthe region ky � ykk � �k. In this 
ase, the new point yk+1 is reje
ted, and a new trust-regionsubproblem of the form (2) is solved for a smaller value of the trust radius. This simple trust-regionalgorithm is des
ribed below.Algorithm 2.1 (Trust-region algorithm)1. Given y0, the value f(y0), the gradient rf(y0) and an approximation H0 to the Hessian of fat y0, and the initial trust-region radius �0. Set k = 0. Choose 
 and � in (0; 1).2. Compute a step sk based on the trust-region problem (2).3. Compute �k = f(yk)� f(yk + sk)mk(yk)�mk(yk + sk) :4. In the 
ase where �k > � ;set yk+1 = yk + sk ;
ompute Hk+1, and sele
t �k+1 satisfying �k+1 � �k.Otherwise, set yk+1 = yk ; Hk+1 = Hk ; and �k+1 = 
�k :5. In
rement k by one and go to Step 2.The me
hanism used to update the trust radius that is des
ribed in Algorithm 2.1 is simple andsuÆ
es to prove 
onvergen
e results. In pra
ti
e, with the goal of improving optimization eÆ
ien
y,one uses updating s
hemes that are more 
omplex involving several sub
ases a

ording to the valueof �k.We propose in this paper a modi�
ation of this trust-region algorithm. We are motivated by asituation where it is desirable to update sla
k variables and variables introdu
ed to solve minimaxproblems, at every iteration of the trust-region algorithm [7℄ implemented in LANCELOT [9℄. SeeSe
tion 5 for more details on pra
ti
al appli
ations.The two-step trust-region algorithm is quite easy to des
ribe. Suppose that after 
omputing astep �sk based on the trust-region subproblem (2) we know some properties of the fun
tion f(y) thatenables us to 
ompute a new step ŝk for whi
h we 
an guarantee that f(yk+ �sk+ ŝk) < f(yk+ �sk).In this situation we would 
ertainly like to have yk+1 = yk + �sk + ŝk and to test whether this newpoint should be a

epted or not. This modi�
ation requires a 
areful rede�nition of the a
tual andpredi
ted redu
tions given for Algorithm 2.1. The new a
tual and predi
ted redu
tions that wepropose are:
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ared(yk; �sk; ŝk) = f(yk)� f(yk + �sk + ŝk) ; (3)pred(yk; �sk; ŝk) = mk(yk)�mk(yk + �sk) + f(yk + �sk)� f(yk + �sk + ŝk) : (4)The new predi
ted redu
tion is the predi
ted redu
tion obtained by the �rst step plus the (a
tual)redu
tion obtained by the se
ond step. The 
hoi
e pred(yk; �sk; ŝk) = mk(yk)�mk(yk + �sk + ŝk) isnot appropriate sin
e the se
ond step ŝk is not 
omputed using the model mk(yk + s).The two-step trust-region algorithm is given below.Algorithm 2.2 (Two-step trust-region algorithm { Greedy)1. Same as in Algorithm 2.1.2. Compute a step �sk based on the trust-region problem (2).3. If possible, �nd another step ŝk su
h thatf(yk + �sk + ŝk) < f(yk + �sk) :Otherwise, set ŝk = 0.4. Compute �̂k = ared(yk; �sk; ŝk)pred(yk; �sk; ŝk) :5. In the 
ase where �̂k > � ;set yk+1 = yk + �sk + ŝk ;
ompute Hk+1, and sele
t �k+1 satisfying �k+1 � �k.Otherwise, set yk+1 = yk ; Hk+1 = Hk ; and �k+1 = 
�k :6. In
rement k by one and go to Step 2.The two-step trust-region Algorithm 2.2 evaluates the new point yk + �sk + ŝk for a

eptan
eafter both steps �sk and ŝk have been 
omputed. We 
all this version \greedy" be
ause it triesto take as mu
h advantage as possible of the de
rease obtained by the se
ond step ŝk. Note thatalthough the fun
tion f is evaluated twi
e in Algorithm 2.2, the reevaluation is often 
omputation-ally inexpensive. The 
ontext in whi
h we are parti
ularly interested involves relatively expensiveevaluations at yk + �sk and evaluations at yk + �sk + ŝk involving only a subset of the variables thatare 
heap to 
ompute (see Se
tion 5).We 
ould also 
onsider a two-step trust-region algorithm where �rst an a

eptable step �sk isdetermined, and only afterwards a se
ond step ŝk is 
omputed. This algorithm is outlined below.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 5Algorithm 2.3 (Two-step trust-region algorithm { Conservative)1. Same as in Algorithm 2.1.2. Repeat(a) Compute a step �sk based on the trust-region problem (2).(b) Compute �k = f(yk)� f(yk + �sk)mk(yk)�mk(yk + �sk) :(
) If �k > �, then set �yk = yk + �sk ;
ompute �k+1 satisfying �k+1 � �k, and set a

epted = true.If �k � �, set �k = 
�k and a

epted = false.Until a

epted.3. If possible, �nd another step ŝk su
h thatf(�yk + ŝk) < f(�yk) :Otherwise, set ŝk = 0.4. Set yk+1 = �yk + ŝk.5. Update Hk. In
rement k by one and go to Step 2.The same 
omments about the fun
tion evaluations apply to Algorithm 2.3 after the 
ompu-tation of a su

essful step �sk. However, in the 
ase of Algorithm 2.3, the fun
tion f has to beevaluated twi
e only in iterations 
orresponding to su

essful �rst steps �sk.3 Global 
onvergen
e of the two-step trust-region algorithmsWe analyze �rst the two-step trust-region Algorithm 2.2, i.e., the greedy version. The analysis forthe 
onservative Algorithm 2.3 is similar.In this se
tion we make the assumption that fHkg is a bounded sequen
e. So, there exists a� > 0 for whi
h kHkk � � for all k : (5)We require the step �sk to satisfy a fra
tion of Cau
hy de
rease on the trust-region problem (2). Inother words we ask �sk to satisfyf(yk)�mk(yk + �sk) � � (mk(yk)�mk(yk + 
k)) ; (6)for � 2 (0; 1℄. The step 
k is 
alled the Cau
hy step, and it is de�ned as the solution of the s
alarproblem in the unknown � minimize mk(yk + s)subje
t to ksk � �k ;s = �rf(yk) ; � 2 IR :There is a variety of algorithms that 
ompute steps satisfying this 
ondition (see [3℄, [22℄, [23℄, [25℄,and [26℄).



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 6Proposition 3.1 If �sk satis�es a fra
tion of Cau
hy de
rease then:f(yk)�mk(yk + �sk) � �2 krf(yk)k min��k; krf(yk)k� � (7)where � and � are as in (6) and (5) respe
tively.Proof: See Powell [24℄, Theorem 4, or Mor�e [20℄, Lemma 4.8. 2If we use this proposition and the fa
t that f(yk + �sk) > f(yk + �sk + ŝk), we obtainpred(yk; �sk; ŝk) = f(yk)�mk(yk + �sk) + f(yk + �sk)� f(yk + �sk + ŝk)� �2 krf(yk)k min��k; krf(yk)k� �+ f(yk + �sk)� f(yk + �sk + ŝk)� �2 krf(yk)k min��k; krf(yk)k� � : (8)This inequality is 
ru
ial to prove global 
onvergen
e of the two-step algorithm. In parti
ular, ifthe iteration k is su

