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Abstract

In this paper we propose extensions to trust-region algorithms in which the classical step
is augmented with a second step that we insist yields a decrease in the value of the objective
function. The classical convergence theory for trust-region algorithms is adapted to this class
of two-step algorithms.

The algorithms can be applied to any problem with variable(s) whose contribution to the ob-
jective function is a known functional form. In the nonlinear programming package LANCELOT,
they have been applied to update slack variables and variables introduced to solve minimax prob-
lems, leading to enhanced optimization efficiency. Extensive numerical results are presented to
show the effectiveness of these techniques.

Keywords. Trust regions, line searches, two-step algorithms, spacer steps, slack variables,
LANCELOT, minimax problems, expensive function evaluations, circuit optimization.

AMS subject classifications. 49M37, 90C06, 90C30

1 Introduction

In nonlinear optimization problems with expensive function and gradient evaluations, it is desirable
to extract as much improvement as possible at each iteration of an algorithm. When the objec-
tive function contains a subset of variables that occurs in a predictable functional form, a second,
computationally relatively inexpensive, update can be applied to these variables following a clas-
sical optimization step. The additional step provides a further reduction in the objective function
and can lead to superior optimization efficiency. The two-step algorithms have been successfully
applied to the updating of slack variables and to a particular formulation of minimax problems, as
is indicated by numerical results on a variety of problems. In these instances a subset of variables
(slack variables and variables introduced to solve minimax problems) appears in a fixed, known
algebraic form in the objective function. However, since it can be applied to any problem where
a subset of the variables can be optimized relatively cheaply compared with the cost of evaluating
the entire function (for example if some terms require simulation and other independent terms are
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available analytically), their applicability is really rather broad. We propose modifications to ex-
isting nonlinear optimization algorithms. An alternative approach, when feasible, is to reformulate
the original problem by eliminating a subset of variables and then to apply the algorithms in the
remaining variables (see, for example, Golub and Pereyra [17]).

This paper deals with two-step algorithms where the second step is required to yield a decrease
in the value of the objective function. The analysis given here covers the global convergence of
two-step trust-region algorithms and it is presented for the unconstrained minimization problem:

minimize  f(y), (1)

where y € IR?, and f : IRP — 1R is a twice continuously differentiable function. For both trust
regions and line searches, one can consider two versions of the two-step algorithms, one called
greedy and the other called conservative. The greedy version exploits as much as possible the
decrease obtained by the second step, whereas the conservative approach calculates the second step
only after the first step has been confirmed to satisfy the traditional criteria required for global
convergence. We point out that the conservative two-step line-search algorithm is not new and can
be found in the books by Bertsekas [1], Section 1.3.1, and Luenberger [19], Section 7.10, where the
second step is called a spacer step. A description of the greedy and conservative two-step line-search
algorithms can be found in [11].

In trust regions, if the second step is guaranteed to decrease the value of the objective function,
global convergence of the type liminfy, o ||V f(yx)|| = 0 is immediately attained. Further, in
the cases where the first step would be rejected, the sum of the first and second steps has a better
chance of being accepted (see Remark 3.1). To obtain limy_, 1 ||V f(yg)|| = O either the norm of
the second step has to be controlled by the trust region (see condition (13)) or the decrease on the
objective function attained by the second step has to be of the order of magnitude of the norm of
this step (see condition (12)).

The update of the slack variables referred to above motivated the study of the local rate of
convergence of a two-step Newton’s method. We show that a second Newton step in some of the
variables retains the q-quadratic rate of convergence of the traditional Newton’s method.

This paper is structured as follows. In Section 2 we introduce the two-step trust-region al-
gorithms, and in Section 3 we analyze their global convergence properties. The local rate of the
two-step Newton’s method is studied in Section 4. The application of the two-step ideas to update
slack variables and variables introduced for the solution of minimax problems is described in Section
5. Section 6 presents the numerical results obtained with LANCELOT using these updates for ana-
lytic problems and dynamic-simulation-based and analytic static-timing-based circuit optimization
problems. Finally, some conclusions are drawn in Section 7.

2 Two-step trust-region algorithms

We first consider the trust-region framework presented in the paper by Moré [20] for unconstrained
minimization. The (classical) trust-region algorithm builds a quadratic model of the form

1
mi(ye +5) = flue) +VF(ur) s+ 55" His
at the current point g, where Hj is an approximation to V2f(y;) (note that mg(yx) = f(ys)).

Then a step si is computed by approximately solving the trust-region subproblem

minimize myg(yx + 3)

(2)

subject to ||s|| < Ag,
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where Ay is called the trust-region radius and [|-|| is an arbitrary norm. The new point yx 1 = yg—+Sk
is tested for acceptance. If the actual reduction f(yi) — f(yx + si) is larger than a given fraction of
the predicted reduction my(yx) —mg (yx + Sk ), then the step s, and the new point y, 1 are accepted.
In this situation, the quadratic model my(yx + s) is considered to be a good approximation to the
function f(y) in the region ||yx — y|| < Ag. The trust radius may be increased. Otherwise, the
quadratic model my (yx + s) is considered not to be a good approximation to the function f(y) in
the region ||y — yi|| < Ag. In this case, the new point yx11 is rejected, and a new trust-region
subproblem of the form (2) is solved for a smaller value of the trust radius. This simple trust-region
algorithm is described below.

Algorithm 2.1 (Trust-region algorithm)

1. Given yg, the value f(yo), the gradient V f(yo) and an approximation Hy to the Hessian of f
at 4o, and the initial trust-region radius Aj. Set £ = 0. Choose v and « in (0, 1).

2. Compute a step s; based on the trust-region problem (2).

3. Compute
S () — fyr + sk)
my(ye) — mg(ye + sk)

Pk =

4. In the case where
Pr > o,

set
Yk+1 = Yk + Sk,
compute Hy1, and select Agyq satisfying Ag1 > Ag.

Otherwise, set

Yk+1 = Yk » Hy1 = Hy, and  Apipp =7Ag.
5. Increment k£ by one and go to Step 2.

The mechanism used to update the trust radius that is described in Algorithm 2.1 is simple and
suffices to prove convergence results. In practice, with the goal of improving optimization efficiency,
one uses updating schemes that are more complex involving several subcases according to the value
of Pk-

We propose in this paper a modification of this trust-region algorithm. We are motivated by a
situation where it is desirable to update slack variables and variables introduced to solve minimax
problems, at every iteration of the trust-region algorithm [7] implemented in LANCELOT [9]. See
Section 5 for more details on practical applications.

