
ON INTERIOR{POINT NEWTON ALGORITHMS FOR DISCRETIZEDOPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTSLU��S N. VICENTE �Abstract. In this paper we consider a class of nonlinear programming problems that arise from the discretizationof optimal control problems with bounds on both the state and the control variables. For this class of problems, weanalyze constraint quali�cations and optimality conditions in detail. We derive an a�ne{scaling and two primal{dualinterior{point Newton algorithms by applying, in an interior{point way, Newton's method to equivalent forms of the�rst{order optimality conditions. Under appropriate assumptions, the interior{point Newton algorithms are shownto be locally well{de�ned with a q{quadratic rate of local convergence. By using the structure of the problem, thelinear algebra of these algorithms can be reduced to the null space of the Jacobian of the equality constraints. Thesimilarities between the three algorithms are pointed out, and their corresponding versions for the general nonlinearprogramming problem are discussed.Keywords. Nonlinear programming, Newton's method, interior{point algorithms, a�ne scaling, primal dual,optimal control problems, state constraints.AMS subject classi�cations. 49M37, 90C06, 90C301. Introduction. We are interested in the solution of the following nonlinear programmingproblem: minimize f(y; u)subject to C(y; u) = 0 ;(1.1) y � 0 ; u � 0 ;where y 2 IRm, u 2 IRn�m, and n and m are positive integers satisfying n > m. The functions fand C are considered smooth and de�ned as f : 
 �! IR and C : 
 �! IRm, where 
 is an openset of IRn containing fy : y � 0g � fu : u � 0g. The results in this paper are easily extended forbounds of the form ay � y � by and au � u � bu.The nonlinear programming problem (1.1) often arises from the discretization of optimal controlproblems (see references [2], [5], [10], [15], [16], [17], [18]). In this case y is the vector of statevariables, u is the vector of control variables, and C(y; u) = 0 is the discretized state equation.Problem (1.1) also appears frequently in engineering design, inversion, and parameter identi�cation.The purpose of this paper is to present an a�ne{scaling and two primal{dual interior{pointNewton algorithms to solve problems of the form (1.1). The a�ne{scaling framework extends theapproach followed by [10], [17], [28] for problems of the type (1.1) but with no bounds on thestate variables y. First, it is shown that the Karush{Kuhn{Tucker constraint quali�cations holdfor most feasible points of (1.1). We also derive optimality conditions for (1.1) using a�ne{scalingmatrices. Departing from di�erent but equivalent forms of the �rst{order optimality conditions,we apply Newton's method in an interior{point way and derive an a�ne{scaling and two primal{dual interior{point Newton algorithms. Table 1.1 summarizes the correspondence between thealgorithms and the respective forms of the �rst{order optimality conditions. By using the structure� Departamento de Matem�atica, Universidade de Coimbra, 3000 Coimbra, Portugal, E-Mail: lvicente@mat.uc.pt.Support for this work has been provided by Instituto de Telecomunica�c~oes, JNICT, and Praxis XXI2/2.1/MAT/346/94. 1



2 L. N. VICENTEof the problem, we show how to reduce the computation of a step of the interior{point Newtonalgorithms to the null space of the Jacobian of C(y; u) = 0. It is shown that in this reduced versionthese algorithms exhibit coe�cient matrices with the same structure.A few instances of the a�ne{scaling interior{point Newton algorithms have already been im-plemented and tested with problems from [17]. The preliminary numerical results are encouraging.The preconditioners proposed in [1] will certainly play an important role in the implementation ofe�cient and robust algorithms for this class of problems.Table 1.1Interior{point Newton algorithms corresponding to the application of Newton's method to equivalent forms of the�rst{order optimality conditions de�ned on the set, or subset, of primal and dual variables. x are primal variables, �are dual variables associated with the equality constraints, and z are dual variables associated with the inequality (orbound) constraints. Interior{Point VariablesNewton Algorithm Primal x Dual � Dual zA�ne Scaling p pPrimal Dual p p pReduced Primal Dual p pColeman and Li introduced a�ne{scaling interior{point methods for minimization problemswith simple bounds (see [3], [6], [7], [11]). Interior{point methods for nonlinear programming havebeen proposed and analyzed in [12], [30], [31] (primal dual), [4], [24] (primal using trust regionsand approximation to the multipliers corresponding to inequality constraints), [8], [19], [20] (a�nescaling). For discretized optimal control problems see also [18], [29].Some of the ideas presented in this paper were discovered independently by Das [9] for thegeneral nonlinear programming problem, namely the formulation of the optimality conditions andthe application of Newton's method using a�ne{scaling matrices. The full{space version of theprimal{dual interior{point Newton algorithm (second in Table 1.1) is the algorithm introduced in[12] for the general nonlinear programming problem.The paper is structured as follows. In Section 2 we introduce notation, describe the optimalityconditions, and analyze what conditions assure that the constraint quali�cations hold. In Section3 we derive a form for the optimality conditions using a�ne{scaling matrices. Sections 4 and 5introduce respectively the a�ne{scaling and the primal{dual interior{point Newton algorithms andestablish their well{posedness. Finally, we consider the general nonlinear programming problem inSection 6 and summarize our conclusions in Section 7.2. Constraint quali�cations and optimality conditions. In our notation, we havex =  yu ! :Also, (z)y and (z)u represent the subvectors of z 2 IRn corresponding to the y and u components,respectively, and Ip represents the identity matrix of order p.We denote the Lagrangian of f(x) with respect to the equality constraints C(x) = 0 by `(x; �) =f(x) + �>C(x). The Jacobian matrix of C(x) is denoted by J(x). Due to the partition of x in y