essful, thenared(yk; �sk; ŝk) = f(yk)� f(yk + �sk + ŝk)� ��2 krf(yk)k minn�k; krf(yk)k� o : (9)We are ready to prove the �rst 
onvergen
e result.Theorem 3.1 Consider a sequen
e fykg generated by Algorithm 2.2 where �sk satis�es (6). If f is
ontinuously di�erentiable and bounded below onL(y0) = fy : f(y) � f(y0)g ;and fHkg is a bounded sequen
e, thenlim infk�!+1 krf(yk)k = 0 : (10)So, if the sequen
e fykg is bounded, there exists at least one limit point y� for whi
h rf(y�) = 0.Proof: The proof is similar to the proof given in [20℄, Theorem 4.10.Assume by 
ontradi
tion that fkrf(yk)kg is bounded away from zero, i.e., that there exists an� > 0 su
h that krf(yk)k � � for all k. As in [20℄, Theorem 4.10, we make dire
t use of (9) and ofthe rules that update the trust radius, to obtain:+1Xk=0�k < +1 ;and so limk�!+1�k = 0.The next step is to show that limk�!+1 j�̂k � 1j = 0. Note that from the de�nitions (3) and(4), we have ared(yk; �sk; ŝk) � pred(yk; �sk; ŝk)= f(yk)� f(yk + �sk) +rf(yk)>�sk + 12 �s>k Hk�sk ; (11)
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h in turn, by using a Taylor series expansion and k�skk � �k, impliesjared(yk; �sk; ŝk)� pred(yk; �sk; ŝk)j � o(�k) :This inequality and (8) show that j�̂k � 1j 
onverges to zero. The rest of the proof follows a
lassi
al argument in trust regions: if �̂k 
onverges to one, the rules that update the trust radiusshow that �k 
annot 
onverge to zero. So, a 
ontradi
tion is attained and the proof is 
ompleted. 2The result of Theorem 3.1 does not require the step ŝk to be O(�k) whi
h may seem surprising.This result shows the appropriateness of the de�nitions given in (3) and (4) for the a
tual andpredi
ted redu
tions. These de�nitions allow us to obtain the 
onditions (9) and (11) that are
ru
ial to establish (10).Remark 3.1 It is also important to note that the de�nitions (3) and (4) 
an improve the a

ept-ability of a step. In fa
t, we have �̂k = tk + �ktk + 1 � �̂k(tk) ;where tk = f(yk+�sk)�f(yk+�sk+ŝk)mk(yk)�mk(yk+�sk) , and �k = f(yk)�f(yk+�sk)mk(yk)�mk(yk+�sk) , as before. We now note that �̂k(0) =�k and the fun
tion �̂k(tk) is stri
tly in
reasing if �k < 1. In other words, in 
ases where astandard trust-region algorithm reje
ts a step the modi�ed 
riterion is always better than the usualone. Further, it 
an be noted that �̂k � 1 = �k�1tk+1 , whi
h indi
ates that all su

essful iterations ofthe the standard algorithm will also be su

essful in the modi�ed two-step algorithm. In parti
ular,�̂k > 1 whenever �k > 1.The next step in the analysis is to prove that, with additional 
onditions on the se
ond step,limk�!+1 krf(yk)k = 0.Theorem 3.2 Consider a sequen
e fykg generated by Algorithm 2.2 where �sk satis�es (6). As-sume that f is 
ontinuously di�erentiable and bounded below on L(y0) and that fHkg is a boundedsequen
e. If rf is uniformly 
ontinuous on L(y0) and if eitherf(yk + �sk)� f(yk + �sk + ŝk) � 
1kŝkk ; (12)or kŝkk � 
2�k ; (13)where 
1 and 
2 are positive 
onstants independent of k, thenlimk�!+1 krf(yk)k = 0 : (14)So, if the sequen
e fykg is bounded, every limit point y� satis�es rf(y�) = 0.Proof: The proof is similar to the proof given in [20℄, Theorem 4.14. See also Thomas [27℄.We show the result by 
ontradi
tion. Assume therefore that there exists an �1 2 (0; 1) anda subsequen
e indexed by fmig of su

essful iterates su
h that, for all mi in this subsequen
e,krf(ymi)k � �1. Theorem 3.1 guarantees the existen
e of another subsequen
e indexed by fligsu
h that krf(yk)k � �2, for mi � k < li and krf(yli)k < �2 (where fmig is without loss
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e previously mentioned). Here �2 is any real number 
hosen to be in(0; �1). Sin
e ff(yk)�f(yk+1)g 
onverges to zero, for k suÆ
iently large 
orresponding to su

essfuliterations mi � k < li f(yk)� f(yk+1) � �1�k + 
1kŝkk (15)holds if (12) is satis�ed, and f(yk)� f(yk+1) � �1�k (16)holds otherwise with �1 = ���22 .We 
onsider the 
ases (12) and (13) separately. In both 
ases we make use of:kymi � ylik � li�1Xk=mi kyk � yk+1k ;f(ymi)� f(yli) = li�1Xk=mi[f(yk)� f(yk+1)℄ :In the sums Pli�1k=mi we 
onsider only indi
es 
orresponding to su

essful iterations.If (12) holds then we use (15) to obtainPli�1k=mi [f(yk)� f(yk+1)℄ � Pli�1k=mi [�1�k + 
1kŝkk℄� minf�1; 
1gPli�1k=mi [k�skk+ kŝkk℄� minf�1; 
1gPli�1k=mi kyk � yk+1k :If (13) holds then we appeal to (16) and writePli�1k=mi [f(yk)� f(yk+1)℄ � Pli�1k=mi �1�k� �12 minf1; 1
2 gPli�1k=mi [k�skk+ kŝkk℄� �12 minf1; 1
2 gPli�1k=mi kyk � yk+1k :In either 
ase we obtain kymi � ylik � �2 (f(ymi)� f(yli)) ;and sin
e the right hand side of this inequality goes to zero, so does the left hand side kymi � ylik.Sin
e the gradient of f is uniformly 
ontinuous, we have for i suÆ
iently large that�1 � krf(ymi)k � krf(ymi)�rf(yli)k+ krf(yli)k � 2�2 :Sin
e �2 
an be any number in (0; �1) this inequality 
ontradi
ts the supposition. 2In the theorem above we required the norm of the step ŝk to either be O(�k) or O (f(yk + �sk)� f(yk + �sk + ŝk)). The former 
ondition 
an be enfor
ed in Step 2 of the Algorithm 2.2, althoughthis might not be bene�
ial and 
ould lead to an inferior de
rease.
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an obtain global 
onvergen
e to a point that also satis�es the ne
essary se
ond-order
onditions for optimality. For this purpose, we require the step �sk to satisfy a fra
tion of optimalde
rease for the trust-region problem (2). In other words we ask �sk to satisfyf(yk)�mk(yk + �sk) � � (f(yk)�mk(yk + s�k)) ; (17)where � 2 (0; 1℄, and s�k is an optimal solution of (2). (This 
ondition 
an be weakened in severalways [20℄.) A step �sk satisfying a fra
tion of optimal de
rease 
an be 
omputed by using thealgorithms proposed in [22℄ and [25℄ in the 
ase where the trust-region norm is Eu
lidean. Theglobal 
onvergen
e result is the following.Theorem 3.3 Consider a sequen
e fykg generated by Algorithm 2.2 where Hk = r2f(yk) and �sksatis�es (17). If L(y0) is 
ompa
t and f is twi
e 
ontinuously di�erentiable on L(y0), then thereexists at least one limit point y� for whi
h rf(y�) = 0 and r2f(y�) is positive semi-de�nite.Proof: The proof is basi
ally the same as the proof of Theorem 4.7 in [22℄. 2To obtain stronger global 
onvergen
e results to se
ond-order points, for instan
e the results inTheorems 4.11 and 4.13 in [22℄ (see also [21℄, Theorem 4.17, 
 and d), other 
onditions are requiredlike kŝkk being of O(�k).The next results show that the se
ond step 
an preserve the ni
e lo
al properties of the behaviorof the trust radius that are typi
al in trust-region algorithms.Theorem 3.4 Let fykg be a sequen
e generated by Algorithm 2.2 where �sk satis�es (6) and Hk =r2f(yk). In addition, assume that the step ŝk satis�es either 
ondition (12) or 
ondition (13). Iff is twi
e 
ontinuously di�erentiable and bounded below on L(y0) and fykg has a limit point y�su
h that H� = r2f(y�) is positive de�nite, then fykg 
onverges to y�, all iterations are eventuallysu