The two-step trust-region algorithm is quite easy to describe. Suppose that after computing a
step S based on the trust-region subproblem (2) we know some properties of the function f(y) that
enables us to compute a new step §; for which we can guarantee that f(yr + 3 + 8x) < f(yx + 3k)-
In this situation we would certainly like to have yx11 = yi + S + 8 and to test whether this new
point should be accepted or not. This modification requires a careful redefinition of the actual and
predicted reductions given for Algorithm 2.1. The new actual and predicted reductions that we
propose are:
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ared(Yi, 3k, 3k) = f(yr) — f(yr + 3k + 38) , (3)
pred(y, Sk, 8k) = mp(ye) — mu(ye + k) + f (ye + 5k) — fyr + Sk + 35) - (4)

The new predicted reduction is the predicted reduction obtained by the first step plus the (actual)
reduction obtained by the second step. The choice pred(yg, Sk, k) = mi(yr) — mi(yr + Sk + 8k) is
not appropriate since the second step §j is not computed using the model my (yx + ).

The two-step trust-region algorithm is given below.
Algorithm 2.2 (Two-step trust-region algorithm — Greedy)

1. Same as in Algorithm 2.1.

2. Compute a step s; based on the trust-region problem (2).

3. If possible, find another step §; such that

flyk + 56+ 8K) < flye +5K).
Otherwise, set §; = 0.

4. Compute

ared(yg, 5k, Sk)
pred(Yk, Sk. Sk)

5. In the case where
Pr >,

set
Yk+1 = Y + Sk + Sk,

compute Hy 1, and select Agyq satisfying Ag1 > Ag.

Otherwise, set

Yk+1 = Yk » Hy1 = Hy, and  Appp =7Ag.
6. Increment £ by one and go to Step 2.

The two-step trust-region Algorithm 2.2 evaluates the new point y; + S + § for acceptance
after both steps §; and §; have been computed. We call this version “greedy” because it tries
to take as much advantage as possible of the decrease obtained by the second step $;. Note that
although the function f is evaluated twice in Algorithm 2.2, the reevaluation is often computation-
ally inexpensive. The context in which we are particularly interested involves relatively expensive
evaluations at y; + 5; and evaluations at y; + 5x + §x involving only a subset of the variables that
are cheap to compute (see Section 5).

We could also consider a two-step trust-region algorithm where first an acceptable step 3§j is
determined, and only afterwards a second step §; is computed. This algorithm is outlined below.
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Algorithm 2.3 (Two-step trust-region algorithm — Conservative)

1. Same as in Algorithm 2.1.
2. Repeat

(a) Compute a step s based on the trust-region problem (2).
(b) Compute

S k) — 1 (yr + 55)
my(ye) — (Y + 5x)

pp =
(c) If px > «, then set
Uk = Yk + 3k,
compute Ay satisfying Agi 1 > Ay, and set accepted = true.
If pp < a, set A = yAg and accepted = false.
Until accepted.
3. If possible, find another step §; such that

f(e +381) < f(Ue).

Otherwise, set §; = 0.
4. Set yr1 = Yk + Sk
5. Update Hg. Increment k£ by one and go to Step 2.

The same comments about the function evaluations apply to Algorithm 2.3 after the compu-
tation of a successful step s;. However, in the case of Algorithm 2.3, the function f has to be
evaluated twice only in iterations corresponding to successful first steps 5.

3 Global convergence of the two-step trust-region algorithms

We analyze first the two-step trust-region Algorithm 2.2, i.e., the greedy version. The analysis for
the conservative Algorithm 2.3 is similar.
In this section we make the assumption that {Hy} is a bounded sequence. So, there exists a
o > 0 for which
|H|| < o forall k. (5)

We require the step s to satisfy a fraction of Cauchy decrease on the trust-region problem (2). In
other words we ask 3 to satisfy

flye) —me(ye +51) > B (malyr) — mr(yr +cx)) (6)

for € (0,1]. The step ¢ is called the Cauchy step, and it is defined as the solution of the scalar
problem in the unknown 7

minimize myg(yx + )
subject to ||s]| < Ay,

s =0V (), n€R.

There is a variety of algorithms that compute steps satisfying this condition (see [3], [22], [23], [25],
and [26]).
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Proposition 3.1 If 55 satisfies a fraction of Cauchy decrease then:

. \%
Flow) = e+ 5) > 2195 min { &, LY
where B and o are as in (6) and (5) respectively.

Proof: See Powell [24], Theorem 4, or Moré [20], Lemma 4.8. O

If we use this proposition and the fact that f(yx + Sg) > f(yx + Sk + Sk), we obtain

pred(yr, Sk 8k) = f(yk) — mu(ye + Sk) + f(yn + sk) — [y + 85 + 3k)
> 219 el min a4 pi 50 = fn+ 50+ )
> 219 ol min {a, L0 ©)

This inequality is crucial to prove global convergence of the two-step algorithm. In particular, if
the iteration k is successful, then

ared(yr, sk, 36) = fyr) = f(yr + 5+ 3¢)
9|9 ()| min { Ay, T2}

g

(9)

Vv

We are ready to prove the first convergence result.

Theorem 3.1 Consider a sequence {yx} generated by Algorithm 2.2 where 3y, satisfies (6). If f is
continuously differentiable and bounded below on

Lyo) = {y: fly) < Flw)},

and {Hy} is a bounded sequence, then
liminf ||V f(y)|| = 0. (10)
k— 400

So, if the sequence {y} is bounded, there exists at least one limit point y. for which ¥V f(y.) = 0.

Proof: The proof is similar to the proof given in [20], Theorem 4.10.

Assume by contradiction that {||V f(yk)||} is bounded away from zero, i.e., that there exists an
e > 0 such that ||V f(yg)|| > € for all k. As in [20], Theorem 4.10, we make direct use of (9) and of
the rules that update the trust radius, to obtain:

+oo

Y AR < 400,
k=0

and so limg_, o0 Ap = 0.
The next step is to show that limg_,, |pr — 1| = 0. Note that from the definitions (3) and
(4), we have

ared(y, 5k, 8%) — pred(yk, 5k, 5k)

11
= flye) — flyn + 5%) + VF(yr) "3k + £3] Hi3p, (1)
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which in turn, by using a Taylor series expansion and ||3;| < Ag, implies

\ared(yy, 3k, k) — pred(Yr, 5k, 8x)| < o(Ay).

This inequality and (8) show that |p; — 1| converges to zero. The rest of the proof follows a
classical argument in trust regions: if g converges to one, the rules that update the trust radius
show that A cannot converge to zero. So, a contradiction is attained and the proof is completed. O

The result of Theorem 3.1 does not require the step §; to be O(Ay) which may seem surprising.
This result shows the appropriateness of the definitions given in (3) and (4) for the actual and
predicted reductions. These definitions allow us to obtain the conditions (9) and (11) that are
crucial to establish (10).