ON INTERIOR{POINT NEWTON ALGORITHMS 3and u, we have J(x) = � Cy(x) Cu(x) � ;where the partial Jacobian Cy(x) is a square matrix of order m.In this paper we assume that f and C satisfy the following assumptions, where 
 is an openset of IRn containing fx : x � 0g.Assumptions 2.1.1 The functions f and C are twice continuously di�erentiable with Lipschitz second deriva-tives in 
.2 The partial Jacobian Cy(x) is nonsingular in 
.Although the analysis that motivates our framework requires f and C to be twice continuouslydi�erentiable, the resulting algorithms might use only �rst derivatives.Let U be an open set containing fu : u � 0g such that for all u 2 U there exists a solution yof C(y; u) = 0 and such that the matrix Cy(x) is invertible for all x = (y> u>)> with u 2 U andC(y; u) = 0. Then the implicit function theorem guarantees the existence of a twice continuouslydi�erentiable function y : U ! IRm(2.1)de�ned by C(y(u); u) = 0 :This allows us to reduce the minimization problem (1.1) to the space of the control variables u.The reduced problem is given by minimize f(y(u); u)subject to y(u) � 0 ; u � 0 :(2.2)It is important to note that the bound constraints in the state variables y that are imposed informulation (1.1), are transformed, in formulation (2.2), into nonlinear inequality constraints inthe control variables u. The vector{valued function y(u) will be used later.The optimality conditions and constraint quali�cations we work with in this paper are thoseoriginally proposed by Karush, Kuhn, and Tucker (see, for instance, the books [21] and [22]).For further analysis, we introduce the active setsA(x) = ni 2 f1; : : : ; ng : xi = 0o ;A(y) = ni 2 f1; : : : ; mg : yi = 0o ; andA(u) = ni 2 f1; : : : ; n�mg : ui = 0o ;and their corresponding complementary sets:N (x) = f1; : : : ; ng n A(x) ;N (y) = f1; : : : ; mg n A(y) ; andN (u) = f1; : : : ; n�mg n A(u) :(2.3)



4 L. N. VICENTEThe Karush{Kuhn{Tucker (KKT) optimality conditions are necessary conditions for x� to be alocal solution of (1.1) if certain constraint quali�cations are satis�ed at this point. An often used,but rather strong constraint quali�cation is given in the following de�nition.Definition 2.1. A point x� satisfying C(x�) = 0 and x� � 0 is called feasible. A feasible pointx� is said to be regular if the matrix 0BB@ Cy(x�) Cu(x�)IA(y�) 00 IA(u�) 1CCAhas full row rank, where IA(y�) and IA(u�) are submatrices of the identity matrix formed by rowscorresponding to indices in A(y�) and A(u�).For discretized optimal control problems of the form (1.1) with state constraints, regularity isnot satis�ed if the cardinal of A(y�)[ A(u�) is larger than n�m. For problems with bounds onlyon the control variables regularity is always given independently of the cardinal of A(u�), providedCy(x�) is nonsingular. For more details see [1] and [10].However, the KKT optimality conditions are indeed necessary conditions for x� to be a localsolution of (1.1) if the constraint quali�cations are satis�ed. We recall the de�nition of KKTconstraint quali�cations (see [21] and [22]).Definition 2.2. A feasible point x� satis�es the �rst{order KKT constraint quali�cation iffor all vectors p 6= 0 verifying � Cy(x�) Cu(x�) �  pypu ! = 0 ;(2.4) (py)A(y�) � 0 ; and (pu)A(u�) � 0 ;(2.5)there exists a continuously di�erentiable arc x(t); t 2 [0; �t), with �t > 0, such that x(t) is feasible forall t 2 [0; �t), x(0) = x�, and x0(0) = p.A feasible point x� satis�es the second{order KKT (or strong) constraint quali�cation if for allnonzero vectors p verifying (2.4),(py)A(y�) = 0 ; and (pu)A(u�) = 0 ;(2.6)there exists a twice continuously di�erentiable arc x(t); t 2 [0; �t), with �t > 0, such that x(t) isfeasible for all t 2 [0; �t), x(0) = x�, x0(0) = p, andy(t)A(y�) = 0 ; u(t)A(u�) = 0 for all t 2 [0; �t) :(2.7)In the next proposition we show that, if � �Cy(x�)�1Cu(x�)pu�i 6= 0 for all i 2 A(y�) and allnonzero pu such that (pu)A(u�) � 0, then the KKT constraint quali�cations hold at the point x�.Proposition 2.1. The �rst{order and second{order KKT constraint quali�cations hold at thefeasible point x� iffor all nonzero pu 2 IRn�m with (pu)A(u�) � 0 ; ��Cy(x�)�1Cu(x�)pu�i 6= 0 for all i 2 A(y�) :(2.8)