essful, and f�kg is bounded away from zero.Proof: From Theorem 3.2 we 
an guarantee that limk�!+1 krf(yk)k = 0. So, the proof isbasi
ally the same as the proof of Theorem 4.19 in [20℄. 2An alternative to this result where we do not impose 
onditions (12) or (13) on the se
ond stepis given below. However we need to assume that fykg 
onverges to y�.Theorem 3.5 Let fykg be a sequen
e generated by Algorithm 2.2 where �sk satis�es (6) and Hk =r2f(yk). If f is twi
e 
ontinuously di�erentiable on L(y0) and fykg 
onverges to a point y� su
hthat H� = r2f(y�) is positive de�nite, then all iterations are eventually su

essful and f�kg isbounded away from zero.Proof: The �rst step �sk yields a de
rease in the quadrati
 model:mk(yk)�mk(yk + �sk) = �rf(yk)>�sk � 12 �s>k Hk�sk � 0 :Thus, the assumptions made on Hk and H� guaranteek�skk � 
3krf(yk)k ; (18)
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iently large k, whi
h in turn, by using (8), impliespred(yk; �sk; ŝk) � 
4k�skk2 : (19)(The 
onstants 
3 and 
4 are independent of k.)A Taylor series expansion for the expression (11) givesjared(yk; �sk; ŝk)� pred(yk; �sk; ŝk)j � o(k�skk2) : (20)The fa
t that fykg 
onverges and the result lim infk�!+1 krf(yk)k = 0 of Theorem 3.1, to-gether imply limk�!+1 krf(yk)k = 0. Thus, from (18) we get limk�!+1 k�skk = 0.The proof is terminated with a typi
al argument in trust regions. From (19), (20) and limk�!+1k�skk = 0, we obtain the limit limk�!+1 ����ared(yk; �sk; ŝk)pred(yk; �sk; ŝk) � 1���� = 0 ;whi
h shows, by appealing to the rules that update the trust radius, that all iterations are eventu-ally su

essful and the trust radius is uniformly bounded away from zero. 2The global 
onvergen
e analysis for Algorithm 2.3 is identi
al to the analysis given above forAlgorithm 2.2. We point out that Algorithm 2.3 is well de�ned sin
e at a nonstationary point it isalways possible to �nd an a