Remark 3.1 [t is also important to note that the definitions (3) and (4) can improve the accept-
ability of a step. In fact, we have

s le + Pk

= 0.(t
P Pk (k) »

f Y +3k)— f(yo+5k+3k) f(yi)— f(yr+5k)
mu (Yi) = (yr +55) mu (Yi) = (yi +3k) 7
pr and the function pg(ty) is strictly increasing if pr < 1. In other words, in cases where a
standard trust-region algorithm rejects a step the modified criterion is always better than the usual
one. Further, it can be noted that pp, — 1 = ’z:—_'__ll, which indicates that all successful iterations of
the the standard algorithm will also be successful in the modified two-step algorithm. In particular,

pr > 1 whenever py > 1.

where t, = , and pp = as before. We now note that py(0) =

The next step in the analysis is to prove that, with additional conditions on the second step,
limg 400 [V £ (yr)ll = 0.

Theorem 3.2 Consider a sequence {yx} generated by Algorithm 2.2 where 3j satisfies (6). As-
sume that f is continuously differentiable and bounded below on L(yo) and that {Hy} is a bounded
sequence. If V f is uniformly continuous on L(yo) and if either

Tlyk +56) — flye + 56+ 86) > alldell, (12)

or
[ETEYAV (13)

where c¢1 and co are positive constants independent of k, then

lim [V f(ye)l = 0. (14)

k— 400

So, if the sequence {yi} is bounded, every limit point y. satisfies Vf(y.) = 0.

Proof: The proof is similar to the proof given in [20], Theorem 4.14. See also Thomas [27].

We show the result by contradiction. Assume therefore that there exists an €; € (0,1) and
a subsequence indexed by {m;} of successful iterates such that, for all m; in this subsequence,
|V f(ym,)l| > €1. Theorem 3.1 guarantees the existence of another subsequence indexed by {/;}
such that |V f(yx)ll > €, for m; < k < l; and ||V f(y,)]| < €2 (where {m;} is without loss
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of generality the subsequence previously mentioned). Here €5 is any real number chosen to be in
(0,€1). Since {f(yx)— f(yg+1)} converges to zero, for k sufficiently large corresponding to successful

iterations m; < k < ;

flyk) = f(yks1) > w1 Ag + e8¢l

holds if (12) is satisfied, and

flyk) = flyks1) > w1 Ay

holds otherwise with x; = o‘g”.

We consider the cases (12) and (13) separately. In both cases we make use of:

li-1
ym: =yl < D vk — vl

k=m;

;-1

Flum) = Flu) = D (k) = Flyes)]-

k=m;

In the sums Z%;;u we consider only indices corresponding to successful iterations.
If (12) holds then we use (15) to obtain

l;— li— g
Skl () = flyer)] = Ty, [s1A% + e [34]]
: Li-1 [i|= A
> min{ky,c1} Zk:mi \EAIRRIEA]
> min{ki,c} Zﬁj;;i Yk — Ykl

If (13) holds then we appeal to (16) and write
SEnlf ) = fles)] > Siom, k1A
5 mind1, 20} 55, 15el] + 134 ]

. lf
emin{1, L300k — vkl

v 1V

v

In either case we obtain

ym; =yl < w2 (f (yms) — f))

(15)

(16)

and since the right hand side of this inequality goes to zero, so does the left hand side ||y, — |-

Since the gradient of f is uniformly continuous, we have for 7 sufficiently large that

et < IV m)ll < IVFYmi) = VIl + V)l < 2e.

Since €5 can be any number in (0, €1) this inequality contradicts the supposition.

In the theorem above we required the norm of the step §; to either be O(Ag) or O (f (yx + 3k)
— f(yx + Sk + 8k)). The former condition can be enforced in Step 2 of the Algorithm 2.2, although

this might not be beneficial and could lead to an inferior decrease.
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We can obtain global convergence to a point that also satisfies the necessary second-order
conditions for optimality. For this purpose, we require the step §; to satisfy a fraction of optimal
decrease for the trust-region problem (2). In other words we ask s to satisfy

flye) —me(ye +3%) > B(f(yx) — mu(ye + s1)) (17)

where 3 € (0, 1], and s is an optimal solution of (2). (This condition can be weakened in several
ways [20].) A step sj satisfying a fraction of optimal decrease can be computed by using the
algorithms proposed in [22] and [25] in the case where the trust-region norm is Euclidean. The
global convergence result is the following.

Theorem 3.3 Consider a sequence {y;} generated by Algorithm 2.2 where Hy, = V2f(y) and 5
satisfies (17). If L(yo) is compact and f is twice continuously differentiable on L(yo), then there
exists at least one limit point y, for which V f(y.) = 0 and V2 f(y,) is positive semi-definite.

Proof: The proof is basically the same as the proof of Theorem 4.7 in [22]. O

To obtain stronger global convergence results to second-order points, for instance the results in
Theorems 4.11 and 4.13 in [22] (see also [21], Theorem 4.17, ¢ and d), other conditions are required
like ||$k|| being of O(Ay).

The next results show that the second step can preserve the nice local properties of the behavior
of the trust radius that are typical in trust-region algorithms.

Theorem 3.4 Let {yx} be a sequence generated by Algorithm 2.2 where 3y satisfies (6) and Hy =
V2f(yx). In addition, assume that the step 3y satisfies either condition (12) or condition (13). If
[ is twice continuously differentiable and bounded below on L(yo) and {yx} has a limit point y.
such that H, = V?f(y.) is positive definite, then {yr} converges to y., all iterations are eventually
successful, and {Ag} is bounded away from zero.

Proof: From Theorem 3.2 we can guarantee that limg o ||V f(yx)|| = 0. So, the proof is
basically the same as the proof of Theorem 4.19 in [20]. O
An alternative to this result where we do not impose conditions (12) or (13) on the second step

is given below. However we need to assume that {yx} converges to y..

Theorem 3.5 Let {yx} be a sequence generated by Algorithm 2.2 where 3y satisfies (6) and Hy, =
V2f(yr). If f is twice continuously differentiable on L(yo) and {yy} converges to a point y. such
that H, = V?f(y.) is positive definite, then all iterations are eventually successful and {A} is
bounded away from zero.

Proof: The first step 5; yields a decrease in the quadratic model:

_ _ 1_ _
mi(yr) — mr(ye + 58) = =V (yr) "5k — ESZHkSk > 0.
Thus, the assumptions made on H; and H, guarantee

15kl < 3|V f(y)ll (18)
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for sufficiently large k, which in turn, by using (8), implies

pred(yi, 5k, 3x) > cal|5k]|® - (19)

(The constants c¢3 and ¢4 are independent of k.)
A Taylor series expansion for the expression (11) gives

\ared(yy, 3r, §k) — pred(yk, 5k, 3x)| < o(||3k[?) - (20)

The fact that {yx} converges and the result liminfy ||V f(yx)|| = 0 of Theorem 3.1, to-
gether imply limg_ o |V f(yg)|| = 0. Thus, from (18) we get limy_, 1~ [|Sk|| = 0.