ON INTERIOR{POINT NEWTON ALGORITHMS 5Proof. Let x� = (y>� u>� )> be a feasible point for (1.1) and consider a vector p = (p>y p>u )>satisfying (2.4).First, let us prove that the �rst{order constraint quali�cation holds. So, let also p satisfy (2.5).Now let us de�ne the following arc:x(t) =  y(t)u(t) ! = 0B@ y (u� + tpu)u� + tpu 1CA ;(2.9)where y(u) is the vector{valued function de�ned in (2.1). The arc (2.9) is continuously di�erentiable.It is easy to see that x(0) = x�. Also, from (2.4) and the de�nition of the arc (2.9),y0(0) = �Cy(x�)�1Cu(x�)pu = py ;(2.10) u0(0) = pu ;and this shows that x0(0) = p. It remains to show that the arc (2.9) is feasible. If the arc (2.9) is notfeasible then there exists an index i in A(y�) and a sequence ftkg of positive numbers convergingto zero for which y(u�)i = 0 and y(u� + tkpu)i < 0 for all k. If we de�ne h(t) = y(u� + tpu)i, weconclude that h0(0) � 0. From (2.5), (2.10), and (py)i = h0(0) � 0, we have h0(0) = 0. But thiscontradicts assumption (2.8). Thus, the arc (2.9) is feasible.The second{order constraint quali�cation also holds because there is no vector p satisfying(2.4), (2.6), and (2.8) simultaneously. In fact (2.6) says that (py)A(y�) = 0, and (2.4) and (2.8)together imply that (py)i 6= 0 for all i 2 A(y�).We depict the situation where the condition (2.8) is false in Figure 2.1 for a problem thatsatis�es Assumptions 2.1.Proposition 2.1 is important because it allows us to state necessary (�rst and second order)optimality conditions in the absence of regularity.A point x� satis�es the �rst{order optimality conditions for problem (1.1) if there exist �� 2 IRmand z� 2 IRn such that C(x�) = 0; x� � 0 ;rx`(x�; ��)� z� = 0 ;(x�)i (z�)i = 0 ; i = 1; : : : ; n ;z� � 0 :Consider a point (x�; ��; z�) satisfying the �rst{order optimality conditions. We say that suchpoint (x�; ��; z�) satis�es the second{order necessary optimality conditions if s>r2xx`(x�; ��)s � 0for all s verifying J(x�)s = 0 and si = 0 if i 2 A(x�). On the other hand, the second{order su�cientoptimality conditions require s>r2xx`(x�; ��)s > 0 for all s 6= 0 verifying J(x�)s = 0 and si = 0 ifi 2 A(x�) and (z�)i > 0.3. Optimality conditions using a�ne{scaling matrices. Nowwe de�ne the matrixD(x; �)to be the diagonal matrix with diagonal elements given by:�D(x; �)�ii = 8><>: (xi) 12 if (rx`(x; �))i � 0 ;1 if (rx`(x; �))i < 0 ;
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Fig. 2.1. The points x1�, x2�, and x3� are not regular. The points x2� and x3� do not satisfy the �rst and secondorder KKT constraint quali�cations since the derivative y0(u) = �Cu(x)Cy(x) is zero at these points. The point x1� satis�esthe constraint quali�cations.for i = 1; : : : ; n.In the following proposition we give the form of the �rst{order and second{order necessaryoptimality conditions that results of using this matrix instead of the multipliers z. The proof isstraightforward, and we omit it. A similar result is stated in [6], [7].Proposition 3.1. A point x� satis�es the �rst{order optimality conditions if and only if thereexists �� 2 IRm such that D(x�; ��)2rx`(x�; ��) = 0 ;C(x�) = 0; x� � 0 :Such a point (x�; ��) satis�es the second{order necessary optimality conditions if and only if itsatis�es the �rst{order optimality conditions andD(x�; ��)r2xx`(x�; ��)D(x�; ��)is positive semi{de�nite on the null space of J(x�)D(x�; ��).If the constraint quali�cation (2.8) holds, these conditions are necessary for x� to be a localminimizer of (1.1).The form of the su�cient optimality conditions that is stated using the a�ne{scaling matrixD(x; �) requires the de�nition of nondegeneracy or strict complementarity.



ON INTERIOR{POINT NEWTON ALGORITHMS 7Definition 3.1. A feasible point x�, with corresponding multipliers ��, is said to be nonde-generate if (rx`(x�; ��))i = 0 implies (x�)i > 0 for all i 2 f1; : : : ; ng.We now de�ne a diagonal matrix E(x; �) of order n with diagonal elements given by�E(x; �)�ii = 8><>: (rx`(x; �))i if (rx`(x; �))i > 0 ;0 otherwise ;for i = 1; : : : ; n. The signi�cance of this matrix will become clear in the next sections. From thede�nitions of D(x; �) and E(x; �) we have the following property for which the proof is simple andalso omitted.Proposition 3.2. A nondegenerate point x�, with corresponding multipliers ��, satis�es thesecond{order su�cient optimality conditions if and only if it satis�es the �rst{order conditions andD(x�; ��)r2xx`(x�; ��)D(x�; ��) +E(x�; ��)(3.1)is positive de�nite on the null space of J(x�)D(x�; ��).The following proposition is important in the next section to justify the well{posedness of thea�ne{scaling and primal{dual interior{point Newton algorithms.Proposition 3.3.If x� is a regular point, then the matrix D(x�; ��)J(x�)> has full column rank.If the regular point x�, with corresponding Lagrange multipliers ��, is such that the matrix(3.1) is positive de�nite, then the matrix D(x�; ��)r2xx`(x�; ��)D(x�; ��) + E(x�; ��) D(x�; ��)J(x�)>J(x�)D(x�; ��) 0 !(3.2)is nonsingular.Proof. Let us consider a vector sy 2 IRm such thatD(x�; ��) Cy(x�)>Cu(x�)> ! sy = 0 :We need to prove that sy = 0. It follows from the de�nition of D(x�; ��) that�Cy(x�)>sy�i = 0 for all i 2 N (y�) and�Cu(x�)>sy�i = 0 for all i 2 N (u�) ;(3.3)where the sets N (y�) and N (u�) are de�ned in (2.3). Now we de�nerA(y�) = � �Cy(x�)>sy�A(y�) 2 IRjA(y�)j andrA(u�) = � �Cu(x�)>sy�A(u�) 2 IRjA(u�)j :(3.4)From (3.3) and (3.4), we obtain0@ Cy(x�)> I>A(y�) 0Cu(x�)> 0 I>A(u�) 1A0B@ syrA(y�)rA(u�) 1CA = 0 ;