eptable �rst step. Also, for every k,f(yk)� f(yk+1) = f(yk)� f(yk + �sk) + f(yk + �sk)� f(yk+1)� ��2 krf(yk)k min��k; krf(yk)k� �+ f(yk + �sk)� f(yk+1)� ��2 krf(yk)k min��k; krf(yk)k� � :Thus, the results given in Theorems 3.1-3.5 hold for Algorithm 2.3. The lim inf-type result (10) isobtained under the 
lassi
al assumptions for trust-region algorithms for un
onstrained optimization.To obtain the lim-type result (14) one of the two 
onditions (12) and (13) is required.In the 
ase of the appli
ations 
onsidered in Se
tion 5, the de
rease obtained by the se
ond stepŝk is always guaranteed to satisfyf(yk + �sk)� f(yk + �sk + ŝk) � 
5kŝkk2 : (21)Moreover, the obje
tive fun
tion stri
tly de
reases along the segment between the points yk + �skand yk + �sk + ŝk. In this 
ase we 
an modify Step 3 of Algorithms 2.2 and 2.3 in su
h a way thatwe meet the requirements of Theorem 3.2. This modi�
ation is given below. It is easy to verifythat ŝk 6= 0 satis�es f(yk + �sk + ŝk) < f(yk + �sk) and either (12) or (13).Algorithm 3.1 (Step 3 for Algorithms 2.2 and 2.3 { Quadrati
 de
rease 
ase)3. Compute a step ŝk su
h thatf(yk + �sk)� f(yk + �sk + ŝk) � 
5kŝkk2 :If kŝkk < �, then s
ale ŝk by minf1; 
2�k� g so that kŝkk � 
2�k and ŝk is not enlarged.(Otherwise (12) holds with 
1 = �
5.)
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2 should be set a priori in Step 1 of Algorithms 2.2 and 2.3.Of 
ourse, we would like to prove the result of Theorem 3.2 for the 
ase where the 
ondition(12) is repla
ed by the 
ondition (21). However, su
h a result is unlikely to be true.4 Lo
al rate of 
onvergen
e of a two-step Newton's methodIn the next se
tion we are interested in two-step algorithms where the se
ond step is 
al
ulatedas a Newton-type step in some of the variables. In this se
tion we investigate the lo
al rate of
onvergen
e for an algorithm where ea
h step is 
omposed of two Newton steps, the se
ond being
omputed only for a subset of the variables. For this purpose lety =  xu ! :Suppose the �rst step �sk is a full Newton step, i.e., �sk = �r2f(yk)�1rf(yk). Let also�yk =  �xk�uk ! = yk + �sk :At the intermediate point �yk, a Newton step is applied in the variables u with x = �xk �xed. Thistwo-step Newton's method is des
ribed below.Algorithm 4.1 (Two-step Newton's method)1. Choose y0.2. For k = 1; 2; : : : do2.1 Compute �sk = �r2f(yk)�1rf(yk) and set �yk = yk + �sk.2.2 Compute ŝk =  0�r2uuf(�yk)�1ruf(�yk) ! and set sk = �sk + ŝk.2.3 Set yk+1 = yk + sk.The proof of the lo
al 
onvergen
e rate of the two-step Newton's method requires a few modi-�
ations from the standard proof of Newton's method [12℄, Theorem 5.2.1. Re
all that that proofof Newton's method is by indu
tion.Corollary 4.1 Let f be twi
e 
ontinuously di�erentiable in an open set D where the se
ond partialderivatives are Lips
hitz 
ontinuous. If fykg is a sequen
e generated by Algorithm 4.1 
onvergingto a point y� 2 D for whi
h rf(y�) = 0 and r2f(y�) is positive de�nite, then fykg 
onverges witha q-quadrati
 rate.Proof: If yk is suÆ
iently 
lose to y�, the perturbation result [12℄, Theorem 3.1.4, 
an be used toprove the nonsingularity of the Hessian matrix r2f(yk). Furthermore,k�yk � y�k � 
6kyk � y�k2 : (22)Now we show that r2uuf(�yk) is also nonsingular. First we point out that r2uuf(y) is Lips
hitz
ontinuous on D and r2uuf(y�) is positive de�nite. Thus, inequality (22) and the perturbation
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ited above, together imply the nonsingularity of r2uuf(�yk). Hen
e the method is lo
allywell-de�ned, and the se
ond step yieldskyk+1 � �ykk = kŝkk = kr2uuf(�yk)�1 (ruf(�yk)�ruf(y�)) k � 
7k�yk � y�k ; (23)sin
e ruf(y) is Lips
hitz 
ontinuous near y�. Now we use inequalities (22) and (23), and writekyk+1 � y�k � kyk+1 � �ykk+ k�yk � y�k� (
7 + 1)k�yk � y�k� 
6(
7 + 1)kyk � y�k2 :This last inequality establishes the q-quadrati
 rate of 
onvergen
e. 25 Appli
ationsWe begin by 
onsidering updating the sla
k variables in LANCELOT. Suppose the problem we aretrying to solve has the form minimize f(x)subje
t to 
i(x) � 0 ; i = 1; : : : ;m ; (24)where x 2 IRn, and n and m are positive integers. The te
hnique implemented in the LANCELOTpa
kage [9℄ is the augmented Lagrangian algorithm proposed by Conn, Gould, and Toint in [8℄. Forthe appli
ation of the augmented Lagrangian algorithm this problem is reformulated as:minimize f(x)subje
t to 
i(x)� ui = 0 ; i = 1; : : : ;m ;ui � 0 ; i = 1; : : : ;m ;by adding the sla
k variables ui, i = 1; : : : ;m. This algorithm 
onsiders the following augmentedLagrangian merit fun
tion:�(x; u; �; S; �) = f(x) + mXi=1 �i(
i(x)� ui) + 12� mXi=1 sii(
i(x)� ui)2 ;where: �i is an estimate for the Lagrange multiplier asso
iated with the i-th 
onstraint,� is a (positive) penalty parameter,sii is a (positive) s
aling fa
tor that is asso
iated with the i-th 
onstraint, andS = [sij℄ with sij = 0 for i 6= j:LANCELOT [7℄, [9℄ solves a sequen
e of minimization problems with simple bounds of thefollowing form: minimize �(x; u; �; S; �)subje
t to ui � 0 ; i = 1; : : : ;m ; (25)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 13for �xed values of �, sii, and �i, i = 1; : : : ;m. The two-step trust-region framework and analysisdes
ribed in this paper for un
onstrained minimization problems 
an be extended in an entirelystraightforward way to a number of algorithms for minimization problems with simple bounds, inparti
ular to the algorithms [7℄ used by LANCELOT to solve problem (25).If x is �xed, the fun
tion �(x; u; �; S; �) is quadrati
 in the sla
k variables u. Let us denote thisquadrati
 by q(u; x): q(u; x) = �(x; u; �; S; �) = d(x) + e(x)>u+ 12u>Fu ;where d(x) and e(x) depend on x but F is 
onstant. (The dependen
y on �i, sii, and � is notimportant sin
e these are 
onstants �xed before the minimization pro
ess is started.)The key idea is to update these sla
k variables at every iteration k of the trust-region algorithm[7℄ that is used in LANCELOT to solve problem (25). The trust-region algorithm 
omputes, at the
urrent point yk, a �rst step �sk. Now, at the new point yk+�sk we 
ompute the step ŝk by updatingthe sla
k variables u. So, we haveyk =  xkuk ! ; �sk =  (�sk)x(�sk)u ! ; ŝk =  0�uk ! ;f(yk + �sk) = q(�uk; �xk) ; f(yk + �sk + ŝk) = q(�uk +�uk; �xk) ;where �xk = xk + (�sk)x ; �uk = uk + (�sk)u :(Here f represents the obje
tive fun
tion of Se
tions 1-4.) Note that the se
ond step ŝk is ex
lusivelyin the 
omponents asso
iated with sla
k variables. This step is 
omputed as uk+1� �uk, where uk+1is the optimal solution of minimize q(u; �xk)subje
t to ui � 0 ; i = 1; : : : ;m : (26)Due to the simple form of this quadrati
, the solution is expli
it:(uk+1)i = max�0; ��isii + 
i(�xk)� ; i = 1; : : : ;m : (27)It is important to remark that these updates require no further fun
tion or gradient evaluations.They have also been 
onsidered in the 
odes NPSOL and SNOPT [15℄, [16℄ to update sla
k variablesafter the appli
ation of a line sear
h to the augmented Lagrangian merit fun
tion and prior to thesolution of the next quadrati
 programming problem. Other ways of dealing with sla
k variableshave been studied in the literature (see Gould [18℄ and the referen
es therein).For the study of the impa
t of the sla
k variable update on the global 
onvergen
e of the trust-region algorithm, the step in these variables is required only to de
rease the quadrati
 q(u; �xk) from�uk to �uk+�uk. In su
h a 
ase, we 
an always guarantee that the de
rease in the obje
tive fun
tionis larger than kŝkk2, that is that (21) holds. This result is shown in the following proposition. Wedrop �xk from q( � ; �xk) to simplify the notation.Proposition 5.1 There exists a positive 
onstant 
5 su
h that, whenever q(�uk+�uk) < q(�uk), wehave q(�uk)� q(�uk +�uk) � 
5k�ukk2 :



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 14Proof: First we write down a few properties of the quadrati
 q(u). Simple algebrai
 manipulationslead to: q(�uk)� q(�uk +�uk) = � (F (�uk +�uk) + e(�xk))>�uk + 12�uk>F�uk : (28)Also, sin
e q(u) is 
onvex:q(�uk)� q(�uk +�uk) � ���rq(�uk +�uk)>�uk��� : (29)Let 
 be a positive 
onstant su
h that 
 < �min(F )2 , where �min(F ) is the smallest eigenvalue ofF . Now we 
onsider two 
ases.1. ���rq (�uk +�uk)>�uk��� � 
k�ukk2. In this 
ase we use (29), to obtainq(�uk)� q(�uk +�uk) � 
k�ukk2 :2. ���rq (�uk +�uk)>�uk��� < 
k�ukk2. In this 
ase we appeal to (28) andrq (�uk +�uk) = F (�uk +�uk) + e(�xk) ;to get q(�uk)� q(�uk +�uk) = � (F (�uk +�uk) + e(�xk))>�uk + 12�uk>F�uk� ��min(F )2 � 
� k�ukk2 :The proof is 
ompleted by setting 
5 = minf
; �min(F )2 � 
g. 2Another example of the appli
ation of two-step algorithms arises in one approa
h to the solutionof minimax problems. Consider the following minimax problem:minx maxi=1;:::;m fi(x) ; (30)where ea
h fi is a real-valued fun
tion de�ned in IRn. One way of solving this minimax problem isto reformulate it as a nonlinear programming problem by adding an arti�
ial variable z. See [18℄for more details. This leads tominimize zsubje
t to z � fi(x)� ui = 0 ; i = 1; : : : ;m ; (31)ui � 0 ; i = 1; : : : ;m ;where the sla
k variables have also been introdu
ed. If LANCELOT is used to solve this nonlin-ear programming problem, then the augmented Lagrangian algorithm requires the solution of asequen
e of problems with simple bounds of the type:minimize �(x; z; u; �; S; �)subje
t to ui � 0 ; i = 1; : : : ;m ; (32)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 15where �(x; z; u; �; S; �) = z + mXi=1 �i(z � fi(x)� ui) + 12� mXi=1 sii(z � fi(x)� ui)2 :In this situation the fun
tion �(x; z; u; �; S; �) is quadrati
 in the variables u and z for �xed valuesof x. (Again, �, S, and � are 
onstants and not variables for problem (32).) The appli
ation of thetwo-step trust-region algorithm follows in a similar way. The Hessian of the quadrati
 is positivesemi-de�nite with the following form
F = 1�

0BBBBBBBBBBBBBB�
s11 0 � � � 0 �s110 � �� � �� � �� � �0 snn �snn�s11 � � � � �snn Pmi=1 sii