The proof is terminated with a typical argument in trust regions. From (19), (20) and limy,__, | o
|5k]| = 0, we obtain the limit

lim ared(yy, Sk, Sk)

-1 =0
k—s+4oc p?“@d(yk,gk,§k) ’

which shows, by appealing to the rules that update the trust radius, that all iterations are eventu-
ally successful and the trust radius is uniformly bounded away from zero. O

The global convergence analysis for Algorithm 2.3 is identical to the analysis given above for
Algorithm 2.2. We point out that Algorithm 2.3 is well defined since at a nonstationary point it is
always possible to find an acceptable first step. Also, for every k,

flyk) = fluks1) = fluw) = flyk +36) + flyk + 3%) — fyrs1)
> %va(yk)" min{&mw} + fyk + 88) — f(Yr11)
> P95 (ue) | min { &y, TLELY

Thus, the results given in Theorems 3.1-3.5 hold for Algorithm 2.3. The lim inf-type result (10) is
obtained under the classical assumptions for trust-region algorithms for unconstrained optimization.
To obtain the lim-type result (14) one of the two conditions (12) and (13) is required.

In the case of the applications considered in Section 5, the decrease obtained by the second step
3 is always guaranteed to satisfy

Fye +38K) — Flye + 8k +8k) > o5l (21)

Moreover, the objective function strictly decreases along the segment between the points y, + si
and yi + Sk + 8. In this case we can modify Step 3 of Algorithms 2.2 and 2.3 in such a way that
we meet the requirements of Theorem 3.2. This modification is given below. It is easy to verify
that §; # 0 satisfies f(yx + 3k + 8k) < f(yr + 3x) and either (12) or (13).

Algorithm 3.1 (Step 3 for Algorithms 2.2 and 2.3 — Quadratic decrease case)

3. Compute a step §x such that

Fyr +5) — flye + 35+ 8k) > cslldk?

If ||3k|| < v, then scale §; by min{1, %&} so that ||$x]| < coAy and §j is not enlarged.
(Otherwise (12) holds with ¢; = ves.)
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The positive parameters v and ¢y should be set a priori in Step 1 of Algorithms 2.2 and 2.3.
Of course, we would like to prove the result of Theorem 3.2 for the case where the condition
(12) is replaced by the condition (21). However, such a result is unlikely to be true.

4 Local rate of convergence of a two-step Newton’s method

In the next section we are interested in two-step algorithms where the second step is calculated
as a Newton-type step in some of the variables. In this section we investigate the local rate of
convergence for an algorithm where each step is composed of two Newton steps, the second being
computed only for a subset of the variables. For this purpose let

y=(§>.

Suppose the first step 5 is a full Newton step, i.e., 5y = —V2f(yx) 'V f(yx). Let also

= ) = gts

At the intermediate point g, a Newton step is applied in the variables u with x = Zj fixed. This
two-step Newton’s method is described below.
Algorithm 4.1 (Two-step Newton’s method)
1. Choose .
2. For k=1,2,... do
2.1 Compute 3, = —V2f(yx) 'V f(yx) and set g = y + 5.
0

( _Vzuf(gk)_lvuf(gk)
2.3 Set Yk+1 = Yk + Sk-

2.2 Compute §; = > and set s = Sp + S.

The proof of the local convergence rate of the two-step Newton’s method requires a few modi-
fications from the standard proof of Newton’s method [12], Theorem 5.2.1. Recall that that proof
of Newton’s method is by induction.

Corollary 4.1 Let f be twice continuously differentiable in an open set D where the second partial
derivatives are Lipschitz continuous. If {yx} is a sequence generated by Algorithm 4.1 converging
to a point iy, € D for which V f(y,) = 0 and V2f(y.) is positive definite, then {yy} converges with
a g-quadratic rate.

Proof: If y; is sufficiently close to y,, the perturbation result [12], Theorem 3.1.4, can be used to
prove the nonsingularity of the Hessian matrix V2f(y;). Furthermore,

9k —ysll < collye —usl*- (22)

Now we show that V2 f(yx) is also nonsingular. First we point out that V2, f(y) is Lipschitz
continuous on D and V2, f(y.) is positive definite. Thus, inequality (22) and the perturbation
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lemma cited above, together imply the nonsingularity of V2, f (). Hence the method is locally
well-defined, and the second step yields

k1 = Gell = 13all = V5 f @)~ (Vaf @) = Vaf ) | < erllgn — vall (23)

since V, f(y) is Lipschitz continuous near y,. Now we use inequalities (22) and (23), and write
lykt1 = yell < My — Uall + 196 — vl
< (er + DGk — yell
< esler + Dllyr — yoll?.

This last inequality establishes the g-quadratic rate of convergence. O

5 Applications

We begin by considering updating the slack variables in LANCELOT. Suppose the problem we are
trying to solve has the form

minimize f(x)
(24)
subject to ¢;(z) >0, i=1,...,m,

where z € IR”, and n and m are positive integers. The technique implemented in the LANCELOT
package [9] is the augmented Lagrangian algorithm proposed by Conn, Gould, and Toint in [8]. For
the application of the augmented Lagrangian algorithm this problem is reformulated as:

minimize  f(z)

subject to ¢i(z) —u; =0, i=1,...,m,

by adding the slack variables u;, 1 = 1,...,m. This algorithm considers the following augmented
Lagrangian merit function:

m

O(z,u, N\, S, n) = f(z)+ Z)\Z(CZ(Z') —u;) + i an(cl(x) —u;)?,
i=1 i=1

where:
A; is an estimate for the Lagrange multiplier associated with the i-th constraint,
u is a (positive) penalty parameter,
sii 18 a (positive) scaling factor that is associated with the i-th constraint, and
S = [s4;] with s;; = 0 for i # j.

LANCELOT [7], [9] solves a sequence of minimization problems with simple bounds of the
following form:

minimize ®(z,u, A\, S, 1)
: . (25)
subject to w; >0, 1=1,...,m,
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for fixed values of u, s;;, and A;, 1 = 1,...,m. The two-step trust-region framework and analysis
described in this paper for unconstrained minimization problems can be extended in an entirely
straightforward way to a number of algorithms for minimization problems with simple bounds, in
particular to the algorithms [7] used by LANCELQOT to solve problem (25).

If z is fixed, the function ®(z,u, A, S, ) is quadratic in the slack variables u. Let us denote this
quadratic by q(u; z):

q(u; ) = ®(z,u,\, S ) = d(z) + e(x) "u+ %UTFU,
where d(z) and e(z) depend on z but F' is constant. (The dependency on )\;, s;;, and p is not
important since these are constants fixed before the minimization process is started.)
The key idea is to update these slack variables at every iteration k of the trust-region algorithm
[7] that is used in LANCELOT to solve problem (25). The trust-region algorithm computes, at the
current point yg, a first step 5. Now, at the new point y; + 5 we compute the step §; by updating

the slack variables u. So, we have
(Ek)z 5 = 0
(gk)u ’ k Ay, ’

_ [ = o
yk_<uk>78k_<

flyr +5k) = qlur; Zi),  flyr + 55+ 38) = qlug + Auy; 73)

where

T = T+ (Ek)z , up = up + (Ek)u .

