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Abstract

This paper addresses the computation of first and second order derivatives for a class of
optimal control problems by the sensitivity and adjoint equation methods. The issues considered
are the relationships between the derivative structure of the full and the reduced formulations
and the properties of the null-space basis operator associated with the linearized state equation.
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1 Introduction

In this paper we analyze the derivative structure of problems of the form

minimize f(y,u) 0
subject to ¢(y,u) =0,
arising in optimal control. Here u represents the control, y represents the state, and c(y,u) = 0
represents the state equation. Often, y and u belong to a function space such as the Sobolev space
H?' or the space L?, and the state equation is a differential equation in y. Examples of optimal
control problems of the form (1) are given, e.g., in [2], [4], [5], [8], [9], [10], [11], [12], possibly with
the inclusion of bound constraints of the form:

y<y<y, wv<u<mw (2)

We assume that the nonlinear optimization problem (1) is finite dimensional and we use a Hilbert
space structure for its description. The first assumption is natural in the context of numerical
solutions of optimal control problems. The second assumption is made because a Hilbert space
structure is at least implicitly used in many optimization algorithms using iterative solvers. For
this purpose let ), U, and A be finite dimensional Hilbert spaces of dimension n,, n,, and n,
respectively. These Hilbert spaces can be identified with IR"v, IR"*, and IR"v, respectively, but are
equipped with scalar products (-, )y, {-,-)u, and (-,-)x. In the context of this paper, the functions

f:yxuU — R,
c:YxU — A,
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are assumed to be once or twice differentiable, depending on the context.

In many cases, the optimal control problem is not posed in the form (1), but the state equation
c(y,u) = 0 is used to define y as a function of u with the aid of the implicit function theorem.
This procedure eliminates the state variables y and the state constraint ¢(y,u) = 0. The resulting
problem is given by

~

minimize f(u) = f(y(u),u), (3)

with the addition of the constraints y < y(u) <7 and u < u < @ if the bounds (2) are included in
(1). Obviously, the two problems (1) and (3) are related, but they are not necessarily equivalent.
If for given u the equation ¢(y,u) = 0 has more than one solution, the implicit function theorem
will select one solution branch y(u), provided the assumptions of the implicit function theorem are
satisfied.

The discretized problem inherits structure from the infinite dimensional problem that is not eas-
ily captured by techniques included in nonlinear optimization codes. Besides the obvious splitting
of the optimization variables into y and u, there is also a scaling associated with these variables that
is derived from the infinite dimensional problem and its discretization [2], [8]. The scalar products
(-,y, (s )u, and (-,-)a introduced above are one way of taking into account the scaling of the
problem [7], [8]: they can be used for instance to compute the discretization of a H' scalar product
by means of a stiffness matrix. Another sensitive issue is that much of the problem information is
not available explicitly, but can only be accessed indirectly. For example, the derivative or partial
derivatives of ¢ may not be available in matrix form but only the result of a derivative-times-vector
operation may be accessible. This is, e.g, the case if ¢(y,u) = 0 corresponds to a partial differential
equation discretized with a finite element method. In this case it is often not necessary to assemble
the finite element matrices, but only to store the contributions from individual elements in the
FEM mesh. This alternative allows one to compute matrix-vector multiplications without forming
the matrix explicitly.

Typically, sensitivity and adjoint equation methods are used to compute the gradient and
second-order derivative information for f . However, the same issues also arise for certain first
and second order derivative computations related to the problem (1). The main purpose of this
paper is to describe the sensitivity and adjoint equation methods for (1) and (3) and to establish a
common framework that can be used in many optimization algorithms for these problems and takes
into account the issues raised in the previous paragraph. (For more discussions on sensitivity and
adjoint equation approaches see, e.g., [1].) The properties of the null-space basis operator associated
with the linearized state equation (that plays an important role in optimization algorithms) are
studied in detail.