1CCCCCCCCCCCCCCA ;
where the last row and the last 
olumn 
orrespond to the variable z. The solution of the quadrati
program minimize q(z; u; �xk)subje
t to ui � 0 ; i = 1; : : : ;m : (33)is given by (uk+1)i = max�0; ��isii � fi(�xk) + zk+1� ; i = 1; : : : ;m ; (34)where zk+1 is the solution of the equation� 1� mXi=1 siimax�0; ��isii � fi(�xk) + z� + 1�  mXi=1 sii! z = b (35)with right hand side b = �1� mXi=1��i � sii� fi(�xk)� : (36)The equation (35) is solved easily with O(m) 
oating point operations and 
omparisons, showingthat the solution of the quadrati
 program (33) is a relatively inexpensive 
al
ulation.There are several nonlinear optimization problems in whi
h some subset of the problem variableso

ur linearly, for example, arrival times in stati
-timing-based 
ir
uit optimization problems [6℄.Su
h problems 
an also bene�t from two-step updating.6 Numeri
al tests6.1 Analyti
 problemsWe modi�ed LANCELOT (Release A) [9℄ to in
lude the sla
k variable update (27) and the sla
kand minimax variable updates (34)-(36). These updates were in
orporated in LANCELOT usinga greedy two-step modi�
ation of the trust-region algorithm [7℄ for minimization problems with



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 16simple bounds that is implemented in the subroutine SBMIN. (The greedy two-step trust-regionalgorithm for un
onstrained minimization problems is Algorithm 2.2.) We tested the followingversions of LANCELOT:1. LANCELOT (Release A) with the default parameter 
on�guration SPEC.SPC �le, ex
ept thatwe in
reased the maximum number of iterations to 4000.2. Version 1 with the sla
k and minimax variable updates (27) and (34)-(36) in
orporated inSBMIN using a greedy two-step trust-region algorithm.3. The same as Version 2 but with no update of the variable z for minimax problems, i.e., z�xed in (34)-(36).We 
ompared the numeri
al performan
e of these three versions on a set of problems1 fromthe CUTE 
olle
tion [2℄. This set of problems is listed in Table 1, and in the 
ase of minimaxformulations in Table 2, where we mention the number of variables (in
luding sla
ks and, whereappli
able, the minimax variable z), the number of sla
k variables, and the number of equality andinequality 
onstraints (ex
luding simple bounds on the variables). Note that the minimax problemswere reformulated as nonlinear programming problems by the introdu
tion of an additional minimaxvariable z as shown above (31).The 
omputational results are presented in Tables 3, 4, and 5. All tests were 
ondu
ted on anIBM Ris
/System 6000 model 390 workstation. In Table 3 we 
ompare the results of Versions 1and 2 for problems that are not minimax problems. In Table 4 we present the results of Versions1 and 2 for minimax problems. In Table 5 we in
lude the results of Versions 1 and 3 for minimaxproblems. In Tables 4 and 5 we in
lude the majority of the minimax problems but not all (seeSe
tion 6.3 for numeri
al results on the remaining problems). In these tables we report the value ofthe 
ag INFORM, the number of iterations, the total CPU time, and the determined values (a singlevalue if they are both the same) of the obje
tive fun
tion. The values of INFORM have the followingmeaning:INFORM = 0 for normal return, meaning that the norm of the proje
ted gradient of the augmentedLagrangian fun
tion has be
ome smaller than 10�5.INFORM = 1 for 
ases where the maximum number of iterations (4000) has been rea
hed.INFORM = 3 for 
ases where the norm of the step has be
ome too small.Our 
on
lusion based on these sets of problems is that the version with the sla
k and minimaxvariable updates exhibits superior numeri
al behavior. In fa
t, this version required an average of15% fewer iterations than the version without these updates (the problems HS109, HAIFAM, andPOLAK6 were ex
luded from this 
al
ulation, mainly be
ause the 
omparison was extraordinarilyfavorable in the 
ase of the �rst two and worse in the last). Comparing Tables 4 and 5, updating theminimax variable z in addition to two-step updates on just the sla
ks is seen to yield a signi�
antbene�t. However, there are some minimax problems where the two-step algorithm performs poorlyand this situation is analyzed in detail in Se
tion 6.3.1Although CUTE 
ontains more than 56 problems with general 
onstraints the majority of these are equality
onstrained problems. We ex
luded all problems that took more than 4000 iterations with both Versions 1 and 2.We in
luded the rest, with the ex
eption of some problems that are too easy, making a total of 56 problems of whi
h30 are minimax problems and 26 are non-minimax problems.
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ks ConstraintsCAR2 209 30 146CORE1 83 18 59CORE2 157 26 134CORKSCRW 106 70 10CSFI1 7 2 4CSFI2 7 2 4HADAMARD 769 512 648HS32 4 1 1HS67 17 14 14HS85 26 21 21HS109 13 8 4NET1 67 19 57NET2 181 37 160ORBIT2 298 30 207PRODPL0 69 9 29PRODPL1 69 9 29SSEBNLN 218 24 96SWOPF 97 14 92TFI1F 3 101 101TFI2F 3 101 101TFI3F 3 101 101VANDERM1 10 9 19VANDERM2 10 9 19VANDERM3 10 9 19VANDERM4 5 4 9ZIGZAG 74 10 50Table 1: Non-minimax problems from the CUTE 
olle
tion that were used.6.2 Cir
uit optimization problemsWe have built extensive experien
e with 
ir
uit optimization problems, where { due to expensivefun
tion evaluations, modest numeri
al noise levels, and pra
ti
al stopping 
riteria { the imple-mentation is designed to terminate before many \asymptoti
" iterations are taken. The algorithmsdes
ribed in this paper have been used in a dynami
-simulation-based 
ir
uit optimization tool
alled Ji�yTune (see [4℄, [5℄, and [10℄). Ji�yTune optimizes transistor and wire sizes of digital in-tegrated 
ir
uits to meet delay, power, and area goals. It is based on fast 
ir
uit simulation andtime-domain sensitivity 
omputation in SPECS (see [13℄ and [28℄). To optimize multiple path de-lays through a high-performan
e 
ir
uit, the tuning is often formulated as a minimax problem or aminimization problem with nonlinear inequality 
onstraints.We remark that many of the analyti
 problems (espe
ially the minimax problems) are rathersmall and involve inexpensive fun
tion evaluations. Moreover, it is 
lear that two-step updating isunlikely to be helpful asymptoti
ally in these situations. Consequently we also report numeri
alresults with 
ir
uit optimization problems whi
h are indi
ative of problems with expensive fun
tionevaluations, where termination (be
ause of inherent noise and pra
ti
al 
onsiderations) is en
our-aged to be before any signi�
ant asymptoti
 behavior. The numeri
al results are presented in Table6. As in Version 1, the se
ond step 
onsisted of the sla
k and minimax variable updates (27) and(34)-(36). However the gradient and 
onstraint toleran
es used were 10�3 and 10�5, respe
tively,
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ks ConstraintsCB2 6 3 3CB3 6 3 3CHACONN1 6 3 3CHACONN2 6 3 3CONGIGMZ 8 5 5COSHFUN 81 20 20DEMYMALO 6 3 3GIGOMEZ1 6 3 3GOFFIN 101 50 50HAIFAL 9301 8958 8958HAIFAM 249 150 150HALDMADS 48 42 42KIWCRESC 5 2 2MADSEN 9 6 6MAKELA1 5 2 2MAKELA2 6 3 3MAKELA3 41 20 20MAKELA4 61 40 40MIFFLIN1 5 2 2MIFFLIN2 5 2 2MINMAXBD 25 20 20POLAK1 5 2 2POLAK2 13 2 2POLAK3 22 10 10POLAK4 6 3 3POLAK5 5 2 2POLAK6 9 4 4SPIRAL 5 2 2SPRALX 5 2 2WOMFLET 6 3 3Table 2: Minimax problems from the CUTE 
olle
tion that were used.with some safeguards related to an expe
ted level of numeri
al noise. We 
an 
learly observe fromTable 6 that the two-step algorithm leads to better �nal obje
tive fun
tion values. In pra
ti
alappli
ations where a simple fun
tion evaluation takes more than ten minutes of CPU time thee�e
tiveness of su
h a simple addition is indeed signi�
ant. (There are situations where the greedytwo-step trust-region algorithm is able to take advantage of the de
rease given by the sla
k andminimax variable updates and, by doing so, this algorithm 
an a

