
Derivative Computations for a Class of Optimal Control Problems �Lu��s N. Vicente yAbstractThis paper addresses the computation of �rst and second order derivatives for a class ofoptimal control problems by the sensitivity and adjoint equation methods. The issues consideredare the relationships between the derivative structure of the full and the reduced formulationsand the properties of the null-space basis operator associated with the linearized state equation.Keywords. optimal control, nonlinear optimization, adjoints, sensitivitiesAMS subject classi�cations. 49M37, 90C06, 90C301 IntroductionIn this paper we analyze the derivative structure of problems of the formminimize f(y; u)subject to c(y; u) = 0; (1)arising in optimal control. Here u represents the control, y represents the state, and c(y; u) = 0represents the state equation. Often, y and u belong to a function space such as the Sobolev spaceH1 or the space L2, and the state equation is a di�erential equation in y. Examples of optimalcontrol problems of the form (1) are given, e.g., in [2], [4], [5], [8], [9], [10], [11], [12], possibly withthe inclusion of bound constraints of the form:y � y � y; u � u � u: (2)We assume that the nonlinear optimization problem (1) is �nite dimensional and we use a Hilbertspace structure for its description. The �rst assumption is natural in the context of numericalsolutions of optimal control problems. The second assumption is made because a Hilbert spacestructure is at least implicitly used in many optimization algorithms using iterative solvers. Forthis purpose let Y, U , and � be �nite dimensional Hilbert spaces of dimension ny, nu, and ny,respectively. These Hilbert spaces can be identi�ed with IRny ; IRnu , and IRny , respectively, but areequipped with scalar products h�; �iY , h�; �iU , and h�; �i�. In the context of this paper, the functionsf : Y � U ! IR;c : Y � U ! �;�Written as part of the teaching material used to support the lecture Optimization Methods for Control and DesignProblems given by the author at the School of Finite Elements and Applications, CIM, Coimbra 1998. This paper ismotivated from the approaches given in the papers [3] and [7].yDepartamento de Matem�atica, Universidade de Coimbra, 3000 Coimbra, Portugal. E-Mail: lvicente@mat.uc.pt.Support for this work has been provided by Centro de Matem�atica da Universidade de Coimbra, FCT, and PraxisXXI 2/2.1/MAT/346/94. 1



are assumed to be once or twice di�erentiable, depending on the context.In many cases, the optimal control problem is not posed in the form (1), but the state equationc(y; u) = 0 is used to de�ne y as a function of u with the aid of the implicit function theorem.This procedure eliminates the state variables y and the state constraint c(y; u) = 0. The resultingproblem is given by minimize bf(u) = f(y(u); u); (3)with the addition of the constraints y � y(u) � y and u � u � u if the bounds (2) are included in(1). Obviously, the two problems (1) and (3) are related, but they are not necessarily equivalent.If for given u the equation c(y; u) = 0 has more than one solution, the implicit function theoremwill select one solution branch y(u), provided the assumptions of the implicit function theorem aresatis�ed.The discretized problem inherits structure from the in�nite dimensional problem that is not eas-ily captured by techniques included in nonlinear optimization codes. Besides the obvious splittingof the optimization variables into y and u, there is also a scaling associated with