8 L. N. VICENTEwhich in turn, by using the de�nition of regularity given in De�nition 2.1, implies that sy = 0.Thus, we have proved that D(x�; ��)J(x�)> has full column rank.Since D(x�; ��)r2xx`(x�; ��)D(x�; ��) + E(x�; ��) is positive de�nite on the null{space of thematrix J(x�)D(x�; ��) and its transpose, D(x�; ��)J(x�)>, has full column rank, we conclude thatthe matrix (3.2) is nonsingular (see [26]).If x� is a regular point then the optimality conditions can be stated by using a null{space basisrepresentation of J(x�)D(x�; ��).Proposition 3.4. Let x� be a regular point and W (x�; ��) a matrix whose columns form abasis for the null space of J(x�)D(x�; ��), where �� is a vector of Lagrange multipliers.� The point (x�; ��) satis�es the �rst{order optimality conditions if and only ifW (x�; ��)>D(x�; ��)2rx`(x�; ��) = 0 ;C(x�) = 0; x� � 0 :� The point (x�; ��) satis�es the second{order necessary optimality conditions if and only ifit satis�es the �rst{order optimality conditions andW (x�; ��)>D(x�; ��)r2xx`(x�; ��)D(x�; ��)W (x�; ��)is positive semi{de�nite.If the constraint quali�cation (2.8) holds, these conditions are necessary for x� to be a localminimizer of (1.1).� The nondegenerate point (x�; ��) satis�es the second{order su�cient optimality conditionsif and only if it satis�es the �rst{order optimality conditions andW (x�; ��)>�D(x�; ��)r2xx`(x�; ��)D(x�; ��) + E(x�; ��)�W (x�; ��)is positive de�nite.4. An a�ne{scaling interior{point Newton algorithm. To motivate the a�ne{scalinginterior{point Newton algorithm described in this paper we consider the application of Newton'smethod to the system of nonlinear equations in x and �D(x; �)2rx`(x; �) = 0 ;(4.1) C(x) = 0 :(4.2)This algorithm is of the interior{point type, meaning that x is required always to be strictlyfeasible with respect to the bound constraints, in other words x is such that x > 0. We will assumethroughout this section that x > 0.The diagonal element functions in D(x; �)2 are typically discontinuous at points where theequality (rx`(x; �))i = 0 is satis�ed, but the vector{valued function D(x; �)2rx`(x; �) is contin-uous (but not di�erentiable) at such type of points. The application of Newton's method to thistype of systems of nonlinear equations has �rst been suggested in [6] in the context of nonlinearminimization problems with simple bounds. It is shown in [6] that this type of nondi�erentiabilitystill allows the Newton process to achieve local q{quadratic convergence. This has also been shownin [10] for problems of the type (1.1) but with no bounds on the state variables y.



ON INTERIOR{POINT NEWTON ALGORITHMS 9A linearization of (4.1){(4.2) is of the form D(x; �)2r2xx`(x; �) +E(x; �) D(x; �)2J(x)>J(x) 0 !  s�� != �  D(x; �)2rx`(x; �)C(x) ! :(4.3)The second linear equation in (4.3) is the linearized state equation. The �rst linear equation in (4.3)has been derived by applying the product rule to (4.1) in the cases where we have di�erentiability.The diagonal elements of E(x; �) are the product of the derivative of the diagonal elements ofD(x; �)2 and the components of the rx`(x; �). The derivative of (D(x; �)2)ii does not exist if(rx`(x; �))i = 0. In this case we set the corresponding quantities in the Jacobian to zero (seereferences [6], [7], [10]). This gives the �rst linear equation in (4.3).Premultiplying on the left the �rst equation (4.3) by D(x; �)�1 and making the change ofvariables ŝ = D(x; �)�1s yields D(x; �)r2xx`(x; �)D(x; �)+E(x; �) D(x; �)J(x)>J(x)D(x; �) 0 !  ŝ�� != �  D(x; �)rx`(x; �)C(x) ! :(4.4)The form of the coe�cient matrix in (4.4), Assumptions 2.1, and Proposition 3.3, together implythat the a�ne{scaling interior{point Newton algorithm is well de�ned in a neighborhood of anondegenerate regular point that satis�es the second{order su�cient optimality conditions. Wewill return to this point later.For further description of the algorithm, we need to make use of our notation to point out that:s =  sysu ! ;D(x; �) =  Dy(x; �) 00 Du(x; �) ! ; E(x; �) =  Ey(x; �) 00 Eu(x; �) ! ;and rx`(x; �) =  ry`(x; �)ru`(x; �) ! =  ryf(x) + Cy(x)>�ruf(x) + Cu(x)>� ! :Using this we can rewrite the Newton equation (4.3) as follows0BB@ Dy(x; �)2r2yy`(x; �) + Ey(x; �) Dy(x; �)2r2yu`(x; �) Dy(x; �)2Cy(x)>Du(x; �)2r2uy`(x; �) Du(x; �)2r2uu`(x; �) + Eu(x; �) Du(x; �)2Cu(x)>Cy(x) Cu(x) 0 1CCA�0B@  sysu !�� 1CA = � 0BBB@ Dy(x; �)2�ryf(x) + Cy(x)>��Du(x; �)2�ruf(x) + Cu(x)>��C(x) 1CCCA :(4.5)