ept steps that otherwise wouldhave been reje
ted, see Remark 3.1.)We also applied the algorithms of this paper to analyti
 stati
-timing-based 
ir
uit optimizationproblems (see Table 7), where it is 
lear that the advantage of the two-step approa
h is in
reasinglyapparent for larger problems.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 19Problem Name Inform Iterations Total CPU Obj. Fun
tionCAR2 0/0 80/67 15.2/12.3 2.67CORE1 0/0 953/983 7.41/17 91.1CORE2 0/0 1048/1086 25.6/25.7 72.9CORKSCRW 0/0 41/42 0.55/0.54 1.16CSFI1 0/0 112/127 0.11/0.11 -49.1CSFI2 0/0 78/83 0.07/0.07 55HADAMARD 0/0 1709/548 2290/276 1.14/1HS32 0/0 5/5 0.01/0.01 1HS67 0/0 33/21 0.08/0.07 -1.16e+03HS85 1/0 4000/3734 27.1/23.6 -1.85/-2.22HS109 3/3 1578/753 7.58/3.11 5.36e+03NET1 3/0 69/60 0.57/0.54 9.41e+05NET2 3/0 95/69 3.53/2.92 1.19e+06ORBIT2 0/3 615/612 3020/2750 312PRODPL0 3/0 36/26 0.29/0.23 58.8PRODPL1 0/0 56/32 0.55/0.51 35.7SSEBNLN 0/0 51/51 1.46/1.47 1e+12SWOPF 0/0 204/136 7.68/5.51 0.0679TFI1 0/0 26/24 0.4/0.25 5.33TFI2 0/0 25/45 0.33/0.41 0.649TFI3 0/0 23/34 0.38/0.38 4.3VANDERM1 0/0 13/13 0.05/0.08 0VANDERM2 0/0 13/13 0.08/0.07 0VANDERM3 0/0 14/16 0.07/0.08 0VANDERM4 0/0 81/82 0.1/0.1 0ZIGZAG 0/0 35/31 0.54/0.43 1.8Table 3: Comparison between Versions 1 and 2 for non-minimax problems (LANCELOT with-out/with two-step updating).6.3 Further experiments with minimax problemsIn this se
tion we 
onsider those minimax problems in our test set for whi
h the two-step algorithmnot only does not improve numeri
ally the results obtained in the one-step 
ase, but also makesthem 
onsiderably worse (see the �rst part of Table 8). We analyze the reasons for the failure of thetwo-step updating on some minimax problems and dis
uss a few ways to enfor
e better numeri
albehavior.We 
onsider the general minimax problem (30). Our aim is to show that for some types ofminimax problems the se
ond step has a tenden
y to make the Hessian of � ill-
onditioned. Let usassume that �i = 0 and sii = 1, for all i = 1; : : : ;m (as happens by default for the �rst LANCELOTmajor iteration). Under these 
ir
umstan
es, we have:�(x; z; u; �) = z + 12� mXi=1(z � fi(x)� ui)2:By using the notation gi(x; z; u) = z�fi(x)�ui, we have the following expressions for the elements



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 20Problem Name Inform Iterations Total CPU Obj. Fun
tionCB2 0/0 17/11 0.03/0.01 1.95CB3 0/0 14/10 0.05/0.02 2CHACONN1 0/0 12/8 0.02/0.04 1.95CHACONN2 0/0 13/10 0.01/0.02 2CONGIGMZ 0/0 32/19 0.04/0.05 28COSHFUN 0/0 127/69 1.31/1.06 -0.773DEMYMALO 0/0 24/17 0.03/0.03 -3GIGOMEZ1 0/0 27/19 0.04/0.02 -3GOFFIN 0/0 14/4 1.03/0.67 0HAIFAM 1/0 4000/136 1140/85.1 -45HALDMADS 0/0 48/73 0.49/0.72 0.0001KIWCRESC 0/0 19/14 0.02/0.02 0MADSEN 0/0 29/18 0.05/0.04 0.616MAKELA1 0/0 17/18 0.04/0.02 -1.41MAKELA2 0/0 21/9 0.05/0 7.2MAKELA4 0/0 6/4 0.09/0.08 0MIFFLIN1 0/0 11/7 0.03/0.01 -1MIFFLIN2 0/0 37/32 0.04/0.05 -1POLAK1 0/0 35/19 0.04/0.02 2.72POLAK2 0/0 40/24 0.09/0.07 54.6POLAK5 0/0 28/20 0.07/0.04 50POLAK6 0/0 124/149 0.24/0.23 -44SPIRAL 0/0 85/93 0.1/0.07 0SPRALX 0/0 87/93 0.13/0.08 0Table 4: Comparison between Versions 1 and 2 for minimax problems (LANCELOT without/withtwo-step updating).of the gradient of �: rxj� = � 1� mXi=1rxjfi(x)gi(x; z; u) ; j = 1; : : : ; n ;rz� = 1 + 1� mXi=1 gi(x; z; u);rui� = � 1�gi(x; z; u) ; i = 1; : : : ;m :Similarly the elements of the Hessian matrix of � are given by:r2xjxk� = � 1�Pmi=1[r2xjxkfi(x)gi(x; z; u) �rxjfi(x)rxkfi(x)℄ ; r2zz� = m� ;r2uiul� = Æil� ; r2zui� = � 1� ;r2xjz� = � 1�Pmi=1rxjfi(x) ; r2uixj� = 1�rxjfi(x) ;for i; l = 1; : : : ;m and j; k = 1; : : : ; n. If the magnitudes of the produ
ts r2xjxkfi(x)gi(x; z; u)are small 
ompared to those of the produ
ts rxjfi(x)rxkfi(x), then the Hessian of � is given



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 21Problem Name Inform Iterations Total CPU Obj. Fun
tionCB2 0/0 17/17 0.03/0.03 1.95CB3 0/0 14/16 0.05/0.03 2CHACONN1 0/0 12/10 0.02/0.03 1.95CHACONN2 0/0 13/13 0.01/0.04 2CONGIGMZ 0/0 32/25 0.04/0.1 28COSHFUN 0/0 127/92 1.31/1.08 -0.773DEMYMALO 0/0 24/18 0.03/0.03 -3GIGOMEZ1 0/0 27/20 0.04/0.02 -3GOFFIN 0/0 14/8 1.03/0.66 0HAIFAM 1/3 4000/609 1140/76.7 -45HALDMADS 0/0 48/46 0.49/0.54 0.0001KIWCRESC 0/0 19/18 0.02/0.03 0MADSEN 0/0 29/23 0.05/0.05 0.616MAKELA1 0/0 17/19 0.04/0.02 -1.41MAKELA2 0/0 21/24 0.05/0.03 7.2MAKELA4 0/0 6/6 0.09/0.11 0MIFFLIN1 0/0 11/11 0.03/0.03 -1MIFFLIN2 0/0 37/37 0.04/0.03 -1POLAK1 0/0 35/32 0.04/0.06 2.72POLAK2 0/0 40/15 0.09/0.04 54.6POLAK5 0/0 28/28 0.07/0.01 50POLAK6 0/0 124/332 0.24/0.48 -44SPIRAL 0/0 85/85 0.1/0.07 0SPRALX 0/0 87/87 0.13/0.09 0Table 5: Comparison of Versions 1 and 3 for minimax problems (LANCELOT without/with two-stepupdating only on sla
ks).approximately by
1�
0BBBBBBBBBBB�
Pi ai1ai1 : : : Pi ai1ain �Pi ai1 a11 : : : am1... . . . ... ... ... . . . ...Pi ainai1 : : : Pi ainain �Pi ain a1n : : : amn�Pi ai1 : : : �Pi ain m �1 : : : �1a11 : : : a1n �1 1... . . . ... ... . . .am1 : : : amn �1 1