2 Derivative computations: Adjoints and sensitivities

We consider the Lagrangian associated with problem (1)

E(ya u, >‘) = f(ya u) + <>‘7 C(yv u)>A (4)

In Sections 2.1 and 2.2 we use the sensitivity and adjoint equation methods to compute the gradient
and second-order derivative information for f and /. We use the scalar products framework and
focus on computational aspects related with these derivative calculations.

The fact that f and f are objective functions is not important. It is only important that
f : U — IR depends on the implicit function y(u). In general the sensitivity and adjoint equation
methods are needed when derivative information of a function, say, h:U— Ris computed that



is a composition of a function h and y(-). Thus many of the derivations below also apply in this
context.
2.1 First-order derivatives

Under the assumptions of the implicit function theorem (which will be assumed throughout this
paper) the derivative of the implicitly defined function y(-) is given as the solution of

ey (y(u), wy' (u) = —cu(y(u), v). (5)

This equation is called the sensitivity equation and its solution is called the sensitivity of y. We
can now compute the gradient of f:

<Vf(U), ’U>u = <vyf(y(u)v u)a y'(u)v>y + <Vuf(y(u)a u)v U>I/{
= (Vyf(y(u), w), =y (y(u), u) " eu(y(w), u)v)y + (Vuf (y(u), u), v)y
= {—(ey(y(u),u) Feuly(u),w) "V f (y(u),u) + Vaf (y(u), w), )u.

Hence,
V) = —(eyyu).w)  eu(y(w). w) Yy f ), u) + Vaf (y(u), ). (6)
The formula (6) is used in the sensitivity equation method to compute the gradient. First, the
sensitivity matrix
S(y(w).u) = cy(y(u),u) " euly(u), u)
is computed and then the gradient is formed using (6):

flu) = =S(y(u),u)"Vy fy(u). u) + Vo f(y(u), v).

To introduce the adjoint equation approach, we rewrite the formula (6) for the gradient as
follows:

Vi) = —culy(u),u) (e, (y(w),u)*) " Vy f(y(u),u) + Vauf (y(u),u).
Thus one can compute the adjoint variables A(u) by solving the adjoint equation

¢y(y(u),u)* A(u) = =V, f(y(u), u)

and then compute the gradient using

V() = culy(u), u)* Mu) + Vo f (y(u), u).

This calculation is the adjoint equation method to compute the gradient.

Traditionally, the sensitivity equation method and the adjoint equation method have been used
in the context of the reduced problem (3). However, the same techniques are also needed to compute
derivative information for the solution of (1). Consider for this purpose the partial gradients of the
Lagrangian (4):

Vyé(ya U, A) = Vyf(ya U) + Cy(yv U)*)\, vué(ya U, A) = vuf(yv U) + Cu(yv u)*A
We see that V,(y,u, A\) = 0 corresponds to the adjoint equation

¢y(y,u)' A = =V [y, u). (7)



If we define A\(y,u) as the solution of (7), then

Vug(yv u, >‘)|)\:)\(y,u) = VUf(ya U) - Cu(yv U)* (Cy(ya U)*)_lvyf(y, U)
In particular, R
Vf(U) = vug(ya u, A)‘y:y(u),)\:)\(u)' (8)
With

Wy, u) = ( _Cy(yauj)n_lcu(yau) ) (9)

u

we can write

Vue(yv U, >‘)|)\:)\(y,u) = W(yv u)* <

and

-~ «(V , U
V() = W(y,u) (v%;) o

An optimization algorithm applied to the solution of (1) may require the evaluation of the
Lagrangian f(y,u) + (A(y,u), c(y, u))a, where \(y, u) is the solution of (7). If the adjoint equation
method is used for the derivatives, the adjoint variables A(y,u) can be calculated. If only the
sensitivities S(y,u) = ¢, (y,u) " e, (y,u) and their adjoints are provided, adjoint variables cannot
be computed from (7). In such a situation we can evaluate the corresponding value of the Lagrangian
by solving the linearized state equation