10 L. N. VICENTEFrom the �rst linear equation in (4.5), we obtain�� = � � Cy(x)�>r2yy`(x; �) + Cy(x)�>Dy(x; �)�2Ey(x; �) Cy(x)�>r2yu`(x; �) �  sysu !� Cy(x)�>ryf(x) � � :(4.6)The third linear equation, also called the linearized state equation, can be rewritten asCy(x)sy + Cu(x)su = �C(x) :Since Cy(x) is nonsingular, we obtain s = sn +W (x)su ;(4.7)where sn =  �Cy(x)�1C(x)0 !(4.8)is a particular solution of the linearized state equation, andW (x) =  �Cy(x)�1Cu(x)In�m !(4.9)is a matrix whose columns form a basis for the null space of the Jacobian matrix J(x).The second linear equation in (4.5) can now be rewritten only in the variables su by using theformulae (4.6), (4.7), (4.8), and (4.9) given above. The form for this linear equation involves onlythe variables su and is the following:�W (x)>Ha(x; �)W (x)�su = �W (x)>�Ha(x; �)sn +rf(x)� ;(4.10)where Ha(x; �) =  r2yy`(x; �) +Dy(x; �)�2Ey(x; �) r2yu`(x; �)r2uy`(x; �) r2uu`(x; �) +Du(x; �)�2Eu(x; �) !(4.11)is an augmentation of the Hessian r2xx`(x; �) of the Lagrangian function `(x; �). The augmentedterm G(x; �) =  Gy(x; �) 00 Gu(x; �) ! =  Dy(x; �)�2Ey(x; �) 00 Du(x; �)�2Eu(x; �) !takes into account the presence of the bound constraints in the variables y and u.In summary, the a�ne{scaling interior{point Newton algorithm is the following. (The step canbe calculated by either 2.1a or 2.1b. The matrix X is the diagonal matrix of order n where thediagonal elements are the components of x.)



ON INTERIOR{POINT NEWTON ALGORITHMS 11Algorithm 4.1 (Affine{scaling interior{point Newton algorithm).1. Choose an initial point (x; �) with x > 0.2. Until convergence do2.1a Compute (s;��) by solving (4.4) for (ŝ;��) and then by setting s = D(x; �)ŝ.or, equivalently,2.1b Compute sn as in (4.8).Compute su by solving (4.10).Compute sy = (sn)y � Cy(x)�1Cu(x)su.Compute �� by (4.6).2.2 Set � = � �1min(X�1s;�1) , where � 2 (0; 1).Set the new iterate (x; �) to (x; �) + (�s;��).In the next section, we will give an interpretation of the diagonal matrices D(x; �) and E(x; �)and show how to incorporate a centralization term in this algorithm (see Remark 5.1).It is important to con�rm that this algorithm is locally well{de�ned around a point that satis�esthe standard Newton assumptions, i.e., a nondegenerate regular point for which the second{ordersu�cient optimality conditions hold. If Step 2.1a is used, then the well{posedness of the algorithmis a direct consequence of Assumptions 2.1 and Proposition 3.3. So, let us consider Step 2.1b. SinceCy(x) is assumed to be nonsingular in 
, the calculations of sn and �� are well de�ned. We showin the next result that it is always possible to compute su in (4.10).Proposition 4.1. Let Assumptions 2.1 hold. If (x; �) is su�ciently close to a nondegenerateregular point (x�; ��) for which the second{order su�cient optimality conditions hold and if x isstrictly feasible, then the matrix W (x)>Ha(x; �)W (x)(4.12)is nonsingular.Proof. If the matrix (4.12) is singular, there exists an su 6= 0 such that�W (x)>Ha(x; �)W (x)�su = 0 :Let sn = 0, s = (s>y s>u )> = sn +W (x)su, and �� be given by (4.6). Then D(x; �)r2xx`(x; �)D(x; �)+ E(x; �) D(x; �)J(x)>J(x)D(x; �) 0 ! ŝ�� ! = 0 ;(4.13)where ŝ = (ŝ>y ŝ>u )>, ŝy = Dy(x; �)�1sy , and ŝu = Du(x; �)�1su. Since ŝu 6= 0, this shows that thematrix in (4.13) is singular. From Assumptions 2.1, Proposition 3.3, and the proximity of (x; �)and (x�; ��), we know that the matrix in (4.13) is nonsingular, which establishes a contradiction.It is important to remark that the matrix (4.12) is not de�ned at (x�; ��) if any of the diagonalelements of D(x�; ��) is zero, meaning that one of the components of x� is also zero. In this casethe condition number of (4.12) is arbitrarily large for points close to (x�; ��). This statement couldlead to the impression that the q{quadratic convergence of the algorithm is jeopardized if Step2.1b is used. However, we point out that we only suggest the use of (4.10) as an alternative andequivalent way to compute the step (4.4), and we stress that the matrix in (4.13) is nonsingular ata point satisfying the standard Newton assumptions.