(Here f represents the objective function of Sections 1-4.) Note that the second step §j is exclusively
in the components associated with slack variables. This step is computed as w1 — tg, where ug
is the optimal solution of

minimize q(u; Zg)

, : (26)
subject to w; >0, 1=1,....m.
Due to the simple form of this quadratic, the solution is explicit:
LA _ .
(ukt1)i = max <0, . +ci(@k)p, i=1,...,m. (27)
(23

It is important to remark that these updates require no further function or gradient evaluations.
They have also been considered in the codes NPSOL and SNOPT [15], [16] to update slack variables
after the application of a line search to the augmented Lagrangian merit function and prior to the
solution of the next quadratic programming problem. Other ways of dealing with slack variables
have been studied in the literature (see Gould [18] and the references therein).

For the study of the impact of the slack variable update on the global convergence of the trust-
region algorithm, the step in these variables is required only to decrease the quadratic g(u; ) from
Uy to ug + Aug. In such a case, we can always guarantee that the decrease in the objective function
is larger than ||3||?, that is that (21) holds. This result is shown in the following proposition. We
drop Ty from q(-; Z) to simplify the notation.

Proposition 5.1 There exists a positive constant c; such that, whenever q(uy + Auy) < q(ay), we
have

q(ak) — gty + Aug) > c5)|Augl®.
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Proof: First we write down a few properties of the quadratic g(u). Simple algebraic manipulations
lead to:

1
a(@g) — q(ag + Aug) = — (F(ag + Aug) + e(Zx)) T Auy + EAukTFAuk . (28)
Also, since g(u) is convex:
a(i) — q(ig + Aug) > [Va(ig + Aug) T Aug (29)

Let ¢ be a positive constant such that ¢ < 7/\’”“2’(1:)

F. Now we consider two cases.

, where A\p,in (F') is the smallest eigenvalue of

1. ‘Vq (g + Aug) " Auk‘ > c||Aug||?. In this case we use (29), to obtain
q(iir) — qix + Aug) > clAug?.
2. ‘Vq (g + Auy) " Auk‘ < c||Aug||?. In this case we appeal to (28) and

Vq (ﬂk + Auk) = F(’Ek + Auk) + e(ik) ,

to get
1
q(tg) — qlug + Aup) = — (F(tg + Aug) + (@) " Aug + §AUkTFAUk
Amin (F
> (2t o,
The proof is completed by setting ¢; = min{e, )‘m#(F) —c}. O

Another example of the application of two-step algorithms arises in one approach to the solution
of minimax problems. Consider the following minimax problem:

min  max f;(z), (30)

T i=1,....m

where each f; is a real-valued function defined in IR”. One way of solving this minimax problem is
to reformulate it as a nonlinear programming problem by adding an artificial variable z. See [18]
for more details. This leads to

minimize z
subject to  z— fi(z) —u; =0, i=1,...,m, (31)
uiZO, i=1,...,m,

where the slack variables have also been introduced. If LANCELOT is used to solve this nonlin-
ear programming problem, then the augmented Lagrangian algorithm requires the solution of a
sequence of problems with simple bounds of the type:

minimize ®(z,z,u, A\, S, 1)
: . (32)
subject to w; >0, 1=1,...,m,
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where

@(mzu)\S,u)zz—i—Z)\ (z — fi(z) an z) —u;)?.
=1
In this situation the function ®(x, z,u, A, S, ) is quadratic in the variables u and z for fixed values
of z. (Again, \, S, and p are constants and not variables for problem (32).) The application of the
two-step trust-region algorithm follows in a similar way. The Hessian of the quadratic is positive
semi-definite with the following form

S11 o - - - 0 —S11
0
1
F = — ,
1
0 Snn —Snn
m
=511 o —Sun Yoieq Sii

where the last row and the last column correspond to the variable z. The solution of the quadratic
program
minimize q(z,u; Tf)

(33)
subject to w; >0, 1=1,....m.
is given by
Ai .
(ugy1)i = maX{O, /;“l — fi(zk) +zk+1} , i=1,...,m, (34)
21

where z;1 is the solution of the equation

Ly i max 'U—Ai— (T l Sii | 2
_pgsn {0, - fz( k) } 1 (Z zz) =b (35)

Sig

with right hand side

m
b=-1-% (- Zhi@n) (36)
i=1 H
The equation (35) is solved easily with O(m) floating point operations and comparisons, showing
that the solution of the quadratic program (33) is a relatively inexpensive calculation.
There are several nonlinear optimization problems in which some subset of the problem variables
occur linearly, for example, arrival times in static-timing-based circuit optimization problems [6].
Such problems can also benefit from two-step updating.

6 Numerical tests

6.1 Analytic problems

We modified LANCELOT (Release A) [9] to include the slack variable update (27) and the slack
and minimax variable updates (34)-(36). These updates were incorporated in LANCELOT using
a greedy two-step modification of the trust-region algorithm [7] for minimization problems with
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simple bounds that is implemented in the subroutine SBMIN. (The greedy two-step trust-region
algorithm for unconstrained minimization problems is Algorithm 2.2.) We tested the following
versions of LANCELOT:

1. LANCELOT (Release A) with the default parameter configuration SPEC.SPC file, except that
we increased the maximum number of iterations to 4000.

2. Version 1 with the slack and minimax variable updates (27) and (34)-(36) incorporated in
SBMIN using a greedy two-step trust-region algorithm.

3. The same as Version 2 but with no update of the variable z for minimax problems, i.e., z
fixed in (34)-(36).

We compared the numerical performance of these three versions on a set of problems! from
the CUTE collection [2]. This set of problems is listed in Table 1, and in the case of minimax
formulations in Table 2, where we mention the number of variables (including slacks and, where
applicable, the minimax variable z), the number of slack variables, and the number of equality and
inequality constraints (excluding simple bounds on the variables). Note that the minimax problems
were reformulated as nonlinear programming problems by the introduction of an additional minimax
variable z as shown above (31).

The computational results are presented in Tables 3, 4, and 5. All tests were conducted on an
IBM Risc/System 6000 model 390 workstation. In Table 3 we compare the results of Versions 1
and 2 for problems that are not minimax problems. In Table 4 we present the results of Versions
1 and 2 for minimax problems. In Table 5 we include the results of Versions 1 and 3 for minimax
problems. In Tables 4 and 5 we include the majority of the minimax problems but not all (see
Section 6.3 for numerical results on the remaining problems). In these tables we report the value of
the flag INFORM, the number of iterations, the total CPU time, and the determined values (a single
value if they are both the same) of the objective function. The values of INFORM have the following
meaning:

INFORM = 0 for normal return, meaning that the norm of the projected gradient of the augmented
Lagrangian function has become smaller than 107°.