these variables thatis derived from the in�nite dimensional problem and its discretization [2], [8]. The scalar productsh�; �iY , h�; �iU , and h�; �i� introduced above are one way of taking into account the scaling of theproblem [7], [8]: they can be used for instance to compute the discretization of a H1 scalar productby means of a sti�ness matrix. Another sensitive issue is that much of the problem information isnot available explicitly, but can only be accessed indirectly. For example, the derivative or partialderivatives of c may not be available in matrix form but only the result of a derivative-times-vectoroperation may be accessible. This is, e.g, the case if c(y; u) = 0 corresponds to a partial di�erentialequation discretized with a �nite element method. In this case it is often not necessary to assemblethe �nite element matrices, but only to store the contributions from individual elements in theFEM mesh. This alternative allows one to compute matrix-vector multiplications without formingthe matrix explicitly.Typically, sensitivity and adjoint equation methods are used to compute the gradient andsecond-order derivative information for bf . However, the same issues also arise for certain �rstand second order derivative computations related to the problem (1). The main purpose of thispaper is to describe the sensitivity and adjoint equation methods for (1) and (3) and to establish acommon framework that can be used in many optimization algorithms for these problems and takesinto account the issues raised in the previous paragraph. (For more discussions on sensitivity andadjoint equation approaches see, e.g., [1].) The properties of the null-space basis operator associatedwith the linearized state equation (that plays an important role in optimization algorithms) arestudied in detail.2 Derivative computations: Adjoints and sensitivitiesWe consider the Lagrangian associated with problem (1)`(y; u; �) = f(y; u) + h�; c(y; u)i�: (4)In Sections 2.1 and 2.2 we use the sensitivity and adjoint equation methods to compute the gradientand second-order derivative information for bf and `. We use the scalar products framework andfocus on computational aspects related with these derivative calculations.The fact that bf and f are objective functions is not important. It is only important thatbf : U ! IR depends on the implicit function y(u). In general the sensitivity and adjoint equationmethods are needed when derivative information of a function, say, bh : U ! IR is computed that2



is a composition of a function h and y(�). Thus many of the derivations below also apply in thiscontext.2.1 First-order derivativesUnder the assumptions of the implicit function theorem (which will be assumed throughout thispaper) the derivative of the implicitly de�ned function y(�) is given as the solution ofcy(y(u); u)y0(u) = �cu(y(u); u): (5)This equation is called the sensitivity equation and its solution is called the sensitivity of y. Wecan now compute the gradient of bf :hr bf(u); viU = hryf(y(u); u); y0(u)viY + hruf(y(u); u); viU= hryf(y(u); u);�cy(y(u); u)�1cu(y(u); u)viY + hruf(y(u); u); viU= h�(cy(y(u); u)�1cu(y(u); u))�ryf(y(u); u) +ruf(y(u); u); viU :Hence, r bf(u) = ��cy(y(u); u)�1cu(y(u); u)��ryf(y(u); u) +ruf(y(u); u): (6)The formula (6) is used in the sensitivity equation method to compute the gradient. First, thesensitivity matrix S(y(u); u) = cy(y(u); u)�1cu(y(u); u)is computed and then the gradient is formed using (6):bf(u) = �S(y(u); u)�ryf(y(u); u) +ruf(y(u); u):To