1CCCCCCCCCCCA ;
where aij denotes rxjfi(x) and the indi
es i in the sums go from 1 to m. This matrix is 
learlysingular. In fa
t, the n + 1-st row is the negative sum of the last m rows. Moreover, any of the�rst n rows is a linear 
ombination of the last m rows. As result of these observations, the Hessian(and the proje
ted Hessian) of � is ill-
onditioned if����� 1� mXi=1rxjfi(x)rxkfi(x)����� � ����� 1� mXi=1r2xjxkfi(x)gi(x; z; u)����� (37)happens for \many" indi
es j and k. This is the key point in this analysis: the se
ond step hasa tenden
y to produ
e iterates that worsen property (37) be
ause it produ
es a de
rease on the



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 22Problem Name Variables Ineq. Iterations Total CPU Obj. Fun
tionNon-minimax:IOmuxpower 102 42 21/29 7230/9220 -15100/-16000durham2 13 2 17/17 93.5/93.5 472
hen2 2 1 14/14 91/91.2 4290IOmux 101 41 60/61 18000/17700 -16200/-15900Nov01power 5 1 37/54 24.5/35.6 273/268lau2 5 1 33/32 47.9/46.3 158Nov01 8 4 29/33 22.1/27.3 193/181
oulman 
old 33 17 22/22 69.5/68.3 271/262
lkgen 22 5 25/5 35/10.8 1.98/1.82
oulman hot 33 17 16/32 46.2/100 283/253davies3 16 1 30/30 368/368 254
oulman delay 33 17 26/24 72.6/73.5 116/111Minimax:bultmann lat
h 39 13 17/18 41.8/46.8 95.9/84.6stall1 30 5 23/19 3350/3050 156/86.8
oulman 
old minmax 34 17 61/80 184/229 69.4/66.9
oulman hot minmax 34 17 66/44 197/134 74.4/75.1
eis
her 110 5 53/61 267/330 -458/-505mod5 51 10 17/51 11200/33100 98.9/19northrop xor 18 8 67/64 78.3/77.7 -34.1/-30.2
oulman delay minmax 34 17 100/100 290/306 67.4/70.5Table 6: LANCELOT without/with two-step updating for dynami
-simulation-based 
ir
uit opti-mization problems. Ineq. stands for the number of inequality 
onstraints.values of gi(x; z; u) for some indi
es i. The Hessian of � might very well be ill-
onditioned if nose
ond steps are applied, but there is no doubt (and the numeri
al results are a eviden
e of this
laim) that the se
ond step for some problems worsens the situation by making the Hessian of �more ill-
onditioned.In the presen
e of nonzero Lagrange multipliers �i, i = 1; : : : ;m, the formulae for the gradientand Hessian of � are the same with gi(x; z; u) substituted by gi(x; z; u)+��i and similar 
on
lusions
ould be drawn.The se
ond step may produ
e very bad results on some minimax problems be
ause it pointstowards the set f(x; z; u) : gi(x; z; u) = 0; for some ig (where the Hessian of the augmented La-grangian is ill-
onditioned) and this e�e
t in
uen
es negatively the 
al
ulation of the �rst step atthe next iteration. Given this undesirable feature of the Hessian of � at points 
lose to this set,one possible improvement to the two-step algorithm is to make sure that the 
al
ulation of the �rststep is a

urate (in the LANCELOT 
ontext this 
ould be a
hieved by 
hoosing a smaller toleran
efor the stopping 
riterion of the 
onjugate-gradient te
hnique). Another possible improvement is toredu
e the ill-
onditioning of the Hessian of � (for instan
e by in
reasing the value of the penaltyparameter � as 
an be seen in examples with a few variables). Indeed, these modi�
ations improvethe bad numeri
al results presented before: in the se
ond part of Table 8 we 
ompare the resultsobtained by the following modi�
ations of Versions 1 and 2:4. Version 1 with an initial value for the penalty parameter � of 100 (the default value is 0:1).5. Version 2 with an initial value for the penalty parameter � of 100 and a toleran
e of 10�12 in