¢y(y,u)s = —c(y,u) (10)

and by using the relation

</\(ya U)v c(yv u)>/\ = _<(Cy(ya U)*)ilvyf(ya U)v c(yv u)>/\
_<Vyf(ya U)v cy(yv u)ilc(ya U))y :

2.2 Second-order derivatives

The issue of sensitivities and adjoints not only arise in gradient calculations, but also in Hessian
computations. The Hessian of the Lagrangian

2 2
Vi, u, A) - Vi, by, u, A) )

(11)
2 2
Vi l(y,u, A) - Vi, l(y, u, A)

Vixﬁ(% u, >‘) = (

and the reduced Hessian

- ( Vo by, u, X)) Vi, u, \)

B =W | & A)>W(y,u> (12

A=A(y,u)

play an important role in the development of optimization methods. Moreover, one can show that
the Hessian of the reduced functional in (3) is given by

V2 f(u) = H(y(u),u). (13)

-~

The proof is the following [6]: Since, as we have seen in (8), Vf(u) = V,£(y(u), u, \(u)), we have

V2 f(u) = Vi Ly (), u ANw))y' (u) + Vi, Ly (u), u, Aw)) + Vi l(y(u), u, Aw)) N (u).
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The derivative \'(u) can be obtained by differentiating
which gives
Vo), Aw))y' (u) + Vi, L0y (u), u, A(w)) + Via(y(u), u A(w)) A (u) = 0.

Thus, since V;Aﬁ(y(u),u, AMu)) = ¢y(y(u), u)*, we get

N () = (e (y(u), u)) ™ (V2,L00(0), 1 Mu))ey (y(u), u) " euly(u), w) = V2,00 (u), u, A(w)) -

This expression for \'(u) and the fact that V2, £(y(u), u, A(u)) = ¢, (y(u), u)* complete the proof of
(13).

We note that the computation of (11) and (12) requires knowledge of the adjoint variables A.
In many algorithms, these are computed via the adjoint equations (7). If only the sensitivities
S(y,u) = cy(y,u) " ey (y,u) and their adjoints are provided, adjoint variables cannot be computed
from (7). If no estimate for X is available, then the operators in (11) and (12) cannot be computed.
In cases in which V, f(y,u) = 0 for (y,u) near the solution, one may set A\ = A(y,u) = 0, cf. (7).
This leads to the approximations

Vo f(ysu) Vi, f(y,u) )

Vaal(y, 1, A z(
WuN= g ) 920000

and

R ( Vo (y,u) Vi f(y,w) ) Wy ). (14)

H(y,u) =~ W (y,u)*
W) W G ) V2w

The situation V, f(y,u) & 0 often arises in least squares functionals f(y,u) = 3|y — yall} + 3llulZ,
where y, is some desired state. In this case V, f(y,u) = y—y, and if the given data y, can be fitted
well, then V, f(y,u) = 0. If y = y(u), the approximation (14) is the Gauss-Newton approximation
to the Hessian V2f(u) (see the derivation in the next paragraph).

The Hessian sz(u) of the reduced objective can also be computed by using second-order sensi-

tivities. In this approach one applies the chain rule to V f(u) = ¢/'(u)*V, f(y(u), v) + V. f(y(u), u)
and get

V2f(u) =y () Vy (), u) + ' (@) (V2 F (), w)y () + V3, (y(u),u)
+Vo, f(y(u), u)y' (u) + Vo, f(y(u), w),

where
y" (W) Yy fy(u),u) = D (Vyf(y(u), w)iV2yi(w).
i=1
Thus,
- & Viyf (y(u),u) Vi, f(y(u),u) )
V2 f(u) = \Y u), 1)) V2 (u) + W (y(uw), u)* w Y W (y(u),u),
flu) ;( yf (), w))i Voyi(u) + Wy (u),u) (Viyf(y(u),u) V2 (). ) (y(u), u)

where the second-order derivatives of y(u) can be obtained by applying the implicit function theorem
to (5). Unlike (11) and (12), this approach avoids the explicit use of Lagrange multipliers.