introduce the adjoint equation approach, we rewrite the formula (6) for the gradient asfollows: r bf(u) = �cu(y(u); u)�(cy(y(u); u)�)�1ryf(y(u); u) +ruf(y(u); u):Thus one can compute the adjoint variables �(u) by solving the adjoint equationcy(y(u); u)��(u) = �ryf(y(u); u)and then compute the gradient usingr bf(u) = cu(y(u); u)��(u) +ruf(y(u); u):This calculation is the adjoint equation method to compute the gradient.Traditionally, the sensitivity equation method and the adjoint equation method have been usedin the context of the reduced problem (3). However, the same techniques are also needed to computederivative information for the solution of (1). Consider for this purpose the partial gradients of theLagrangian (4):ry`(y; u; �) = ryf(y; u) + cy(y; u)��; ru`(y; u; �) = ruf(y; u) + cu(y; u)��:We see that ry`(y; u; �) = 0 corresponds to the adjoint equationcy(y; u)�� = �ryf(y; u): (7)3



If we de�ne �(y; u) as the solution of (7), thenru`(y; u; �)j�=�(y;u) = ruf(y; u)� cu(y; u)�(cy(y; u)�)�1ryf(y; u):In particular, r bf(u) = ru`(y; u; �)jy=y(u);�=�(u): (8)With W (y; u) =  �cy(y; u)�1cu(y; u)Inu ! (9)we can write ru`(y; u; �)j�=�(y;u) =W (y; u)� �ryf(y; u)ruf(y; u)�and r bf(u) =W (y; u)� �ryf(y; u)ruf(y; u)� ���y=y(u):An optimization algorithm applied to the solution of (1) may require the evaluation of theLagrangian f(y; u) + h�(y; u); c(y; u)i�, where �(y; u) is the solution of (7). If the adjoint equationmethod is used for the derivatives, the adjoint variables �(y; u) can be calculated. If only thesensitivities S(y; u) = cy(y; u)�1cu(y; u) and their adjoints are provided, adjoint variables cannotbe computed from (7). In such a situation we can evaluate the corresponding value of the Lagrangianby solving the linearized state equationcy(y; u)s = �c(y; u) (10)and by using the relationh�(y; u); c(y; u)i� = �h(cy(y; u)�)�1ryf(y; u); c(y; u)i�= �hryf(y; u); cy(y; u)�1c(y; u)iY :2.2 Second-order derivativesThe issue of sensitivities and adjoints not only arise in gradient calculations, but also in Hessiancomputations. The Hessian of the Lagrangianr2xx`(y; u; �) =  r2yy`(y; u; �) r2yu`(y; u; �)r2uy`(y; u; �) r2uu`(y; u; �) ! (11)and the reduced HessianbH(y; u) =W (y; u)�  r2yy`(y; u; �) r2yu`(y; u; �)r2uy`(y; u; �) r2uu`(y; u; �) !W (y; u)����=�(y;u) (12)play an important role in the development of optimization methods. Moreover, one can show thatthe Hessian of the reduced functional in (3) is given byr2 bf(u) = bH(y(u); u): (13)The proof is the following [6]: Since, as we have seen in (8), r bf(u) = ru`(y(u); u; �(u)), we haver2 bf(u) = r2uy`(y(u); u; �(u))y0(u) +r2uu`(y(u); u; �(u)) +r2u�`(y(u); u; �(u))�0(u):4



The derivative �0(u) can be obtained by di�erentiatingry`(y(u); u; �(u)) = 0;which givesr2yy`(y(u); u; �(u))y0(u) +r2yu`(y(u); u; �(u)) +r2y�`(y(u); u; �(u))�0(u) = 0:Thus, since r2y�`(y(u); u; �(u)) = cy(y(u); u)�, we get�0(u) = (cy(y(u); u)�)�1 �r2yy`(y(u); u; �(u))cy(y(u); u)�1cu(y(u); u) �r2yu`(y(u); u; �(u))� :This expression for �0(u) and the fact that r2u�`(y(u); u; �(u)) = cu(y(u); u)� complete the proof of(13).We note that the computation of (11) and (12) requires knowledge of the adjoint variables �.In many algorithms, these are computed via the adjoint equations (7). If only the sensitivitiesS(y; u) = cy(y; u)�1cu(y; u) and their adjoints are provided, adjoint variables cannot be computedfrom (7). If no estimate for � is available, then the operators in (11) and (12) cannot be computed.In cases in which ryf(y; u) � 0 for (y; u) near the solution, one may set � = �(y; u) � 0, cf. (7).This leads to the approximationsr2xx`(y; u; �) �  r2yyf(y; u) r2yuf(y; u)r2uyf(y; u) r2uuf(y; u) !and bH(y; u) �W (y; u)�  r2yyf(y; u) r2yuf(y; u)r2uyf(y; u) r2uuf(y; u) !W (y; u): (14)The situation ryf(y; u) � 0 often arises in least squares functionals f(y; u) = 12ky� ydk2Y + 