12 L. N. VICENTENow, we can guarantee the q{quadratic rate of convergence of Algorithm 4.1.Theorem 4.1. Let Assumptions 2.1 hold and consider a sequence in the pair (x; �) generatedby Algorithm 4.1 converging to a nondegenerate regular point (x�; ��) that satis�es the second{ordersu�cient optimality conditions. If � is chosen so that j� � 1j = O(kF1(x; �)k), whereF1(x; �) =  D(x; �)2rx`(x; �)C(x) ! ;then the sequence converges with a q{quadratic rate.The corresponding sequence in z generated by z = z(x; �) = rx`(x; �) converges r{quadraticallyto z� = z(x�; ��).Proof. As we have seen before the algorithm is well de�ned. The q{quadratic rate follows byusing an argument similar to the one used in [7, Theorem 11] or [10, Corollary 9.1] for simplerclasses of problems. For the r{quadratic rate, we point out that Assumptions 2.1 implykz(x; �)� z(x�; ��)k � 1  x� x��� �� ! ;for some positive constant 1. Since the pair (x; �) converges q{quadratically to (x�; ��), z(x; �)converges r{quadratically to z(x�; ��).The update (4.6) can be rewritten as follows:�� = �Cy(x)�>� (Ha(x; y)s)y +ryf(x)�� � :If we set �new = �+ ��, then we have�new = �Cy(x)�>��r2xx`(x; �)s�y +ryf(x)�� Cy(x)�> (G(x; �)s)y :(4.14)This suggests that we consider the following update:�new = �Cy(x+ s)�>�ryf(x+ s) +Gy(x; �)sy� :(4.15)We can see that the update (4.15) is related with the update (4.14) is the same way that the leastsquares multipliers are related with the Newton multipliers for equality constrained optimization(see [23, Formulae (2.7e) and (2.9)]). Later, when we introduce the reduced primal{dual interior{point Newton algorithm, we will see clearly the role of the term �Cy(x + s)�>Gy(x; �)sy. This isthe topic of Remark 5.2, where we will see for instance why in (4.15) we have G(x; �) rather thanG(x+ s; �+��). One of the advantages of (4.15) is that it is not a�ected by possible inaccuraciesin r2xx`(x; �). Also, if there are no bounds on y, then the update (4.15) reduces to the update�new = �Cy(x+ s)�>ryf(x+ s) that is used by other algorithms in this situation (see [10], [16]).5. Primal{dual interior{point Newton algorithms. The primal{dual interior{point New-ton algorithm is derived by applying Newton's method to the following system of nonlinear equa-tions in x, �, and z rx`(x; �)� z = 0 ;(5.1) C(x) = 0 ;(5.2) XZe = �e ;(5.3)



ON INTERIOR{POINT NEWTON ALGORITHMS 13where � = �minfxizi; i = 1; : : : ; ng is the perturbation parameter1, � 2 (0; 1) is the centralizationparameter, X and Z are diagonal matrices where the diagonal elements are the components of xand z respectively, and e is a vector of ones with n components. The equation XZe = �e is arelaxation of the complementarity condition x>z = 0 that includes a perturbation term �e (see [12]and [32] for more details). This algorithm is also of interior{point type, meaning that x and z arerequired always to be strictly feasible with respect to the bound constraints, i.e., x and z have tosatisfy x > 0 and z > 0. We will assume that x > 0 and z > 0 throughout this section.The linearization of (5.1){(5.3) yields0BB@ r2xx`(x; �) J(x)> �InJ(x) 0 0Z 0 X 1CCA 0BB@ s���z 1CCA = � 0BB@ rx`(x; �)� zC(x)XZe� �e 1CCA :(5.4)We can eliminate �z from the third equation�z = �X�1Zs � z + �X�1e(5.5)and replace it in the �rst equation:�r2xx`(x; �) +X�1Z�s+ J(x)>�� = �rx`(x; �) + �X�1e :Thus, the calculation of the steps s and �� can be done by solving0@ X 12r2xx`(x; �)X 12 + Z X 12J(x)>J(x)X 12 0 1A  ŝ�� ! = � 0@ X 12 �rx`(x; �)� �X�1e�C(x) 1A(5.6)and setting s = X 12 ŝ. By computing the step in this way, we obtain a symmetric matrix where Xis not inverted.We already know that the second equation in (5.4) leads to s = sn +W (x)su, where sn andW (x) are given in (4.8) and (4.9), respectively. Thus, we can �nd su by solving�W (x)>Ha(x; �)W (x)�su = �W (x)>�Ha(x; �)sn +rf(x)� �X�1e� ;(5.7)where Ha(x; �) =  r2yy`(x; �) +X�1y Zy r2yu`(x; �)r2uy`(x; �) r2uu`(x; �) +X�1u Zu ! :(5.8)Remark 5.1. The similarity between the formula (5.7) to compute su and the formula (4.10)used in the a�ne{scaling algorithm is evident. A comparison of the formulas (4.10){(4.11) and(5.7){(5.8) indicates that the pair D(x; �) and E(x; �) plays in the a�ne{scaling algorithm a roleidentical to the one that X 12 and Z plays in the primal{dual algorithm. In fact at a point (x�; ��)satisfying the �rst{order optimality conditions, the following equalities holdD(x�; ��) = X 12� and E(x�; ��) = Z� :1 A more general form for the perturbation parameter is given in [31].