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 23Problem Name Variables Ineq. Iterations Total CPU Obj. Fun
tionSymmetri
 3 37 24 � 1 39/40 0.12/0.15 7.7Symmetri
 4 77 25 � 1 69/60 0.63/0.6 10.2Symmetri
 5 157 26 � 1 97/81 2.09/1.64 12.7Symmetri
 6 317 27 � 1 140/118 9.38/7.14 15.2Symmetri
 7 637 28 � 1 270/183 44.3/35.3 17.6Symmetri
 8 1277 29 � 1 385/340 247/221 19.9Symmetri
 9 2557 210 � 1 901/639 1920/1300 22.1Nonsymmetri
 3 37 24 � 1 44/27 0.18/0.16 12.4Nonsymmetri
 4 77 25 � 1 58/37 0.57/0.31 16Nonsymmetri
 5 157 26 � 1 78/45 1.84/0.91 19.7Nonsymmetri
 6 317 27 � 1 75/54 5.89/3.3 23.6Nonsymmetri
 7 637 28 � 1 96/50 30.9/9.02 27.7Nonsymmetri
 8 1277 29 � 1 92/53 63.6/31.6 31.7Nonsymmetri
 9 2557 210 � 1 130/63 300/95 35.7Table 7: LANCELOT without/with two-step updating for analyti
 (minimax) stati
-timing-based
ir
uit optimization problems. Ineq. stands for the number of inequality 
onstraints.the stopping 
riterion for 
onjugate gradients.The study of strategies that 
an make two-step updating more e�e
tive for minimax problems ingeneral is the subje
t for future resear
h.7 Con
luding remarksIn this paper we presented and analyzed a framework under whi
h 
lassi
al algorithms for nonlinearoptimization 
an be modi�ed to allow se
ond 
omputationally eÆ
ient steps that are not generatedin the 
onventional way but that are guaranteed to yield de
rease in the obje
tive fun
tion. Wegave as examples of the two-step algorithms the update of sla
k variables in LANCELOT, and theupdate of variables introdu
ed to solve minimax problems. However, we emphasize that the two-step algorithms 
an be very generally applied, for example, whenever the fun
tions de�ning theproblem are in a known fun
tional form in some of the variables.We 
onsidered trust-region algorithms for whi
h we proposed a greedy and a 
onservative two-step algorithm. We analyzed the 
onvergen
e properties of the trust-region two-step algorithms(see [11℄ for line-sear
h two-step algorithms), deriving the 
onditions under whi
h they attainglobal 
onvergen
e. We also showed that a two-step Newton's method (for whi
h the se
ond stepis 
omputed only for a subset of the variables) has a q-quadrati
 rate of 
onvergen
e.The greedy two-step algorithms are designed to exploit as mu
h as possible the de
rease attainedby the se
ond step. The trust-region framework allowed to us to design a greedy two-step trust-region algorithm that is parti
ularly well tailored to a
hieve this purpose.Finally, we in
luded numeri
al eviden
e that this te
hnique is e�e
tive, parti
ularly for prob-lems with expensive fun
tion evaluations. The two-step algorithms have already found pra
ti
alappli
ations in optimization of high-performan
e 
ustom mi
ropro
essor integrated 
ir
uits.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 24Problem Name Inform Iterations Total CPU Obj. Fun
tionHAIFAL 0/1 679/4000 872346.06/366146.81 -12.8/-12.7828MAKELA3 0/0 66/2816 0.26/5.84 0MINMAXBD 0/0 267/952 1.34/3.59 116POLAK3 0/0 71/125 0.4/0.8 5.93POLAK4 3/1 14/4000 0.04/3.23 0WOMFLET 0/0 63/150 0.07/0.13 0HAIFAL 0/0 287/41 61603.1/8480.99 -12.8MAKELA3 0/0 20/48 0.09/0.22 0MINMAXBD 0/0 47/43 0.25/0.22 116POLAK3 0/0 44/14 0.22/0.18 5.93POLAK4 3/3 31/15 0.04/0.04 0WOMFLET 0/0 26/32 0.03/0.04 6.05/0Table 8: In the �rst part, 
omparison of Versions 1 and 2 for minimax problems (LANCELOTwithout/with two-step updating). In the se
ond part, 
omparison of Versions 4 and 5 for minimaxproblems (LANCELOT without/with two-step updating).8 A
knowledgmentsWe are grateful to N. I. M. Gould (Rutherford Appleton Laboratory) for his 
omments and sug-gestions on an earlier version of this paper that led to many improvements. We are also gratefulto K. S
heinberg (IBM T. J. Watson Resear
h Center) for helping with the numeri
al results andexplanation in Se
tion 6.3. We would like to thank I. M. Elfadel (IBM T. J. Watson Resear
hCenter) for providing the analyti
 stati
-timing-based optimization 
ir
uit problems. Finally, weare grateful to the referees for their useful 
omments and suggestions.Referen
es[1℄ D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, ComputerS
ien
e and Applied Mathemati
s, A
ademi
 Press, New York, 1982.[2℄ I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint, CUTE: Constrained andUn
onstrained Testing Environment, ACM Trans. Math. Software, 21 (1995), pp. 123-160.[3℄ R. H. Byrd, R. B. S
hnabel, and G. A. Shultz, Approximate solution of the trust-regionproblem by minimization over two-dimensional subspa
es, Math. Programming, 40 (1988),pp. 247-263.[4℄ A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, and C. Visweswariah,Optimization of 
ustom MOS 
ir
uits by transistor sizing, IEEE International Conferen
e onComputer-Aided Design (ICCAD), (1996).[5℄ A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, andC. W. Wu, Ji�yTune: 
ir
uit optimization using time-domain sensitivities, IEEE Transa
-tions on Computer-Aided Design of ICs and Systems, vol. 17, num. 12, (De
ember 1998),pp. 1292{1309.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 25[6℄ A. R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R. O'Brien, P. N. Strenski, C.Visweswariah, and C. B. Whan, Gradient-based optimization of 
ustom 
ir
uits using astati
-timing formulation, Pro
. 1999 Design Automation Conferen
e, (June 1999).[7℄ A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Global 
onvergen
e of a 
lass of trust-region algorithms for optimization problems with simple bounds, SIAM J. Numer. Anal., 25(1988), pp. 433-460.[8℄ , A globally 
onvergent augmented Lagrangian algorithm for optimization with general
onstraints and simple bounds, SIAM J. Numer. Anal., 28 (1991), pp. 545-572.[9℄ , LANCELOT: A Fortran Pa
kage for Large-S
ale Nonlinear Optimization (Release A),Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1992.[10℄ A. R. Conn, R. A. Haring, C. Visweswariah, and C. W. Wu, Cir
uit optimization viaadjoint Lagrangians, ICCAD, (1997), pp. 281-288.[11℄ A. R. Conn, L. N. Vi
ente, and C. Visweswariah, Two-step algorithms for nonlinear op-timization with stru
tured appli
ations, IBM Resear
h Division, T. J. Watson Resear
h Center,Yorktown Heights, NY 10598, Resear
h Report RC 21198(94689), June, 1998.[12℄ J. E. Dennis and R. B. S
hnabel, Numeri
al Methods for Un
onstrained Optimization andNonlinear Equations, Prenti
e-Hall, Englewood Cli�s, New Jersey, 1983.[13℄ P. Feldmann, T. V. Nguyen, S. W. Dire
tor, and R. A. Rohrer, Sensitivity 
ompu-tation in pie
ewise approximate 
ir
uit simulation, IEEE Trans. on CAD of ICs and Systems,(1991), pp. 171-183.[14℄ R. Flet
her, Pra
ti
al Methods of Optimization, John Wiley & Sons, Chi
hester, se
ond ed.,1987.[15℄ P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-s
ale
onstrained optimization, Department of Mathemati
s, University of California, San Diego,Report NA 97-2, 1997.[16℄ P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User's guide for NPSOL5.0: A Fortran pa
kage for nonlinear programming, System Optimization Laboratory, StanfordUniversity, Te
hni
al Report SOL 86-1, Revised July 30, 1998.[17℄ G. H. Golub and V. Pereyra, The di�erentiation of pseudo-inverses and nonlinear leastsquares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413-432.[18℄ N. I. M. Gould, On solving three 
lasses of nonlinear programming problems via simpledi�erentiable penalty fun
tions, J. Optim. Theory Appl., 56 (1988), pp. 89-126.[19℄ D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley Publishing Com-pany, Massa
husetts, 1989.[20℄ J. J. Mor�e, Re
ent developments in algorithms and software for trust-regions methods, inMathemati
al programming. The state of art, A. Ba
hem, M. Grots
hel, and B. Korte, eds.,Springer Verlag, New York, (1983), pp. 258-287.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 26[21℄ , Generalizations of the trust-region problem, Optimization Methods and Software, 2(1993), pp. 189-209.[22℄ J. J. Mor�e and D. C. Sorensen, Computing a trust-region step, SIAM J. S
i. Statist.Comput., 4 (1983), pp. 553-572.[23℄ M. J. D. Powell, A new algorithm for un
onstrained optimization, in Nonlinear Program-ming, J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., A
ademi
 Press, New York, (1970),pp. 31-66.[24℄ , Convergen
e properties of a 
lass of minimization algorithms, in Nonlinear Programming2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., A
ademi
 Press, New York,(1975), pp. 1-27.[25℄ D. C. Sorensen, Minimization of a large-s
ale quadrati
 fun
tion subje
t to a spheri
al 
on-straint, SIAM J. Optim., 7 (1997) 141-161.[26℄ T. Steihaug, The 
onjugate gradient method and trust regions in large s
ale optimization,SIAM J. Numer. Anal., 20 (1983), pp. 626-637.[27℄ S. W. Thomas, Sequential Estimation Te
hniques for Quasi-Newton Algorithms, PhD thesis,Cornell University, Itha
a, New York, 1975.[28℄ C. Visweswariah and R. A. Rohrer, Pie
ewise approximate 
ir
uit simulation, IEEETrans. on CAD of ICs and Systems, (1991), pp. 861-870.