INFORM

1 for cases where the maximum number of iterations (4000) has been reached.

INFORM = 3 for cases where the norm of the step has become too small.

Our conclusion based on these sets of problems is that the version with the slack and minimax
variable updates exhibits superior numerical behavior. In fact, this version required an average of
15% fewer iterations than the version without these updates (the problems HS109, HAIFAM, and
POLAK6 were excluded from this calculation, mainly because the comparison was extraordinarily
favorable in the case of the first two and worse in the last). Comparing Tables 4 and 5, updating the
minimax variable z in addition to two-step updates on just the slacks is seen to yield a significant
benefit. However, there are some minimax problems where the two-step algorithm performs poorly
and this situation is analyzed in detail in Section 6.3.

! Although CUTE contains more than 56 problems with general constraints the majority of these are equality
constrained problems. We excluded all problems that took more than 4000 iterations with both Versions 1 and 2.
We included the rest, with the exception of some problems that are too easy, making a total of 56 problems of which
30 are minimax problems and 26 are non-minimax problems.
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Problem Name | Variables | Slacks | Constraints
CAR2 209 30 146
CORE1 83 18 59
CORE2 157 26 134
CORKSCRW 106 70 10
CSFI1 7 2 4
CSFI2 7 2 4
HADAMARD 769 512 648
HS32 4 1 1
HS67 17 14 14
HS85 26 21 21
HS109 13 8 4
NET1 67 19 57
NET2 181 37 160
ORBIT2 298 30 207
PRODPLO 69 9 29
PRODPL1 69 9 29
SSEBNLN 218 24 96
SWOPF 97 14 92
TFI1F 3 101 101
TFI2F 3 101 101
TFI3F 3 101 101
VANDERM1 10 9 19
VANDERM2 10 9 19
VANDERMS3 10 9 19
VANDERM4 5 4 9
ZIGZAG 74 10 50

Table 1: Non-minimax problems from the CUTE collection that were used.

6.2 Circuit optimization problems

We have built extensive experience with circuit optimization problems, where — due to expensive
function evaluations, modest numerical noise levels, and practical stopping criteria — the imple-
mentation is designed to terminate before many “asymptotic” iterations are taken. The algorithms
described in this paper have been used in a dynamic-simulation-based circuit optimization tool
called JiffyTune (see [4], [5], and [10]). JiffyTune optimizes transistor and wire sizes of digital in-
tegrated circuits to meet delay, power, and area goals. It is based on fast circuit simulation and
time-domain sensitivity computation in SPECS (see [13] and [28]). To optimize multiple path de-
lays through a high-performance circuit, the tuning is often formulated as a minimax problem or a
minimization problem with nonlinear inequality constraints.

We remark that many of the analytic problems (especially the minimax problems) are rather
small and involve inexpensive function evaluations. Moreover, it is clear that two-step updating is
unlikely to be helpful asymptotically in these situations. Consequently we also report numerical
results with circuit optimization problems which are indicative of problems with expensive function
evaluations, where termination (because of inherent noise and practical considerations) is encour-
aged to be before any significant asymptotic behavior. The numerical results are presented in Table
6. As in Version 1, the second step consisted of the slack and minimax variable updates (27) and
(34)-(36). However the gradient and constraint tolerances used were 1073 and 1075, respectively,
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Table 2:

Problem Name | Variables | Slacks | Constraints
CB2 6 3 3
CB3 6 3 3
CHACONNI1 6 3 3
CHACONN?2 6 3 3
CONGIGMZ 8 5 5
COSHFUN 81 20 20
DEMYMALO 6 3 3
GIGOMEZ1 6 3 3
GOFFIN 101 50 50
HAIFAL 9301 8958 8958
HAIFAM 249 150 150
HALDMADS 48 42 42
KIWCRESC 5 2 2
MADSEN 9 6 6
MAKELA1 5 2 2
MAKELA2 6 3 3
MAKELA3 41 20 20
MAKELA4 61 40 40
MIFFLIN1 5 2 2
MIFFLIN2 5 2 2
MINMAXBD 25 20 20
POLAK1 5 2 2
POLAK2 13 2 2
POLAK3 22 10 10
POLAK4 6 3 3
POLAKS5 5 2 2
POLAKG6 9 4 4
SPIRAL 5 2 2
SPRALX 5 2 2
WOMFLET 6 3 3

Minimax problems from the CUTE collection that were used.

18

with some safeguards related to an expected level of numerical noise. We can clearly observe from
Table 6 that the two-step algorithm leads to better final objective function values. In practical
applications where a simple function evaluation takes more than ten minutes of CPU time the
effectiveness of such a simple addition is indeed significant. (There are situations where the greedy
two-step trust-region algorithm is able to take advantage of the decrease given by the slack and
minimax variable updates and, by doing so, this algorithm can accept steps that otherwise would
have been rejected, see Remark 3.1.)

We also applied the algorithms of this paper to analytic static-timing-based circuit optimization
problems (see Table 7), where it is clear that the advantage of the two-step approach is increasingly
apparent for larger problems.
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Problem Name | Inform | Iterations | Total CPU | Obj. Function
CAR2 0/0 80/67 15.2/12.3 2.67
CORE1 0/0 953/983 7.41/17 91.1
CORE2 0/0 1048/1086 | 25.6/25.7 72.9
CORKSCRW 0/0 41/42 0.55/0.54 1.16
CSFT1 0/0 112/127 0.11/0.11 -49.1
CSFI2 0/0 78/83 0.07/0.07 55
HADAMARD 0/0 1709/548 2290/276 1.14/1
HS32 0/0 5/5 0.01/0.01 1

HS67 0/0 33/21 0.08/0.07 -1.16e+03
HS85 1/0 4000/3734 | 27.1/23.6 -1.85/-2.22
HS109 3/3 1578/753 7.58/3.11 5.36e+03
NET1 3/0 69/60 0.57/0.54 9.41e+05
NET2 3/0 95/69 3.53/2.92 1.19e+-06
ORBIT2 0/3 615/612 3020/2750 312
PRODPLO 3/0 36/26 0.29/0.23 58.8
PRODPL1 0/0 56/32 0.55/0.51 35.7
SSEBNLN 0/0 51/51 1.46/1.47 le+12
SWOPF 0/0 204/136 7.68/5.51 0.0679
TFI1 0/0 26/24 0.4/0.25 5.33
TFI2 0/0 25/45 0.33/0.41 0.649
TFI13 0/0 23/34 0.38/0.38 4.3
VANDERMI1 0/0 13/13 0.05/0.08 0
VANDERM?2 0/0 13/13 0.08/0.07 0
VANDERM3 0/0 14/16 0.07/0.08 0
VANDERM4 0/0 81/82 0.1/0.1 0
ZIGZAG 0/0 35/31 0.54/0.43 1.8

Table 3: Comparison between Versions 1 and 2 for non-minimax problems (LANCELOT with-
out/with two-step updating).