14 L. N. VICENTEA comparison between the a�ne{scaling and the primal{dual algorithms allow us to introduce cen-tralization in the a�ne{scaling algorithm. We observe from formulas (4.4) and (5.6) that cen-tralization in the a�ne{scaling algorithm could be obtained if we replace �D(x; �)rx`(x; �) by�D(x; �)rx`(x; �) + �D(x; �)�1e in the right hand side of (4.4). The perturbation parameterwould be given by � = �minfxi(E(x; �))ii : (E(x; �))ii > 0 ; i 2 f1; : : : ; ngg with � 2 (0; 1) thecentralization parameter.The formula for �� in this case is slightly di�erent from (4.6). The solution component �� of(5.4) is given by formula (5.9):�� = � � Cy(x)�>r2yy`(x; �) + Cy(x)�>X�1y Zy Cy(x)�>r2yu`(x; �) �  sysu !� Cy(x)�>ryf(x) � �+ �Cy(x)�>X�1y ey :(5.9)The primal{dual interior{point Newton algorithm is summarized below. We point out that theprocedures described in 2.1a, 2.1b, and 2.1c correspond to equivalent forms of calculating the samestep.Algorithm 5.1 (Primal{dual interior{point Newton algorithm).1. Choose an initial point (x; �; z) with x > 0 and z > 0.2. Until convergence do2.1a Compute (s;��;�z) by solving (5.4).or, equivalently,2.1b Compute (ŝ;��) by solving (5.6) and set s = X 12 ŝ.Compute �z by (5.5).or, equivalently,2.1c Compute sn as in (4.8).Compute su by solving (5.7).Compute sy = (sn)y � Cy(x)�1Cu(x)su.Compute �� by (5.9).Compute �z by (5.5).2.2 Set � = � �1min(X�1s;Z�1�z;�1) , where � 2 (0; 1).Set the new iterate (x; �; z) to (x; �; z) + (�s;��; ��z).Theorem 5.1. Let Assumptions 2.1 hold and consider a sequence in the triple (x; �; z)generated by Algorithm 5.1 converging to a nondegenerate regular point (x�; ��; z�) that satis-�es the second{order su�cient optimality conditions. If � and � are chosen so that j� � 1j =O(kF2(x; �; z)k) and � = O(kF2(x; �; z)k), whereF2(x; �; z) = 0BB@ rx`(x; �)� zC(x)XZe 1CCA ;then the sequence converges with a q{quadratic rate.Proof. If (x; �; z) is su�ciently close to a nondegenerate regular point (x�; ��; z�) for whichthe second{order su�cient optimality conditions hold and if x and z are strictly feasible, then thecoe�cient matrix in (5.4) is nonsingular. In fact, this matrix is nonsingular at (x�; ��; z�). See [12,Proposition 4.1].



ON INTERIOR{POINT NEWTON ALGORITHMS 15By appealing to an argument similar to the one used in Proposition 4.1 to prove that (4.12) isnonsingular, we establish that W (x)>Ha(x; �)W (x)is also nonsingular, where Ha(x; �) is given by (5.8). Thus, the algorithm is well de�ned.The proof of q{quadratic convergence is given in [12, Theorem 5.1].Now we introduce a reduced primal{dual interior{point Newton algorithm for the solution ofproblem (1.1). First, we note thatrx`(x; �)� z =  ryf(x) + Cy(x)>�� zyruf(x) + Cu(x)>�� zu ! :Thus, from the �rst{order optimality conditions, we can obtain the following formula for the mul-tipliers � �(x; z) = �Cy(x)�>�ryf(x)� zy� :(5.10)If we set � = �(x; z) in ru`(x; �)� zu = 0, we getW (x)>�rf(x)� z� = 0 :The reduced primal{dual interior{point Newton algorithm is derived by applying Newton'smethod to the following system of nonlinear equations in x and zW (x)>�rf(x)� z� = 0 ;(5.11) C(x) = 0 ;(5.12) XZe = �e ;(5.13)where X , Z, e, and � are described after (5.1){(5.3).To calculate the corresponding Newton step we point out that@@y�(x; z) = �Cy(x)�1r2yy`(x; �(x; z)) ;@@u�(x; z) = �Cy(x)�1r2yu`(x; �(x; z)) ;@@xW (x)>�rf(x)� z� = W (x)>r2xx`(x; �(x; z)) :(A slightly di�erent version of these formulae is proved in [10].) Thus, the Newton step correspond-ing to the system of nonlinear equations (5.11){(5.13) is given by0BB@ W (x)>r2xx`(x; �(x; z)) �W (x)>J(x) 0Z X 1CCA  s�z ! = � 0B@ W (x)>�rf(x)� z�C(x)XZe� �e 1CA :(5.14)



16 L. N. VICENTEAgain, we know that the second equation in (5.14) leads to s = sn +W (x)su, where sn andW (x) are given in (4.8) and (4.9), respectively. Thus, we can eliminate the third equation by using(5.5) and reduce the linear system (5.14) to�W (x)>Ha(x; �(x; z))W (x)�su = �W (x)>�Ha(x; �(x; z))sn+rf(x)� �X�1e� ;(5.15)where Ha(x; �(x; z)) =  r2yy`(x; �(x; z))+X�1y Zy r2yu`(x; �(x; z))r2uy`(x; �(x; z)) r2uu`(x; �(x; z))+X�1u Zu ! :The reduced primal{dual interior{point Newton algorithm is summarized below. The step isgiven by any of the equivalent forms described in 2.2a and 2.2b.Algorithm 5.2 (Reduced Primal{dual interior{point Newton algorithm).1. Choose an initial point (x; z) with x > 0 and z > 0.2. Until convergence do2.1 Compute �(x; z) by (5.10).2.2a Compute (s;�z) by solving (5.14).or, equivalently,2.2b Compute sn as in (4.8).Compute su by solving (5.15).Compute sy = (sn)y � Cy(x)�1Cu(x)su.Compute �z by (5.5).2.3 Set � = � �1min(X�1s;Z�1�z;�1) , where � 2 (0; 1).Set the new iterate (x; z) to (x; z) + �(s;�z).Theorem 5.2. Let Assumptions 2.1 hold and consider a sequence in the pair (x; z) generatedby Algorithm 5.2 converging to a nondegenerate regular point (x�; z�) that satis�es the second{order su�cient optimality conditions. If � and � are chosen so that j� � 1j = O(kF3(x; z)k) and� = O(kF3(x; z)k), where F3(x; z) = 0BB@ W (x)>�rf(x)� z�C(x)XZe 1CCA ;then the sequence converges with a q{quadratic rate.The corresponding sequence in � generated by � = �(x; z) converges r{quadratically to �� =�(x�; z�).Proof. If (x; z) is su�ciently close to a nondegenerate regular point (x�; z�) for which thesecond{order su�cient optimality conditions hold and if x and z are strictly feasible, then thematrix 0BB@ W (x)>r2xx`(x; �(x; z)) �W (x)>J(x) 0Z X 1CCA(5.16)