2.3 The operator W(y, u)

The introduction of W (y, u) which plays an important role in optimization methods for (7) allowed
an elegant and compact notation for the first-order derivatives and the second-order derivatives.
It also localizes the use of the sensitivity equation method and the adjoint equation method in
the derivative calculations. In all derivative computations, the sensitivity equation method or the
adjoint equation method is only needed to evaluate the application of W (y,u) and W (y,u)* onto
vectors. For example, the computation of the y-component z, of 2 = W (y,u)d, is done in two
steps:

Compute vy = —cyu(y,u)dy.
Solve cy(y, u)zy = vy
If the sensitivities S(y,u) = ¢, (y,u) ‘ey(y,u) are known, then z, = —S(y,u)d,. The equation

cy(y,u)z, = vy is a generalized linearized state equation, cf. (10). Similarly, for given d the matrix-
vector product z = W (y,u)*d, d = (dy,d,), is computed successively as follows:

Solve cy(y,u)vy = —d,.
Compute vy = cu(y,u) vy,
Compute z = vy +dy.

Again, if the adjoint of the sensitivities S(y,u) = ¢, (y,u) e, (y, u) are known, then z = —S(y, u)*d,+
dy. The equation ¢, (y,u)*v, = —d, is a generalized adjoint equation, cf. (7).
A number of optimization methods for (1) or (3) require the computation of some of the quan-
tities
H(yvuaA)Sa <S,H(y,U,A)S>X, W(y,u)*H(y,u,/\)s,
W(yv U)*H(y, U, A)W(ya U)Sua <3ua W(yv U)*H(y, U, A)W(ya U)3u>u

for given s = (s,,sy) and s,, where H(y,u,)) is the Hessian V2 /(y,u, \) or an approximation
thereof. Often, one does not approximate the Hessian V2_¢(y,u, \), but the reduced Hessian. If
I;T(y, u) ~ W (y, u)*V2,L(y, u, \)W (y,u), then this approximation fits into the previous framework
in which the full Hessian is approximated by setting

Hiy,u, ) = ( 8 g(;u) ) (15)

If H(y,u, A) is given by (15), then the definition of W (y,u) implies the equalities

H(y 005 = (0, )
<33 H(ya U, A)S>X = <Su, ﬁ(ya U)SU>Ua W(yv U)*H(y, u, A)S = ﬁ(yv U)Su,
W(ya U)*H(y, u, A)W(yv U)Su = ﬁ(yv U)Sm

~

<SU’ W(ya u)*H(yv U, A)W(yv U)Su>u = <Su’ H(ya U)SU>U'

Finally, a study of the projector associated with the operator W(y,u) allows a better under-
standing of the reduced gradient W (y, u)*V f(y, ). In fact, the operator W (y, u) defines an oblique
projector onto N (J(y, u)):

Pobl(ya U) = W(ya U)W(yv u)*a



" Sy

.’ cy(y, u)sy + culy, u)sy +c(y,u) =0

N (J(y, )

Figure 1: The action of the orthogonal and oblique projectors.

where NV (J(y,u)) is the null space of J(y,u) = ( ¢,(y,u) cy(y,u) ). Also, it can be easily proved
that
Pori(y. ) = W (y,u) (W (y,w)* Wy, w) ™ W(y,u)* (16)

provides an orthogonal projector onto N (J(y, u)). In Figure 1 we depict the action of the projectors
P,y (y,u) and P,,+(y,u) on a given vector v. The following proposition [13] provides an explanation
for the geometric form of P,y (y, u)v.