6.3 Further experiments with minimax problems

In this section we consider those minimax problems in our test set for which the two-step algorithm
not only does not improve numerically the results obtained in the one-step case, but also makes
them considerably worse (see the first part of Table 8). We analyze the reasons for the failure of the
two-step updating on some minimax problems and discuss a few ways to enforce better numerical
behavior.

We consider the general minimax problem (30). Our aim is to show that for some types of
minimax problems the second step has a tendency to make the Hessian of ® ill-conditioned. Let us
assume that A; = 0 and s;; = 1, for all i = 1,...,m (as happens by default for the first LANCELOT
major iteration). Under these circumstances, we have:

By using the notation g;(z, z,u) = z — fi(z) —u;, we have the following expressions for the elements
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Problem Name | Inform | Iterations | Total CPU | Obj. Function
CB2 0/0 17/11 0.03/0.01 1.95
CB3 0/0 14/10 0.05/0.02 2
CHACONNI1 0/0 12/8 0.02/0.04 1.95
CHACONN2 0/0 13/10 0.01/0.02 2
CONGIGMZ 0/0 32/19 0.04/0.05 28
COSHFUN 0/0 127/69 1.31/1.06 -0.773
DEMYMALO 0/0 24/17 0.03/0.03 -3
GIGOMEZ1 0/0 27/19 0.04/0.02 -3
GOFFIN 0/0 14/4 1.03/0.67 0
HATFAM 1/0 4000/136 1140/85.1 -45
HALDMADS 0/0 48/73 0.49/0.72 0.0001
KIWCRESC 0/0 19/14 0.02/0.02 0
MADSEN 0/0 29/18 0.05/0.04 0.616
MAKELA1 0/0 17/18 0.04/0.02 -1.41
MAKELA2 0/0 21/9 0.05/0 7.2
MAKELA4 0/0 6/4 0.09/0.08 0
MIFFLIN1 0/0 11/7 0.03/0.01 -1
MIFFLIN2 0/0 37/32 0.04/0.05 -1
POLAK1 0/0 35/19 0.04/0.02 2.72
POLAK2 0/0 40/24 0.09/0.07 54.6
POLAKS5 0/0 28/20 0.07/0.04 50
POLAKG6 0/0 124/149 0.24/0.23 -44
SPIRAL 0/0 85/93 0.1/0.07 0
SPRALX 0/0 87/93 0.13/0.08 0

Table 4: Comparison between Versions 1 and 2 for minimax problems (LANCELOT without/with
two-step updating).

of the gradient of ®:
1 m
vl‘j(b = _ﬁzvz]fl(w)gl(l‘azau)a j=1...,n,
i=1
1l i
V,d=1+ — Zgi(x,z,u),
i=1

1
Vi, @ = ——gi(z,z,u), i=1, ...,m.
1

Similarly the elements of the Hessian matrix of ® are given by:

V?rjqu) = _% gl[v?r]zkfl(x)gz(xvzvu) - Vm]fl(x)vxkfz(x)] ) szé = % )
ngulq) = % ) Vguz = _i »
Vfgrqu):_i ;11 VI]fl(x)a vzimj(l): %szfl(x)a

for i,1 = 1,...,m and j,k = 1,...,n. If the magnitudes of the products V%J,xkfi(w)gi(x,z,u)
are small compared to those of the products Vg, fi(z)Vy, fi(z), then the Hessian of ® is given
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Problem Name | Inform | Iterations | Total CPU | Obj. Function
CB2 0/0 17/17 0.03/0.03 1.95
CB3 0/0 14/16 0.05/0.03 2
CHACONNI1 0/0 12/10 0.02/0.03 1.95
CHACONN2 0/0 13/13 0.01/0.04 2
CONGIGMZ 0/0 32/25 0.04/0.1 28
COSHFUN 0/0 127/92 1.31/1.08 -0.773
DEMYMALO 0/0 24/18 0.03/0.03 -3
GIGOMEZ1 0/0 27/20 0.04/0.02 -3
GOFFIN 0/0 14/8 1.03/0.66 0
HATFAM 1/3 4000/609 1140/76.7 -45
HALDMADS 0/0 48 /46 0.49/0.54 0.0001
KIWCRESC 0/0 19/18 0.02/0.03 0
MADSEN 0/0 29/23 0.05/0.05 0.616
MAKELA1 0/0 17/19 0.04/0.02 -1.41
MAKELA2 0/0 21/24 0.05/0.03 7.2
MAKELA4 0/0 6/6 0.09/0.11 0
MIFFLIN1 0/0 11/11 0.03/0.03 -1
MIFFLIN2 0/0 37/37 0.04/0.03 -1
POLAK1 0/0 35/32 0.04/0.06 2.72
POLAK2 0/0 40/15 0.09/0.04 54.6
POLAKS5 0/0 28/28 0.07/0.01 50
POLAKG6 0/0 124/332 0.24/0.48 -44
SPIRAL 0/0 85/85 0.1/0.07 0
SPRALX 0/0 87/87 0.13/0.09 0

Table 5: Comparison of Versions 1 and 3 for minimax problems (LANCELOT without/with two-step
updating only on slacks).

approximately by

D GilGi1 e DG — )Gl Q11 .. Gl
1 Zz Aindi1 ... Zz Ainin — Zz Gin Q1n ... G(mnp
- —Ziail —Ziam m -1 ... —1 s
H a1l e A1n -1 1
am1 Amn -1 1

where a;; denotes V,, fi(x) and the indices 4 in the sums go from 1 to m. This matrix is clearly
singular. In fact, the n + 1-st row is the negative sum of the last m rows. Moreover, any of the
first n rows is a linear combination of the last m rows. As result of these observations, the Hessian
(and the projected Hessian) of @ is ill-conditioned if