2kuk2U ,where yd is some desired state. In this case ryf(y; u) = y�yd and if the given data yd can be �ttedwell, then ryf(y; u) � 0. If y = y(u), the approximation (14) is the Gauss-Newton approximationto the Hessian r2 bf(u) (see the derivation in the next paragraph).The Hessian r2 bf(u) of the reduced objective can also be computed by using second-order sensi-tivities. In this approach one applies the chain rule to r bf(u) = y0(u)�ryf(y(u); u) +ruf(y(u); u)and get r2 bf(u) = y00(u)�ryf(y(u); u) + y0(u)� �r2yyf(y(u); u)y0(u) +r2yuf(y(u); u)�+r2uyf(y(u); u)y0(u) +r2uuf(y(u); u);where y00(u)�ryf(y(u); u) = nyXi=1(ryf(y(u); u))ir2yi(u):Thus,r2 bf(u) = nyXi=1(ryf(y(u); u))ir2yi(u)+W (y(u); u)�  r2yyf(y(u); u) r2yuf(y(u); u)r2uyf(y(u); u) r2uuf(y(u); u) !W (y(u); u);where the second-order derivatives of y(u) can be obtained by applying the implicit function theoremto (5). Unlike (11) and (12), this approach avoids the explicit use of Lagrange multipliers.5



2.3 The operator W (y; u)The introduction of W (y; u) which plays an important role in optimization methods for (7) allowedan elegant and compact notation for the �rst-order derivatives and the second-order derivatives.It also localizes the use of the sensitivity equation method and the adjoint equation method inthe derivative calculations. In all derivative computations, the sensitivity equation method or theadjoint equation method is only needed to evaluate the application of W (y; u) and W (y; u)� ontovectors. For example, the computation of the y-component zy of z = W (y; u)du is done in twosteps: Compute vy = �cu(y; u)du:Solve cy(y; u)zy = vy:If the sensitivities S(y; u) = cy(y; u)�1cu(y; u) are known, then zy = �S(y; u)du. The equationcy(y; u)zy = vy is a generalized linearized state equation, cf. (10). Similarly, for given d the matrix-vector product z =W (y; u)�d, d = (dy; du), is computed successively as follows:Solve cy(y; u)�vy = �dy:Compute vu = cu(y; u)�vy:Compute z = vu + du:Again, if the adjoint of the sensitivities S(y; u) = cy(y; u)�1cu(y; u) are known, then z = �S(y; u)�dy+du. The equation cy(y; u)�vy = �dy is a generalized adjoint equation, cf. (7).A number of optimization methods for (1) or (3) require the computation of some of the quan-tities H(y; u; �)s; hs;H(y; u; �)siX ; W (y; u)�H(y; u; �)s;W (y; u)�H(y; u; �)W (y; u)su; hsu;W (y; u)�H(y; u; �)W (y; u)suiUfor given s = (sy; su) and su, where H(y; u; �) is the Hessian r2xx`(y; u; �) or an approximationthereof. Often, one does not approximate the Hessian r2xx`(y; u; �), but the reduced Hessian. IfbH(y; u) � W (y; u)�r2xx`(y; u; �)W (y; u), then this approximation �ts into the previous frameworkin which the full Hessian is approximated by settingH(y; u; �) =  0 00 bH(y; u) ! : (15)If H(y; u; �) is given by (15), then the de�nition of W (y; u) implies the equalitiesH(y; u; �)s = � 0bH(y;u)su� ;hs;H(y; u; �)siX = hsu; bH(y; u)suiU ; W (y; u)�H(y; u; �)s = bH(y; u)su;W (y; u)�H(y; u; �)W (y; u)su = bH(y; u)su;hsu;W (y; u)�H(y; u; �)W (y; u)suiU = hsu; bH(y; u)suiU :Finally, a study of the projector associated with the operator W (y; u) allows a better under-standing of the reduced gradientW (y; u)�rf(y; u). In fact, the operatorW (y; u) de�nes an obliqueprojector onto N (J(y; u)): Pobl(y; u) =W (y; u)W (y; u)�;6