Proposition 2.1 Given a vector v in Y X U,

Pt (540 = Pore (5 ) ( Wi, ) . (17)

Yy, u)*v

0
W (y,u)*v
which (17) holds.

In addition, ) is the unique vector in the vector space {(y,u) € Y xU : y = 0} for

Proof: The proof of the first part is the following:

Port(y, u) < W(y(,)u)*v )

W) (W, 0) W (g, )] ( —cy(y,uj)_ﬂcu(y,u) > ( i 0 >

= W(y,u) (W(y.u)'W(y,u) ' W(y,u)v

= Port(yv U)U,



where we used (9) and the form of P,.;(y,u) given in (16). To prove the uniqueness suppose that
21 = (0 u1) and 2o = (0 ug) satisfy Popi(y,u)r1 = Popt(y, u)wa. From Pyu(y,u)(w1 — 22) = 0 we
conclude that 1 — x5 is orthogonal to N (J(y,u)), i.e., W(y,u)*(z1 — z2) = 0. But this is just

( —Cy(yqu):cu(y,U) ) < . Eug ) =0

and u1 = us. O

From this proposition we know how to depict W (y, u)*v along the u axis. Note that

Pot (y, u)v = W (y, w)W (y, u)*v = ( —Cy(y,U)V;C(uy(’y;;i)vW(y,u)*v )

lies in the null space NV (J(y,u)) and is also depicted in Figure 1.

References

[1] J. Borggaard, J. Burns, E. Cliff, and S. Schreck, editors. Computational Methods for Optimal
Design. Proceedings of the ALSOR Workshop on Optimal Design and Control, Arlington,
VA, 30-September — 3-October 1997, Progress in Systems and Control Theory, Basel, Boston,
Berlin, 1998. Birkhauser Verlag. http://www.icam.vt.edu/workshop/proceedings.html.

[2] E. M. Cliff, M. Heinkenschloss, and A. Shenoy. An optimal control problem for flows with
discontinuities. J. Optim. Theory Appl., 94:273-309, 1997.

[3] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente. Trust-region interior—point algorithms
for a class of nonlinear programming problems. SIAM J. Control Optim., 36:1750-1794, 1998.

[4] M. D. Gunzburger, L. S. Hou, and T. P. Svobotny. Optimal control and optimization of
viscous, incompressible flows. In M. D. Gunzburger and R. A. Nicolaides, editors, Incompress-
ible Computational Fluid Dynamics, pages 109-150, Cambridge, New York, 1993. Cambridge
University Press.

[5] N. Handagama and S. Lenhart. Optimal control of a PDE/ODE system modeling a gas-phase
bioreactor. In M. A. Horn, G. Simonett, and G. Webb, editors, Mathematical Models in Medical
and Health Sciences, Nashville, TN, 1998. Vanderbilt University Press.

[6] M. Heinkenschloss. Projected sequential quadratic programming methods. SIAM J. Optim.,
6:373-417, 1996.

[7] M. Heinkenschloss and L. N. Vicente. An interface between optimization and application for
the numerical solution of optimal control problems. Technical Report 98-08, Departamento de
Matemética, Universidade de Coimbra, 1998. Accepted for publication in ACM Trans. Math.
Software.

[8] M. Heinkenschloss and L. N. Vicente. Numerical solution of semielliptic optimal control prob-
lems using SQP based optimization algorithms. Technical report, Department of Computa-
tional and Applied Mathematics, Rice University, 1998. In preparation.



[9]

[10]

K. Tto and K. Kunisch. Augmented Lagrangian-SQP methods for nonlinear optimal control
problems of tracking type. SIAM J. Control and Optimization, 34:874-891, 1996.

F.-S. Kupfer and E. W. Sachs. Numerical solution of a nonlinear parabolic control problem
by a reduced SQP method. Comput. Optim. and Appl., 1:113-135, 1992.

J. L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer
Verlag, Berlin, Heidelberg, New York, 1971.

P. Neittaanmaki and D. Tiba. Optimal Control of Nonlinear Parabolic Systems. Theory, Al-
gorithms, and Applications. Marcel Dekker, New York, Basel, Hong Kong, 1994.

L. N. Vicente. Trust-Region Interior-Point Algorithms for a Class of Nonlinear Program-
ming Problems. PhD thesis, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas 77251, USA, 1996.