ON INTERIOR{POINT NEWTON ALGORITHMS 17is nonsingular. To see why this is true, notice that0BB@ W (x)> 0 00 Im 00 0 In 1CCA 0BB@ r2xx`(x; �) J(x)> �InJ(x) 0 0Z 0 X 1CCA = 0BB@ W (x)>r2xx`(x; �(x; z)) 0 �W (x)>J(x) 0 0Z 0 X 1CCA :Since the �rst matrix on the left hand side of this equality has rank 2n and the second matrix onthe left hand side is nonsingular (see Theorem 5.1), we conclude that the matrix on the right handside has rank 2n. Hence the matrix (5.16) is nonsingular at the points (x; z) and (x�; z�).By appealing to an argument similar to the one used in Proposition 4.1 to prove that (4.12) isnonsingular, we obtain that W (x)>Ha(x; �(x; z))W (x)is also nonsingular at a point (x; z) in the conditions mentioned at the beginning of this proof.Thus, the algorithm is well de�ned.The proof of q{quadratic convergence is given in [12, Theorem 5.1]. For the r{quadratic rate,we point out that Assumptions 2.1 implyk�(x; z)� �(x�; z�)k � 2  x� x�z � z� ! ;for some positive constant 2. Since the pair (x; z) converges q{quadratically to (x�; z�), �(x; z)converges r{quadratically to �(x�; z�).One of our claims in this paper is that looking at these three interior{point Newton algorithms ina comprehensive manner is a tool to gain insight about their individual components and properties.In fact, Remarks 5.1 and 5.2 try to support this claim. In Remark 5.1, we pointed out that the a�ne{scaling algorithm lacks of centralization, and we showed how centralization could be incorporatedinto the algorithm. Next, we relate Lagrange multiplier updates of di�erent algorithms.Remark 5.2. By comparing the update (4.15) suggested in the a�ne{scaling algorithm tocompute �new and the update�(xnew; znew) = �Cy(xnew)�>�ryf(xnew)� (znew)y� :that was suggested in (5.10) for the reduced primal{dual algorithm, we can identify the role that theterm �C�>y (x+ s)Gy(x; �)sy plays in the update (4.15).In fact, if we ignore the centralization term in the update (5.5), we obtain(znew)y = zy + �zy = �X�1y Zysy :Thus, since Dy(x; �) ' X 12y and Ey(x; �) ' Zy (see Remark 5.1), we conclude that�new = �Cy(x+ s)�>�ryf(x+ s) + Gy(x; y)sy�' �Cy(xnew)�>�ryf(xnew)� (znew)y� = �(xnew ; znew) :



18 L. N. VICENTE6. General nonlinear programming. The general nonlinear programming can be formu-lated as: minimize f(x)subject to g(x) = 0 ;(6.1) x � 0 ;where x 2 IRn, f : 
 �! IR, g : 
 �! IRm, n and m are positive integers satisfying n > m, andwhere 
 is an open set of IRn containing fx : x � 0g.The main di�erence between problems (1.1) and (6.1) is that the equality constraints in (6.1)are assumed to have no particular structure. For instance, for problem (1.1) the Jacobian J(x) ofC(x) is always partitioned in the form �Cy(x) Cu(x)�, where Cy(x) is nonsingular. For problem(6.1), regularity implies that the Jacobian of g(x) has full row rank. So, for every x, there exists apartitioning of the Jacobian of g(x) of the formrg(x)> = �B(x) N(x)�, whereB(x) is nonsingular.The problem is that this partitioning varies for di�erent values of x.Let us consider Algorithms 4.1, 5.1, and 5.2 with their full{space versions where the step sis not decomposed. Algorithms 4.1 and 5.1 are extended to problem (6.1) in a straightforwardway. The extension of Algorithm 5.2 requires some attention. In the place of the matrix W (x)de�ned in (4.9), we use the matrix Z(x) that is obtained by the QR factorization of rg(x), andin the place of the adjoint multiplier update (5.10), we use the least squares multiplier update�(x; z) = argmin fkrx`(x; �)� zkg. Then, the analysis follows by using the result established in[14].Now let us consider the reduced{space versions of Algorithms 4.1, 5.1, and 5.2, where the steps is computed along the null space of the Jacobian of the equality constraints. The extension toproblem (6.1) is carried out by considering the decomposition s = sn+Z(x)�s, where sn is orthogonalto the null space of rg(x)>, and by using least squares updates for the multipliers step ��. See[23, Formula 2.6] for more details on how this reduction is accomplished.7. Summary. We believe that the framework presented in this paper can lead to practicalinterior{point algorithms for the solution of discretized optimal control problems with bounds onthe state variables.We studied the optimality conditions and the constraint quali�cations of problem (1.1) in detail.We described an a�ne{scaling interior{point Newton algorithm for (1.1) that relates to a particularform of the optimality conditions. This algorithm is an extension of the one in [10] for problemswith bounds only on the control variables (see also [17], [28]). We also considered two primal{dualinterior{point Newton algorithms for problem (1.1). The well{posedness of these algorithms wascarefully studied. Then, we showed how to use the structure of (1.1) to reduce the linear algebraof every algorithm to the null space of the Jacobian matrix. The extension for general nonlinearprogramming was also considered.We are currently studying the globalization of the interior{point Newton algorithms using thetrust{region technique. The local rate of convergence of these algorithms in the singular case isanother topic that deserves further attention. A number of authors have studied the local rate ofconvergence of interior{point Newton algorithms in the absence of regularity or strict complemen-tarity for particular classes of problems like linear programming, monotone variational inequalities,and linear complementarity (see [13], [25], [27] and the references therein). In problems of the
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