% S Vo, fi(2) Ve, file)| >
=1

%Z V2 fi(@)gi(a, 2, 0) (37)
=1

happens for “many” indices j and k. This is the key point in this analysis: the second step has
a tendency to produce iterates that worsen property (37) because it produces a decrease on the
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Problem Name Variables | Ineq. | Iterations | Total CPU | Obj. Function
Non-minimax:
IOmuxpower 102 42 21/29 7230/9220 -15100/-16000
durham?2 13 2 17/17 93.5/93.5 472
chen2 2 1 14/14 91/91.2 4290
I0Omux 101 41 60/61 18000/17700 | -16200/-15900
Nov0lpower 5 1 37/54 24.5/35.6 273/268
lau2 5 1 33/32 47.9/46.3 158
Nov01 8 4 29/33 22.1/27.3 193/181
coulman_cold 33 17 22/22 69.5/68.3 271/262
clkgen 22 5 25/5 35/10.8 1.98/1.82
coulman_hot 33 17 16/32 46.2/100 283/253
davies3 16 1 30/30 368/368 254
coulman_delay 33 17 26/24 72.6/73.5 116/111
Minimax:
bultmann_latch 39 13 17/18 41.8/46.8 95.9/84.6
stalll 30 5 23/19 3350/3050 156/86.8
coulman_cold_minmax | 34 17 61/80 184/229 69.4/66.9
coulman_hot_minmax 34 17 66/44 197/134 74.4/75.1
fleischer 110 5 53/61 267/330 -458/-505
mod5 51 10 17/51 11200/33100 | 98.9/19
northrop_xor 18 8 67/64 78.3/77.7 -34.1/-30.2
coulman_delay_minmax | 34 17 100/100 290/306 67.4/70.5

Table 6: LANCELOT without/with two-step updating for dynamic-simulation-based circuit opti-
mization problems. Ineq. stands for the number of inequality constraints.

values of g;(z, z,u) for some indices i. The Hessian of ® might very well be ill-conditioned if no
second steps are applied, but there is no doubt (and the numerical results are a evidence of this
claim) that the second step for some problems worsens the situation by making the Hessian of ®
more ill-conditioned.

In the presence of nonzero Lagrange multipliers A;, 7 = 1,...,m, the formulae for the gradient
and Hessian of ® are the same with g;(z, 2, u) substituted by g;(x, z, u) + uA; and similar conclusions
could be drawn.

The second step may produce very bad results on some minimax problems because it points
towards the set {(z,z,u) : gi(x,z,u) = 0, for some ¢} (where the Hessian of the augmented La-
grangian is ill-conditioned) and this effect influences negatively the calculation of the first step at
the next iteration. Given this undesirable feature of the Hessian of ® at points close to this set,
one possible improvement to the two-step algorithm is to make sure that the calculation of the first
step is accurate (in the LANCELOT context this could be achieved by choosing a smaller tolerance
for the stopping criterion of the conjugate-gradient technique). Another possible improvement is to
reduce the ill-conditioning of the Hessian of ® (for instance by increasing the value of the penalty
parameter p as can be seen in examples with a few variables). Indeed, these modifications improve
the bad numerical results presented before: in the second part of Table 8 we compare the results
obtained by the following modifications of Versions 1 and 2:

4. Version 1 with an initial value for the penalty parameter p of 100 (the default value is 0.1).

5. Version 2 with an initial value for the penalty parameter y of 100 and a tolerance of 10~!? in
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Problem Name | Variables | Ineq. | Iterations | Total CPU | Obj. Function
Symmetric 3 37 21 —1 [ 39/40 0.12/0.15 7.7
Symmetric 4 7 25 —1 | 69/60 0.63/0.6 10.2
Symmetric 5 157 260 —1 | 97/81 2.09/1.64 12.7
Symmetric 6 317 27 1 | 140/118 | 9.38/7.14 15.2
Symmetric 7 637 28 —1 | 270/183 44.3/35.3 17.6
Symmetric 8 1277 29 —1 | 385/340 247/221 19.9
Symmetric 9 2557 219 — 11 901/639 1920/1300 22.1
Nonsymmetric 3 | 37 24 —1 | 44/27 0.18/0.16 12.4
Nonsymmetric 4 | 77 25 —1 | 58/37 0.57/0.31 16
Nonsymmetric 5 157 26 1 78/45 1.84/0.91 19.7
Nonsymmetric 6 | 317 27 —1 | 75/54 5.89/3.3 23.6
Nonsymmetric 7 | 637 28 —1 | 96/50 30.9/9.02 27.7
Nonsymmetric 8 | 1277 29 —1 | 92/53 63.6/31.6 31.7
Nonsymmetric 9 | 2557 210 — 1] 130/63 300/95 35.7

Table 7: LANCELOT without/with two-step updating for analytic (minimax) static-timing-based
circuit optimization problems. Ineq. stands for the number of inequality constraints.

the stopping criterion for conjugate gradients.

The study of strategies that can make two-step updating more effective for minimax problems in
general is the subject for future research.

7 Concluding remarks

In this paper we presented and analyzed a framework under which classical algorithms for nonlinear
optimization can be modified to allow second computationally efficient steps that are not generated
in the conventional way but that are guaranteed to yield decrease in the objective function. We
gave as examples of the two-step algorithms the update of slack variables in LANCELOT, and the
update of variables introduced to solve minimax problems. However, we emphasize that the two-
step algorithms can be very generally applied, for example, whenever the functions defining the
problem are in a known functional form in some of the variables.

We considered trust-region algorithms for which we proposed a greedy and a conservative two-
step algorithm. We analyzed the convergence properties of the trust-region two-step algorithms
(see [11] for line-search two-step algorithms), deriving the conditions under which they attain
global convergence. We also showed that a two-step Newton’s method (for which the second step
is computed only for a subset of the variables) has a q-quadratic rate of convergence.

The greedy two-step algorithms are designed to exploit as much as possible the decrease attained
by the second step. The trust-region framework allowed to us to design a greedy two-step trust-
region algorithm that is particularly well tailored to achieve this purpose.

Finally, we included numerical evidence that this technique is effective, particularly for prob-
lems with expensive function evaluations. The two-step algorithms have already found practical
applications in optimization of high-performance custom microprocessor integrated circuits.
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Problem Name | Inform | Iterations | Total CPU Obj. Function
HATFAL 0/1 679/4000 872346.06/366146.81 | -12.8/-12.7828
MAKELA3 0/0 66/2816 0.26/5.84 0
MINMAXBD 0/0 267/952 1.34/3.59 116

POLAK3 0/0 71/125 0.4/0.8 5.93
POLAK4 3/1 14/4000 0.04/3.23 0
WOMFLET 0/0 63/150 0.07/0.13 0

HATFAL 0/0 287/41 61603.1/8480.99 -12.8
MAKELA3 0/0 20/48 0.09/0.22 0
MINMAXBD 0/0 47/43 0.25/0.22 116

POLAK3 0/0 44/14 0.22/0.18 5.93
POLAK4 3/3 31/15 0.04/0.04 0
WOMFLET 0/0 26/32 0.03/0.04 6.05/0

Table 8: In the first part, comparison of Versions 1 and 2 for minimax problems (LANCELOT
without /with two-step updating). In the second part, comparison of Versions 4 and 5 for minimax
problems (LANCELOT without/with two-step updating).
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