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Figure 1: The action of the orthogonal and oblique projectors.where N (J(y; u)) is the null space of J(y; u) = ( cy(y; u) cu(y; u) ). Also, it can be easily provedthat Port(y; u) =W (y; u) (W (y; u)�W (y; u))�1W (y; u)� (16)provides an orthogonal projector onto N (J(y; u)). In Figure 1 we depict the action of the projectorsPobl(y; u) and Port(y; u) on a given vector v. The following proposition [13] provides an explanationfor the geometric form of Pobl(y; u)v.Proposition 2.1 Given a vector v in Y � U ,Port(y; u)v = Port(y; u) 0W (y; u)�v ! : (17)In addition,  0W (y; u)�v ! is the unique vector in the vector space f(y; u) 2 Y � U : y = 0g forwhich (17) holds.Proof: The proof of the �rst part is the following:Port(y; u) 0W (y; u)�v != W (y; u) (W (y; u)�W (y; u))�1 �cy(y; u)�1cu(y; u)Inu !�  0W (y; u)�v != W (y; u) (W (y; u)�W (y; u))�1W (y; u)�v= Port(y; u)v; 7



where we used (9) and the form of Port(y; u) given in (16). To prove the uniqueness suppose thatx1 = (0 u1) and x2 = (0 u2) satisfy Port(y; u)x1 = Port(y; u)x2. From Port(y; u)(x1 � x2) = 0 weconclude that x1 � x2 is orthogonal to N (J(y; u)), i.e., W (y; u)�(x1 � x2) = 0. But this is just �cy(y; u)�1cu(y; u)Inu !�  0u1 � u2 ! = 0and u1 = u2. 2From this proposition we know how to depict W (y; u)�v along the u axis. Note thatPobl(y; u)v =W (y; u)W (y; u)�v =  �cy(y; u)�1cu(y; u)W (y; u)�vW (y; u)�v !lies in the null space N (J(y; u)) and is also depicted in Figure 1.References[1] J. Borggaard, J. Burns, E. Cli�, and S. Schreck, editors. Computational Methods for OptimalDesign. Proceedings of the ALSOR Workshop on Optimal Design and Control, Arlington,VA, 30-September { 3-October 1997, Progress in Systems and Control Theory, Basel, Boston,Berlin, 1998. Birkh�auser Verlag. http://www.icam.vt.edu/workshop/proceedings.html.[2] E. M. Cli�, M. Heinkenschloss, and A. Shenoy. An optimal control problem for 
ows withdiscontinuities. J. Optim. Theory Appl., 94:273{309, 1997.[3] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente. Trust{region interior{point algorithmsfor a class of nonlinear programming problems. SIAM J. Control Optim., 36:1750{1794, 1998.[4] M. D. Gunzburger, L. S. Hou, and T. P. Svobotny. Optimal control and optimization ofviscous, incompressible 
ows. In M. D. Gunzburger and R. A. Nicolaides, editors, Incompress-ible Computational Fluid Dynamics, pages 109{150, Cambridge, New York, 1993. CambridgeUniversity Press.[5] N. Handagama and S. Lenhart. Optimal control of a PDE/ODE system modeling a gas-phasebioreactor. In M. A. Horn, G. Simonett, and G. Webb, editors,Mathematical Models in Medicaland Health Sciences, Nashville, TN, 1998. Vanderbilt University Press.[6] M. Heinkenschloss. Projected sequential quadratic programming methods. SIAM J. Optim.,6:373{417, 1996.[7] M. Heinkenschloss and L. N. Vicente. An interface between optimization and application forthe numerical solution of optimal control problems. Technical Report 98-08, Departamento deMatem�atica, Universidade de Coimbra, 1998. Accepted for publication in ACM Trans. Math.Software.[8] M. Heinkenschloss and L. N. Vicente. Numerical solution of semielliptic optimal control prob-lems using SQP based optimization algorithms. Technical report, Department of Computa-tional and Applied Mathematics, Rice University, 1998. In preparation.8
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